A Locomotive for Working Steep Gradients. An English engineer, Mr. Andrew Handyside, has recent ly patented in England and this and several other countries a locomotive engine for drawing trains up inclines. A trial was
re sently made with one of these engines at Bristol, England, and the result was such as to show that the invention is one of some merit
The engine weighed 13 tuns, and to it were attached two trucks weighing together 25 tuns $14 \mathrm{cwt} . ;$ and one portion of the line on which the trial was made was on an incline of 1 in 12. The peculiarity of the system is that the engine is coupled to the train by a steel chain or wire rope, wound round a drum noounted in the framing of the engine. The axis of this drum works horizontally in bearings fixed in the main framing of the engine, and it is rotated by gearing from a separate pair of cylinders, distinct from the usual from a separate pair of cylinders, distinct from the usual
cylinders which drive the locomotive. A drum, 2 feet in cylinders which drive the locomotive. A drum, 2 feet in
width and 1 foot in diameter, will accommodate chain enough width and 1 foot in diameter, will accommodate chain enough
to fulfil all the requirements of the system. On each side of the engine framing, and on each side of one or more carriages or wagons of the trains, there are suspended one or more self-acting gripping struts, which, when let down on the rails ly the driver or other person in charge of thetrain, will firmly grip the sides of the rails, and hold the engine or train stationary. On arriving at the foot of the incline, the engineer releases the hauling drum, and, without stop ping the engine, runs up the gradient to the required dis tance. The struts are then let down on the rails; and by grasping the rails, they render the engine stationary, and the load is drawn up to the engine much after the fashion that loads are drawn up inclines at collieries. The last truck of the trial train was furnished with an automatic gripping strut, which, when the trucks commenced a retrograde movement, at once grasped the rails on each side and held the train in its place beyond the possibility of its being moved, our informant states, even when the engine with full steam on was backed against it.
The experiments were of the most thorough description and the invention was tested in every way. In the first place the value of the gripping strut was shown. The powerful little engine mounted the gradient without its load, and, full steam on, ran the whole length of the siding. At a signal
from Mr. Handyside, the brakes were applied, and the enfrom Mr. Handyside, the brakes were applied, and the engine was brought to a standstill in the length of a rail and a
half. The contrast between the power of thislrake and the ordinary hand brake, with which the engine was also supplied, was fully shown. The wagons were then attached, and the brakes on the engine and on the brake van were applied simultaneously with equally satisfactory results. This experi ment was witnessed with very considerable interest, as the brake question is just now occupying very much of the at tention of railway men. With the continuous brake, it was pointed out that, 90 per cent of the wheels being braked, a train is pulled up in about 900 feet with the train going at a speed of fifty miles per hour. In this case, the train pulled up in 600 feet, and only 75 per cent of the carriages were braked. After duly testing the brake, the method of mounting steep gradients was shown. The engine put full steam on, ran to the foot of the incline, and then, letting out the steel wire rope which coupled it to the trucks, mounted the steep alone. The gripping struts were then let down; and the engine having thus been made stationary, the trucks into action up to it , the automatic gining stationary. The accomplishment of this test occupied a surprisingly short time. The trucks were then lowered to show the control which the driver was able to exercise over a train for lower ing purposes. The company claim that, by this invention shiadler and less powerful engines may be used on heavy gradients, and that it will allow of less cost in constructing lines, inasmuch as less cutting will be required.

Detcction of Adulteration in Wine by Means of

Absorption Spectra.

