only chairs, at least one of which is now deemed indis- see the sculpture as an auxiliary of architecture. The stapensable to every well regulated furniture store, and the tues are not free, but attached to the walls. The artists quantities of abnormally written documents attributed to seem also controlled by the principle that their work should the Father of his Country which photography reproduces adapt itself to the material of which it is made, in other in uncounted and genuine originals, our credulity gives \mid words, that a stone statue should be stony. Lastly, their way, and we warn our readers against Centennial relics. sculpture, like all art, refiects the spirit of the people. The
During the past winter, we have seen certainly thirty quilt great characteristic of the Egyptian people was their sentiDuring the past winter, we have seen certainly thirty quilt- great characteristic of the Egyptian people was their senti-
ed petticoats which fair wearers assured us belonged to ment of eternity. All their works show its imprint, either Martha Washington, and this is in only one city. How by their colossal nature or by other attempts at conferring many such garments Philadelphia possesses, we cannot divine. All along Broadway, conscienceless small boys are vending musty, yellow, and ragged newspapers; and not a single anniversary of any revolutionary battle can occur but that copies of the particular ancient paper containing the account of the confict are sold in New York, in editions so large that the long since dead publishers would have deemed their fortunes secure had their original publications achieved one half the circulation. Lafayette buttons are appearing by the gross; and as for Franklin's canes, their
name is legion. There is a strong and growing desire for these things, which bids fair to establish a new and patriotic industry devoted to their manufacture

THE DI CESNOLA COLLECTION.

Westward the star of empire takes its course" has always been a fundamental truth with regard to the progress of civilization; and although at the present day the troops of the (zar steadily pursue their march eastward, all our mod. ern nations owe their being and development to a steady
movement in the opposite direction. Our ancestors lived in movement in the opposite direction. Our ancestors lived in
the mountains of Hindostan and called themselves the Aryans; and when they started out upon their migrations westward and settled in Europe, they became in time Greeks, Romans, Germans, Celts, Slavonians : all of whom belong to the same great family, to which the name of Indo-European or Indo-Germanic has been given. We know the fact of their kinship by the similarity of their languages as revealed by comparative philology. Take a single example: Mother in Sanscrit is mâtâr, in Persian máder, in Greek uŋ $\tau \eta \rho$ in Latin mater, in Celtic mathair, in Slavic matka, in Swedish and Danish moder, in German mütter, in Dutch müder, in Anglo-Saxon moder. If such then are the ties which con-
nect us with the ancient world, the study of its civilization nect us with the ancient world, the study of its civilization
proceeds from higher motives than mere curiosity; it is the proceeds from higher motives than
study of our own first beginnings.
The subject of the present lecture is the development of art, as illustrated by the Di Cesnola (pronounced C'hessnola) collection in the Metropolitan Museum of Art at No. 128 West 14th street, New York.
Gieneral Louis Palma di Cesnola, an Italian by birth, but an American citizen, who fought in our civil war, was appointed Consul to Cyprus in 1865 by the American government. Cyprus is one of the largest islands of the Meditter ranean Sea; it is situated near the Syrian coast and belongs to Turkey. Owing to its rosition, it is a convenient point on each other's movements with regard to the Eastern watc tion. Although the whole istand contains less thanone hundred and fifty thousand inhabitants, there were then as many as seventeen consuls on it, whose whole business was to bully each other and act as spies for their governments. Di c'es nola, whose government was not involved in the Eastern
question, perceived the importance by reason of its lying di rectly in the r..te of ancient civilizations, and proved him self the only s, usible consul on the island; for he commenced to dig.
The importance of the objects he exhumed soon attracted the attention of archæologists; and in 1869, when the lec turer was on the island, with an agent of the Berlin museum he witnessed the sale of everything that had been brought to light up to that time. But Di Cesnola continued his excavations after that; and in the winter of 1869 to 1870 , he be the 'Temple of Venus, and brought to light the most impor the Temple of Venus, and brought to
tant collection of statuary yet found.
tant collection of statuary yet found
The way in which the city of New
The way in which the city of New York came to secure so great a prize was as follows. It was first offered to Boston, and then transferred to London with a view to its acquisition
by the British Museum. But Mr. Newton, the head of that by the British Museum. But Mr. Newton, the head of that
institution, was unwilling to accept it under the conditions of the sale: namely, that it should retain the name of Di C'esnola, and that it should be kept intact. As there was a mortgage on the collection, Mr. Newton expected to obtain it on his own terms by delaying his decision until the day of the sale; but he was baffled in this by Di Cesnola, who grew tired of the whole business, and sold the collection to Mr John Taylor Johnson, of New York, for $\$ 40,000$.
The two principal features of the collection are its ugliness and the confusion it is likely to leave in the mind of the spectator. This confusion will disappear when we study spectator. This confusion will disappear when we study
the position and history of C'yprus with a view to what we the position and history of
The island of C'yprus is only 150 miles distant from the Euphrates, that is to say, from the great Assyrian empire of Babylon and Nineveh. The nearest neighbors were the Phonicians of Tyre, a great commercial nation, who had sailed as far as Britain, B.C. 1300. They first colonized Cy prus as far back as B. C. 1800 or 2000 . Then the island passed successively under the dominion of the Egyptians, the Assyrians, the Persians, the Greeks and the Romans. As we do not know of any Phœnician art, the first to occupy
our attention is the Egyptian. The characteristics of Egyptian art are evident in the temple of Ipsamboul. There we

