the cone-berried solandm

Awong the plants suitable forindoor cultivation, those which bear berries are generally considered to be the most ornamental. Among the solanums, which are very much sought after for this purpose, the subject of our illustration is likely to become a general favorite. There are several varieties of this species in cultivation, which differ from each other in size and in form of the berries; but the conical berry of the solanum capsicas rum is somewhat of a novelty. A correspondent of the English Garden, from the pages of which we select our engraving, states that a plant of this variety, about 1 foot high and 1 foot in diameter, was recently seen profusely covered with these berries, which are, when mafusely covered with a bright orange color. It is one of a batch raised from seed sown in March. The seedlings were potted out; and about the last week in May, they were potted out; and about the last week in May, they were
planted out on a western border. Here they received planted out on a western border. Here they received
no attention, except occasional waterings until the auno attention, except occasional waterings until the au-
tumn, when, just before the berries commenced to color, tumn, when, just before the berries commenced to color,
they were carefully lifted, and potted in 32 -sized pots. they were carefully lifted, and potted in 32 -sized pots.
They soon formed new roots, having been kept in a close atmosphere for a few days after lifting; and at Christmas, the plant, from a portion of which the ac companying illustration was prepared, was loaded with berries, handsome both in shape and color. We have no doubt that this variety, when better known, will be generally cultivated.

TWO BEADTIFUL YUCCAS.

The yucca family of shrubs are all, we believe, indig. enous to this country; and they are now being much enous to this country; and they are now being much
cultivated in Europe, and are highly valued for the cultivated in Europe, and are highly valued for the
boldness and vigorous growth of their foliage, and their boldness and vigorous growth of their foliage, and their
ornamental appearance when in blossom. There are many varieties of them, some of which we have hereto fore illustrated; but we believe that the two specimens here presented are little known to the general pablic.
The yucca Treculeana was first brought from Teras in 1850, and is much cultivated in France, whither it was firs imported by Mr. Trecul, after whom it is named. It forms a very stout stem, and the fully developed leaves are from

yUCCA TRECOLEANA.
3 to $4 \frac{1}{4}$ feet long by 2 to $2 f$ inches broad, dark green on both sides, with a hard, sharp point, and very fine regular teeth The inflorescence of this species is an exceedingly dense, many branched panicle, not much overtopping the nearl y erect upper leaves. A warm sheltered situation should be selected for it. It will be seen that this plant is one of the most remarkable of its kind as regards general appeara and the size to whichits leaves attain. The flower stem which rises up to a hight of 3 feet or more, consists of a mass of branchlets about 18 inches in length, bearing multitudes of cream-colored flowers, shining as if glazed. Our second specimen is the yucca gloriosa of Linnæus and it has well been styled the most majestic and beau. tiful of the genus. It has been known in Europe since the end of the sirteenth century; and it wes, when firs found on our coast (from Florids to North Carolina) found on our coast (from Florida to North Carolina) about 2 feet or rather more in hight. It is now, however, by no means uncommon to see these plants reach as high as 10 or 15 feet, in favorade situations; some times, indeed, it stands when in blossom as high as 20 feet, the blossom with its stalk attaining 6 feet. This species flowers freely in sunny situations, after it has reached a certain age; but plants from suckers are usually some years before they flower. The trunk brauch es after flowering, and it is not unusual to see old spec imens many times branched, forming very heavy heads, which should be supported. It is very variable, though, perhaps, not more so than the otbar species of the gen us, but its varieties are better known. The ordinary form or type has upwards of 100 leaves in a dense tuft 24 to 30 inches long, and 3 inches broad at the middle narrowed in luxuriant specimens gradually upwards to a brown sharp point,and do wnwards to $1 \frac{1}{t}$ to $1 \frac{1}{2}$ inches above the base; it is green or slightly glaucous when young, very rigid, even the outer older ones remaining erect face, concave, with longitudinal folds; margin, entire with a distinct brown line; panicle, 3 to 6 feet long, ac cording to the vigor of the plant, not downy or hairy flowers, large, among the handsomest of the genus, almost globular or goblet-shaped, when the petale are in carved ; petals, oblong, narrowed into a polnt at the top, from $2 \frac{1}{2}$ to 3 inches deep, the inner ones from 1 to $1 \frac{1}{8}$

SOLANUM CAPSICASTRUM

inches broad, the outer ones narrower, and distinctly band ed, or more or less tinged, with bright red down the back or somutimes the tlowers are almost a pure white, seedings vary ing much in this respect.