Professor H. Vogel states that the simplest method of detecting adulteration in wine, especially in regard to the coloring matter, is by means of the spectroscope. The apparatus required is as inexpensive as the operations are simple Professor Vogel employed for the purpose a pocket spectro scope which cost in Berlin 36 mark (about $\$ 9.00$). The instrument is first directed towards the blue sky, or to its retlection in a mirror, clamped in a horizontal position in a retort holder, and the slit closed until the principal Fraunhofer lines, $(C, D, E, F, G$, and a few intermediate lines are distinct. The liquids to be studied are put into square white bottles about 0.30 inch thick, and placed before the slit.
It is well known that many substances of similar color have produced very unlike absorption spectra, while others, which are very different chemically, have very similar absorption spectra, like chloride of iron and tincture of iodine I'hese facts are no objection to spectral analysis by absorp tion. It resembles analysis by polarization, which cannot be employed for all substances; but where it can be used, it is
invaluable. nvaluable.
Analysis by the alsorption spectra, of course, ossumes various spectra to be known, and here stands a serious bar rier in the way of its present extensive introduction, namely, the maps of absorption spectra; which are insufficient and incomplete. Drawings made in the ordinary manner are incor rectly reproduced by the lithographer or engraver, and rendered still more imperfect by the coloring applied. For this reason Dr. Vogel employs the graphic method as follows: Upon a horizontal line or abscissa he erects perpendiculars to represent the chief Fraunhofer lines, and represents the which increases with the intensity of the absorption.

The absorption bands of the most important coloring substances lie between Cand F; those which lie beyond (C require
sunlight for their study, which is not always to be had, and hence they are useless. At the request of certain wine dealer Professor Vogel has investigated and published the absorp tion spectra of pureand colored wines. Perfectly pure speci mens of the following sorts of red wine were obtained from reliable sources, namely : Assmannhauser, Burgundy, Nuits, Cote d'Or, and Bordeaux. Although they differed in age and intensity of color, they give the same spectra.
Pure concentrated wine absorbs the whole spectrum to the orange. Dilute wine destroys the dark blue almost entirely allows the light blue to pass, but absorbs the green and yel ow green, and stops at D, while red goes through unchanged Tartaric or acetic acid darkens pure wine inconsiderably Ammonia changes the color of wine to a dark gray green and makes it much more opaque, so that it must be strongly diluted in order to obtain the spectrum, which is totally dif ferent. Indigo and blue are strongly absorbed; the alsorp tion sinks towards the green and is least in the yellow and orange, but exhibits a faint band in the orange. By lamp ight, the alsorption of alkaline wine is scarcely perceptible
The spectral reactions of the substances employed to colo wines are quite different. Those coloring substances which are objectionable to the taste, but not injurious to health, give reactions very similar to those of red wine. The juice of bilberry, sour cherry, and elderberry, and extract of mallow blossoms absorl, nearly the whole spectrum. For this rea on it is preferable to add one part of tartaric acid or of am monia to 10 parts of the juice.

Opening to Navigation of the Viclssbury Cut-off.
The city of Vicksburg, Miss., is located on high bluffs, under which the Mississippi makes its way by sharp deflec tons, east and west, of nearly fifty miles from its direct course. During the late war the Union commanders sough to avoid the heavy batteries of the Confederates at Vicks burg, which commanded the river, by opening a cut-off or canal across the country, back of De Soto Peninsula, oppo site Vicksburg. The river at the upper or northerly end of of digging the channel was then carried on extensively', with every promise of success, until, by a sudden rise of the river water broke through the dam and put a stop to the work General Grant, finding that too much time would be con

sumed in the endeavor
to repair and finish the
channel, adopted other expedients for passing the batteries, and the canal was left unfin
ished. It has now however, been com. pleted by the silent mining operations of the river itself and the boats pass up and down through it, avoiding the détour to Vicksburg, and thus saving about thirty miles of the new canal cut-of

A Canal rom the Hudson to the Mississippi.
Mr. W. J. Abernethy, editor of the Minneapolis Furmers Union, writes to point out that the two principal rivers-the Fox and Wisconsin-together form an almost unbroken wate channel from the Father of Waters to the great Ris ing, the one in the southern and the other in the northern
part of the State, they flow towards each other until their part of the State, they flow towards each other until their
waters almost touch, when they suddenly sweep away at right angles, and empty, one into Lake Michigan at Green Bay, and the other into the Mississippi at Prairie du C'hien. In a few weeks, the canal which is to join the two will be completed, and Wisconsin will honor the event with appro priate ceremonies.
On the Fox River a system of slack water navigation has been adopted, which is proving entirely successful. There are numerous falls on what is known as the Lower Fox, and these are overcome by dams with locks, to pass boats around them. 'The work is so far advanced that, if no unforeseen obstacles occur, vessels can run up its entire distance to Por tage (160 miles west of Lake Michigan) this fall, and pass
over into the Wisconsin. ('onsiderable dredging, however, over into the Wisconsin. ('onsid
remains to be done on this river.
The Wisconsin river is, at the portage, three fifths the size of the Mississippi at St. Paul. It is a rapid stream, full of floating sand, which in low water seriously olstructs nivi gation. Sections of the river have been improved by wing dams; but in order to permanently secure a navigable channel, it will be necessary, in some sections of it, to make a by General Warren, of the United States Engineer Corps it can be built, says our correspondent, the entire distance from Portage to the Mississippi, 118 miles, for $\$ 4,164,270$.