Abstract

durability. We notice it in the pyramids, the tombs of their

 kings, in the embalming of mummies, and in their statuary Here everything is of a fixed type, from which the indi vidual artist may not vary. Hence we find, in all Egyptian statues, the same monotonous expression, the same conven tional breadth of shoulder, the same head dress. A statue consequently, which exhibits the above characteristics, is fore be between B. C. 1440 and the end of the twelfthere tury B. C., the period of Egyptian ascendency in Cyprus. We next find Cyprus as a part of the great Assyrian en pire, and the sculpture of that period may be expected to exhibit Assyrian peculiarities. What these are appears in a representation of the winged bulls of Nineveh, taken from the Assyrian Court in the Crystal Palace, London. In the Assyrian empire, where mind was held in as much esteem as force, we find curious combinations of human and animal figures, made still more subservient to architecture than the Egyptian ; for they are all in relief. There are no free figures. The Assyrian statues found at Cyprus are all distinguished by their helmets, their beards, and the peculiar simple drapery.When Nebuchadnezzar destroyed Tyre, in 571 B. C., he crippled the power of the Phœnicians in Cyprus as else where, and gave the Greeks a chance to gain a firm foothold
on the island. With their increasing infuence, the on the island. With their increasing infiuence, the art of the Greeks began to fiourish. There is a fine specimen of it
which is easily recognized to be a statue of Hercules by the which is easily recognized to be a statue of Hercules by the
knotted club and the lion's skin. The head of the lion forms the head dress of the statue. The teeth and upper jaw form kind of crown on its forehead, and the lower jaw is divided into two parts, one over each cheek. The face resembles that of the native Cypriote type of the present day, and leads us to conclude that its sculptor was a Cypriote. This statue is one of the most valuable of the collection, and would bring about ten thousand dollars
The next period in the history of Cyprus is again one of Egyptian ascendency; and the statues of this time, although still Assyrian, show the infiuence of Egyptian art. One specimen exhibits the Assyrian helmet, beard, and drapery, but Egyptian statues.

After this the faces and drapery of the statues become more and more Grecian. In one figure the high priest of Venus, holding in his hand the dove sacred to the goddess and a patera or cup for libations, exhibits the peculiar zigzag character of Greek drapery. Originally they first carved their statues in wood, and then dressed them up. The angular nature which their first crude attempts had was after wards copied in stone and became consecrated by usage. Observe the Assyrian helmet and beard and the C'y priote type of face. It is a curious and instructive fact that all these varieties of statues were found together in the same temple; for it shows us the gradual development of Greek art from Eastern art. One specimen is the most perfect example of Greek art in the collection; and it is not forty years removed from the date of the finest specimens of sculpture Greece has ever produced. The statue of the Discus Thrower shows indeed a giant step in advance; but it was very long before
the development was reached. For five hundred years the Greeks were, like ourselves, too busy making money to have any art of their own. When we, in our brown stone fronts, etc.,imitate some of the least desirable features of ancientart, and thus expose ourselves to criticism, we may point to the Greeks as imitators before us. The discus thrower just re After the Persian wars, when Cyrus had taken Babylon and Cambyses conquered Egypt, the Phœnicians, who were the allies of the Persians, again fiourished in C'yprus. Then the faces of the statues assume the semitic type, but other wise preserve Greek characteristics. A figure in which the drapery is very carefully executed shows the peculiar ribbed oolen undergarment, peculiar to later Greek statues.
To prove that the statues shown were not the representa tives of merely provincial but of true Greek art at different
periods, the lecturer threw upon the screen a picture periods, the lecturer threw upon the screen a picture of
statues from the Acropolis at Athens, and pointed out the statues from the Acropolis at
same characteristics in them.