Chinese Method of Welding.

The Ironmonger says that Mr. Balestier, who went on mission to the Esst, describes the Chinese method of welding cracked ironwares by cementing them with cast iron while in a liquid state. In a cast iron pan, which Mr. B. required to be welded, the operator commenced by breaking the edges of the fracture slightly with a hammer, so as to en edges of the fracture slighty with a hammer, so as the fissures, after which the fractured parts were large the fissures, after which the fractured parts were placed, and held in theirnatural positions by means of wood
on braces. The pan being ready, crucibles, made of clay on braces. The pan being ready, crucibles, made of clay,
were laid in charcoal and ignited in a small por:able sheet were laid in charcoal and ignited in a small poriable sheet
iron furnace, with bellows working horizontally. As soon as the piaces of cast iron with which the crucibles were charged were fixed, it was poured on a layer of partly charred husks of rough rice, or paddy, previously spread on a thickly doubled cloth, the object of which is to preven the sudden cooling and hardening of the liquid metal While in the liquid state, it is quickly conveyed to the frac tured part under the vessel, and forced up with a jerk into the enlarged fissures, while a paper rubber was passed over the obtruding liquid inside of the vessel, making a strong substantial, and neat operation.

Two Bee Questlone Anewered

A couple of vexed questions about bees were recently an wered by Professor C. V. Riley, at a bee keepers' counci in Sl. Louis. The first query was: Do bees make or gather loney? The Professor says they make it. Thus does Science
proclaim that the venerable Dr. Waatt: was wrong when he

YUCCA GLORIOSA.
asserted that the busy bee "gathers honey all the day from every opening flower." The nectar lying in flower never would become honey,says Professor Riley,no mat ter how manipulated by the hands and minds of men but it is taken up by the bees and passed through a state of semi-digestion and excretion,resulting in the manufac ture of what is called honey, yet stlll retaining in par the fievor or perfume of the flowers, by which we de termine one kind of honey from another. Professo Riley's views were corroborated by a paper read by a botanist and chemist of Louisana, describing the pro cess of change uudergone by nectar in the stomach of the bee, in order to become honey.
The second question is an interesting one to fruit raisers, as it involves the mooted point of whether bees do or do not injure fruit. Professor Riley, on being ap pealed to,produced anillustrationof the order of hymen optera,stating that the mouth of the bee is the most com plicated'stracture in insectanatomy. Its construction. how ever, is the same as that of the wasp, and no one denies the the wasp is capable of destroying fruit. The Professo thought beekeepers were prejudiced against the idea o such power in the possession of a bee,but it is true. Still while being capable of injuring fruit, the bees rarely do so except in seasons of severedrought and when urged by necessity. This fact is no derogation to the usefulness of the ingect for the arercise of its power as a pollenize is of undoubted value to the orchardist, even with all its depredations upon fruit.

NEW FORM OF FERNERY

We publish herewith an engraving showing a cross section of a new form of fern house, recently erected in Scotland by Messrs. Boyd, of Paisley. The arrange ment is so well shown in the illustration that but little description is necessary. The building here shown is of large size, 30 feet highin the center, and 60 feet long but the plan can of course be adapted to circumstances. In this case strong brick walls are carried up both sides and at one end, from which the rock work slopes irregularly down on either side, forming a miniature ravine with a water all,

he stream meandering round the crags and among the state y tree ferns. The building is covered by a glass roof, sup ported by strong iron girders, and the interior is left with out a single pillar or tie rod, leaving the space wholly to the ferns and rockwork.

Useral Rectpes for the shop, she Rouseholde and the Faris.