sCIENTIFIC AND PRACTICAL INFORMATION

 Dynamite.Sobrero, the inventor of dynamite, in a recent communica tion to the Academy of Turin, designated two of the opera
tions in the manufacture of dynamite as especially danger tions in the manufacture of dynamite as especially danger-
ous: first, the mixing of the nitroglycerin with the infusor ial silica (kieselguhr), and second, pressing the mass into molds for cartridges. In both cases an explosion may easily be caused by friction and pressure. Nobel recommends the following process as far safer, namely, to mix the silica with water to a dough, then press it into cartridge molds and dry which they
aided by exhausting the air. Solrero marle his experiments with infusoria of Italian origin which can be easily made in to cartridges that will absorl) as much as 75 per cent of their weight of nitroglycerin.
a faldacious test for inead in tin.
An item has been widely circulated, both here and abroad, in which it was stated that the presence of leall in tin could easily be detected by putting a drop of nitric acid on the clean surface of tin plate, heating gently to cause it to at tack the metal and evaporate the excess of acid, and moistening the white spot with a five per cent solution of iodide of pohe white spot with a five per cent solution of iodide of po
; if lead were present, the spot would become mor tassium ; if lead were present, the spot would become more
or less yellow from the formation of iodide of lead. Dr. A or less yellow from the formation of iodide of lead. Dr. A
Puerkhauer calls attention to the fact that tin, free from Puerkhauer calls attention to the fact that tin, free from
lead, will also yield a yellow spot when thus treated, evi dently due to the liberation of iodine by the presence of free acid ; for nitric acid cannot be completely expelled from tin, ven when the tin is heated to its melting point. It may l_{s} easily proved that the yellow spot, formed on tin which is free from lead, is due to the liberation of iodine, by touching the spot with starch paste. The above mentioned reaction can be made reliable by touching the white spot made by nitric acid with very dilute caustic potash before applying he iodide of potnssiun, when a yellow coloration will not fail to indicate lead.

subchlomide of copper in verdigris

Wittstein has found in some samples of acetate of copper white precipitate, insoluble both in water and acetic acid, but soluble in dilute mineral acids. Investigation slowed hat this peculiar body consisted chiefly of subchloride of copper formed by the chlorhydric acid, which is always pres ent in acetic acid made by decomposing crude acetate of lime with chlorhydric acid. For this reason manufacturers of verdigris would do well to use only such acetic acid as has been made ly the use of phosphoric or sulphuric acid, as these acids are not sufficiently volatile to distil over with the acetic acid.
green varnisil for metals.
A varnish for small or large metallic articles can be pre pared, says the Industrie Blätter, in the following manner Finely pulverized gum sandarac or mastic (the latter, how ver, is too expensive for some uses) is dissolved in strong potash lye until it will dissolve no more. The solution is diluted with water and precipitated with a solution of a copper salt, either sulphate or acetate. This green precipitate is washed, dried, and dissolved in oil of turpentine. This produces a fine green varnish which does not change under the effect of light, and will be especially useful for ornamenta iron work.
'Chis is the nome
by Dickerhoff ane given to a new blasting powder, invented coal mines of France and Austria. It is composed of picric acid, saltpeter, nitrate of soda, sulphur, and sawdust. The gases produced by its combustion are not injurious, it is claimed, and it burns comparatively slowly, so that it only tears apart the masses blasted, but does not hurl them vio lently about.

DECISIONS OF THE COURTS

United States Circuit Court---District of New Jerscy.