After the conquests of Alexander, Greek art rapidly de clined, and we find portraits instead of ideal faces and figures The Greeks were spread over too large a territory and formed too small a fraction of its inhabitants to maintain the ascendency of their taste. They were diluted too much by the barbarians. The same cause operated unfavorably to the development of Roman art. There was not enough Ro man bloo
weund was 60 feet long and 30 feet wide. It was built of mud was 60 feet long and 30 feet wide. It was built of mud
bricks, 5 feet high and 2 feet thick, dried in the sun, and had a wooden roof. In the course of time the bricks crumbled the roof rotted away, the space between the
filled up, and other débris accumulated above it.
C. F. K.

Lining metal for axle boxes: Tin 24 parts, copper 4, an timony 8. Melt together, and add 24 parts more tin.

Trombes.

A good deal of attention has of late been given by meteor ologists to the whirling atmospheric movements denomi nated trombes. That these trombes are of electrical origin has been suspected from the very beginning of electrical science, and in last century experiments were made by way of imitating them on a small scale. Between two metallic plates, the upper of which was electrified, while the lower was connected to earth, various easily movable substances were brought. Water was raised in form of a cone; bran was lifted so as to form a pillar, than scattered in a whirl. In such experiments, however, the phenomenon can only be observed momentarily; the cone or column, if indeed produced, immediately disappears through the scattering of its component particles.
In a recent communication to the Berlin Academy, M. Holtz has described an apparatus by which this interesting phenomenon can be produced with greater certainty, and observed for any length of time. 'The arrangement consists of a cylindrical glass vessel about 8 inches high, 6 inches wide, and $\frac{1}{1 / 2}$ or $\frac{1}{8}$ inch thickness of side. It has a perforation in the middle of the bottom; this is filled with tinfoil, and closed on both sides (above and below) with two large plates of tinfoil. In the middle of the glass vessel hangs a hollow, fiat-pressed, metallic ball, $\frac{4}{5}$ inch in thickness, and 4 inches in diameter. The suspending piece consists of two metallic tubes, one movable in the other; the upper one is connected with the conductor of an electric machine.
If now various easily movable substances, pulvervulent, and not very good conductors, be introduced into the vesselso much of them as will be sufficient to cover the inner plate of tinfoil $\frac{1}{6}$ to $\frac{1}{6}$ inch-then, as soon as the machine is put into action, and the second conductor connected to earth, the substances are thrown into violent motion between the two opposite electric surfaces. With sand, however, or similar materials, no determinate cone or column formation is distinguishable. But with substances of better conduction and coarser structure, such as bran or sawdust, there are constantly formed, through the deposition of new portions, large cones and perfect columns, from which, however, the stormy, whirling, and progressive motion is absent.
M. Holz obtained a phenomenon much more similar to the natural trombes when he used a liquid instead of powder -especially turpentine or olive oil-and gave the lower electrode a pointed form by adding a column of wood, this sulustance being taken to avoid the passing of sparks. The vessel was filled with liquid up to $-\frac{4}{3}$ inch above the point, and the interval between the metallic disk and the liquid was regulated according to the tension of the electricity.

If we now bring the machine into action," says M. Holt
" we observe, first, at the surface of the liquid a slight curling, and presently it tends to rise up the sides of the vessel in a peculiar vibratorymotion. Very soon there is a stronger undulation, and a middle cone is formed, which gradually ncreases; and so long as it does not reach the metallic body, it fies off in minute dancing droplets. If, on the other hand, the cone has become a column, the liquid moves from the middle of the metallic surface to the border, and there falls down at several parts in the form of thinner columns, which, differently from the middle one, have their large bases bove. Often, too, the rising stream parts into several of similar form, each of which follows its own path towards the middle part of the disk, and thence toward the edge where, again, it branches into several descending streams. The liquid also frequently arises simultaneously at various parts, so that, sometimes, reckoning the downward streams, parts, so that, sometimes, reckoning count more than twenty distinct columns ; and all these columns are in constantly progressive and whirling these col
motion."
M. Holtz calls attention to the circumstance that, in the formation in question, no difference was observable between negative and positive electricity; only the motion was more violent when the metallic disk was negatively electrified.
That the agreement between the artificial and the natural trombe is not absolute is, of course, evident from the circumstance that in the one case we have a closed space, with walls probably not without electric tension, as against unbounded space in Nature ; and the formation occurs in Nature between movable surfaces, whereas in the experiment it is between fixed surfaces.

New york Actemy ar Sciences.
At a meeting of the New York Academy of Sciences, re cently held at 64 Madison avenue, a section of biology was organized. This section will meet on the first Monday even ing of each month, and to it will be referred all papers on zoölogy, botany, entomology, ethnology, anthropology, and kindred subjects. Professor E. H. Day, of the New York Normal College, was elected chairman of this section, and Dr. Heinzmann secretary. It is proposed to form field par ties and make frequent excursions to the suburbs, as soon as the season permits of botanizing and fly catching. As the meetings of the Academy are public, those of our reader who are interested in plants and insects will do well to at tend, bringing with them any curiosities they may chance to find.

Improved zinc white.

According to a recent report of the Austrian Chemical So ciety, M. Orr produces a very beautiful zinc white by the fol lowing process: Sulphuret of raw barium is washed, and the liquid obtained is mixed with equal quantities of chloride and sulphate of zinc. The precipitate is collected, pressed, and dried. It is then heated on a hearth, and, while hot, is thrown in cold water. This last treatment produces a mass ing, is of great purity and whiteness.

A Locomotive for Working Steep Gradients. An English engineer, Mr. Andrew Handyside, has recent ly patented in England and this and several other countries a locomotive engine for drawing trains up inclines. A trial was
re sently made with one of these engines at Bristol, England, and the result was such as to show that the invention is one of some merit
The engine weighed 13 tuns, and to it were attached two trucks weighing together 25 tuns 14 cwt. $;$ and one portion of the line on which the trial was made was on an incline of 1 in 12. The peculiarity of the system is that the engine is coupled to the train by a steel chain or wire rope, wound round a drum noounted in the framing of the engine. The axis of this drum works horizontally in bearings fixed in the main framing of the engine, and it is rotated by gearing from a separate pair of cylinders, distinct from the usual from a separate pair of cylinders, distinct from the usual
cylinders which drive the locomotive. A drum, 2 feet in cylinders which drive the locomotive. A drum, 2 feet in
width and 1 foot in diameter, will accommodate chain enough to fulfil all the requirements of the system. On each side to fulfil all the requirements of the system. On each side
of the engine framing, and on each side of one or more carof the engine framing, and on each side of one or more car-
riages or wagons of the trains, there are suspended one or more self-acting gripping struts, which, when let down on the rails ly the driver or other person in charge of thetrain, will firmly grip the sides of the rails, and hold the engine or train stationary. On arriving at the foot of the incline, the engineer releases the hauling drum, and, without stop ping the engine, runs up the gradient to the required dis tance. The struts are then let down on the rails; and by grasping the rails, they render the engine stationary, and the load is drawn up to the engine much after the fashion that loads are drawn up inclines at collieries. The last truck of the trial train was furnished with an automatic gripping strut, which, when the trucks commenced a retrograde movement, at once grasped the rails on each side and held the train in its place beyond the possibility of its being moved, our informant states, even when the engine with full steam on was backed against it.
The experiments were of the most thorough description and the invention was tested in every way. In the first place the value of the gripping strut was shown. The powerfu little engine mounted the gradient without its load, and,full steam on, ran the whole length of the siding. At a signal
from Mr. Handyside, the brakes were applied, and the enfrom Mr. Handyside, the brakes were applied, and the engine was brought to a standstill in the length of a rail and a
half. The contrast between the power of thislrake and the ordinary hand brake, with which the engine was also supplied, was fully shown. The wagons were then attached, and the brakes on the engine and on the brake van were applied simultaneously with equally satisfactory results. This experi ment was witnessed with very considerable interest, as the brake question is just now occupying very much of the at tention of railway men. With the continuous brake, it was pointed out that, 90 per cent of the wheels being braked, a train is pulled up in about 900 feet with the train going at a speed of fifty miles per hour. In this case, the train pulled up in 600 feet, and only 75 per cent of the carriages were braked. After duly testing the brake, the method of mounting steep gradients was shown. The engine put full steam on, ran to the foot of the incline, and then, letting out the steel wire rope which coupled it to the trucks, mounted the steep alone. The gripping struts were then let down; and the engine having thus been made stationary, the truck into action up to it , the automatic gining stationary. The accomplishment of this test occupied a surprisingly short time. The trucks were then lowered to show the control which the driver was able to exercise over a train for lower ing purposes. The company claim that, by this invention shiadler and less powerful engines may be used on heavy gradients, and that it will allow of less cost in constructing lines, inasmuch as less cutting will be required.

Detcction of Adulteration in Wine by Means of

Absorption Spectra.

Professor H. Vogel states that the simplest method of de tecting adulteration in wine, especially in regard to the coloring matter, is by means of the spectroscope. The apparauns required is as inexpensive as the operations are simple Professor Vogel employed for the purpose a pocket spectro scope which cost in Berlin 36 mark (about $\$ 9.00$). The instrument is first directed towards the blue sky, or to its retlection in a mirror, clamped in a horizontal position in a retort holder, and the slit closed until the principal Fraunhofer lines, $(C, D, E, F, G$, and a few intermediate lines are distinct. The liquids to be studied are put into square white bottles about 0.30 inch thick, and placed before the slit.
It is well known that many substances of similar color have produced very unlike absorption spectra, while others, which are very different chemically, have very similar absorption spectra, like chloride of iron and tincture of iodine I'hese facts are no objection to spectral analysis by absorption. It resembles analysis by polarization, which cannot be employed for all substances; but where it can be used, it is nvaluable.
Analysis by the alsorption spectra, of course, essumes various spectra to be known, and here stands a serious bar rier in the way of its present extensive introduction, namely, the maps of absorption spectra; which are insufficient and incomplete. Drawings made in the ordinary manner are incor rectly reproduced by the lithographer or engraver, and rendered still more imperfect by the coloring applied. For this reason Dr. Vogel employs the graphic method as follows: Upon a horizontal line or abscissa he erects perpendiculars to represent the chief Fraunhofer lines, and represents the which increases with the intensity of the absorption.

The absorption bands of the most important coloring subsances lie bet ween Cand F; those which lie beyond C require
sunlight for their study, which is not always to be had, and hence they are useless. At the request of certain wine dealer Professor Vogel has investigated and published the absorp tion spectra of pureand colored wines. Perfectly pure speci mens of the following sorts of red wine were obtained from reliable sources, namely : Assmannhauser, Burgundy, Nuits Cote d'Or, and Bordeaux. Although they differed in age and intensity of color, they give the same spectra.
Pure concentrated wine absorbs the whole spectrum to the orange. Dilute wine destroys the dark blue almost entirely allows the light blue to pass, but absorbs the green and yel ow green, and stops at D , while red goes through unchanged Tartaric or acetic acid darkens pure wine inconsiderably Ammonia changes the color of wine to a dark gray green and makes it much more opaque, so that it must be strongly diluted in order to obtain the spectrum, which is totally dif erent. Indigo and blue are strongly absorbed; the alsorp tion sinks towards the green and is least in the yellow and orange, but exhibits a faint band in the orange. By lamp ight, the alsorption of alkaline wine is scarcely perceptible
The spectral reactions of the substances employed to colo wines are quite different. Those coloring substances which are objectionable to the taste, but not injurious to health give reactions very similar to those of red wine. The juice of bilberry, sour cherry, and elderberry, and extract of mallow blossoms absorl, nearly the whole spectrum. For this rea son it is preferable to add one part of tartaric acid or of am monia to 10 parts of the juice.

Opening to Navigation of the Vicksburg Cut-of
The city of Vicksburg, Miss., is located on high bluffs, under which the Mississippi makes its way by sharp defle tons, east and west, of nearly fifty miles from its direct course. During the late war the Union commanders sough to avoid the heavy batteries of the Confederates at Vicks burg, which commanded the river, by opening a cut-off or canal across the country, back of De Soto Peninsula, oppo site Vicksburg. The river at the upper or northerly end of of digging the channel was then carried on extensively; with every promise of success, until, by a sudden rise of the river he water broke through the dam and put a stop to the work General Grant, finding that too much time would be con

sumed in the endeavo
to repair and finish the
channel, adopted other
expedients for passing the batteries, and the canal was left unfin
ished. It has now however, been com. pleted by the silent mining operations of the river itself and the boats pass up and down through it, avoiding the détour to Vicksburg, and thus saving about thirty miles of the new canal cut-of

A Canal rrom the Hudson to the Mississippi.

Mr. W. J. Abernethy, editor of the Minneapolis Furmer Union, writes to point out that the two principal rivers-th Fox and Wisconsin-together form an almost unbroken wate hannel from the Father of Waters to the great ing, the one in the southern and the other in the northern part of the State, they flow towards each other until their waters almost touch, when they suddenly sweep away at right angles, and empty, one into Lake Michigan at Green Bay, and the other into the Mississippi at Prairie du C'hien. In a few weeks, the canal which is to join the two will be completed, and Wisconsin will honor the event with appro priate ceremonies.
On the Fox River a system of slack water navigation has been adopted, which is proving entirely successful. There are numerous falls on what is known as the Lower Fox, and these are overcome by dams with locks, to pass boats around them. 'The work is so far advanced that, if no unforeseen obstacles occur, vessels can run up its entire distance to Por tage (160 miles west of Lake Michigan) this fall, and pass
over into the Wisconsin. ('onsiderable dredging, however, over into the Wisconsin. ('onsid
remains to be done on this river.
The Wisconsin river is, at the portage, three fifths the size of the Mississippi at St. Paul. It is a rapid stream, full of floating sand, which in low water seriously obstructs nivi gation. Sections of the river have been improved by wing dams; but in order to permanently secure a navigable channel, it will be necessary, in some sections of it, to make a by (Jeneral Warren, of the United States Engineer Corps it can be built, says our correspondent, the entire distanc from Portage to the Mississippi, 118 miles, for $\$ 4,164,270$.

sCIENTIFIC AND PRACTICAL INFORMATION

 pynamite.Sobrero, the inventor of dynamite, in a recent communica tion to the Academy of Turin, designated two of the opera
tions in the manufacture of dynamite as especially danger tions in the manufacture of dynamite as especially danger-
ous: first, the mixing of the nitroglycerin with the infusor ial silica (kieselguhr), and second, pressing the mass into molds for cartridges. In both cases an explosion may easily be caused by friction and pressure. Nobel recommends the following process as far safer, namely, to mix the silica with water to a dough, then press it into cartridge molds and dry perfectly. These cartridges are then put into nitroglycerin, which they absorb into their pores, the absorption being
aided by exhausting the air. Solrero marle his experiments with infusoria of Italian origin which can be easily made in to cartridges that will absorl) as much as 75 per cent of their weight of nitroglycerin.
a faldacious test for inead in tin.
An item has been widely circulated, both here and abroad, n which it was stated that the presence of leal in tin could easily be detected by putting a drop of nitric acid on the clean surface of tin plate, heating gently to cause it to at tack the metal and evaporate the excess of acid, and moistening he white spot with a five per cent solution of iodide of po assium ; if lead were present, the spot would become more or less yellow from the formation of iodide of lead. Dr. A Puerkhauer calls attention to the fact that tin, free from lead, will also yield a yellow spot when thus treated, evidently due to the liberation of iodine by the presence of fre acid ; for nitric acid cannot be completely expelled from tin, ven when the tin is heated to its melting point. It may $l_{\text {s }}$ easily proved that the yellow spot, formed on tin which is free from lead, is due to the liberation of iodine, by touching the spot with starch paste. The above mentioned reaction can be made reliable by touching the white spot made by nitric acid with very dilute caustic potash before applying he iodide of potnssiun, when a yellow coloration will not fail to indicate lead

subchlomide of copper in verdigris

Wittstein has found in some samples of acetate of copper white precipitate, insoluble both in water and acetic acid, but soluble in dilute mineral acids. Investigation slowed hat this peculiar body consisted chiefly of subchloride of copper formed by the chlorhydric acid, which is always pres ent in acetic acid made by decomposing crude acetate of lime with chlorhydric acid. For this reason manufacturers of verdigris would do well to use only such acetic acid as has been made ly the use of phosphoric or sulphuric acid, as these acids are not sufficiently volatile to distil over with the acetic acid.
green varnisif for metals.
A varnish for small or large metallic articles can be pre pared, says the Industrie Blätter, in the following manner Finely pulverized gum sandarac or mastic (the latter, how ver, is too expensive for some uses) is dissolved in strong potash lye until it will dissolve no more. The solution is diluted with water and precipitated with a solution of a copper salt, either sulphate or acetate. This green precipitate is washed, dried, and dissolved in oil of turpentine. This produces a fine green varnish which does not change under the ffect of light, and will be especially useful for ornamenta iron work

heracline.

'This is the name given to a new blasting powder, invented by Dickerhoff, and which has been tried with success in the coal mines of France and Austria. It is composed of picric acid, saltpeter, nitrate of soda, sulphur, and sawdust. The gases produced by its combustion are not injurious, it is claimed, and it burns comparatively slowly, so that it only tears apart the masses blasted, but does not hurl them vio lently about.

DECISIONS OF THE COURTS

United States Circuit Court--DDistrict or new Jersey.