A correspondent of the Ohio Farmer gives the follow. ing method of making a simple corn marker: Take a plank 7 feet long, 16 inches wide, and $1 \frac{1}{2}$ inches thick Pin this on three blocks, 5 by 8 inches thick and 16 incbes long, putting one block at each end and one in the middle. With this length the marker is easily turned at the ends. For a tongue, get a smooth tough pole, and at the ends. For a tongue, get a smoorn
fasten it to the center of the plank in such a way that, fasten it to the center of the plank in such a way that,
when the team is hitched up, the marker will stand level. when the team is hitched up, the marker will stand level.
Now take a lath, 1 by 2 inches thick and $10 \frac{1}{2}$ feet long. Drive a staple into the plank at each end of the marker and one in the middle. Pass the lath thrcugh one outside staple and the end just through the center staple. Fasten a chain to the outer end, and the marker is completed. The chain marks where the middle block or marker must follow thenext time across. The lath must be shifted at each end so as to keep the chain on the unmarked land. When using oit, stand on the middle of the plank and keep the tongue directly over the chain mark. If the first mark was made straight, all the rest will be so, and equally distant apart. If desired, the lath may be fastened to the middle of the piank with a bolt, so that it can be turned from side to side without lifting. Secure it in position by another bolt, passed tbrough the lath and plank, near the ends of the latter.
It has recently been found by experiment at Cornell University that, as farmers generally know, by sprouting garden seeds before sowing there is a gain of three or lour days in the time of ripening.
For plating iron, steel, brass, lead, and zinc with tin, the following has recently been proposed. Prepare a solution of perchlorideof tin by passing chlorine tbrough a concentrated solution of salt of tin. Dilute the pro
duct with 8 or 10 times its volume of water, and filter if necduct with 8 or 10 times its volume of water, and filter if nec-
essary. The article, half scoured with sulphuric acid, is to be polished with sand and the scratch brush, then washed with water, and hung by a zinc wire for 10 or 15 minutes in the perchloride of tin solution. Afterwards take it out, rub it with the scratch brush, dry it, and polish it.

If brooms are wet with boiling suds once a week, they wil become very tough, will not cut a carpet, and will last much longer. A handful or so of salt sprinkled on a carpet will carry the dust along with it and make the carpet look bright and clean. Δ very dusty carpet may be cleaned by dipping the broom in cold water, shalsing off all the drops, and sweeping a yard or so at a time. Wash the broom and repeat until the entire carpet has been swept.
The following compound is said greatly to facilitate the washing of clothes. Dissolve 2 lbs . of bar soap in about 3 gallons of water as hot as the hand can bear. Add 1 table spoonful of turpentine, and 3 of liquid ammonia. Stir, and steep the clothes in this for three hours, keeping the vessel tightly covered. Then wash the clothes in the usual way. The soap and water may be used a second time, in which case a teaspoonful of turpentine and the same amount of ammonia must be added. This treatment is calculated to save much labor in cleansing summer clothes stained by fruit, etc.
Very durable and neat mats for floors can be made from old cofile sacks. A piece of the bagging of suitable size is bound with some dark fabric and secured to a frame of four laths. By means of a hook of wood or iron, like an enlarged crochet needle, carpet rags are carried through the material so as to skip every other thread and to leave loops halt an inch long, the ends, of course, being fastened. Old red fiannel can be used to make tasteful borders.
A new and simple blowpipe consists of two large jars connected near the bottom by a piece of rubber tubing. One is filled with water and put on a shelf above the tableon which the other stands. The water passes into the latter, and, in doing so, forces the air out through a stopper and piece of tubing into the blowpipe, which is supported separately. With jars of 1 gallon capacity and a blowpipe with an orifice of 0016 inch, a stesdy air current of 10 minutes' duration is obtained; and to keep it up. one has merely to transpose the jars.

A compound of grease and zinc filings is found to be an excellent preventive against rust for iron bolts inserted in wood. It is used to line the bolt hole
Pulverized anthracite coal, spread on the soil to the depth of half an inch, is said to have a remarkable effect in brightening the colors of cowers of potted plants.
To keep striping pencils in good shape and ready for use, grease them with tallow from a candle and spread the hair straight, on a piece of glass; keep them preserved from dust.
A good bronze paint for iron is made of ivory black, 1 oz . cbrome yellow, 1 oz., chrome green, 2 lbs. Mix with raw linseed oil, adding a little japan to dry it. This gives a fine bronze green. If desired, gold bronze may be put on the prominent parts of the object when the paint is not quite dry, the powder being rubbed in with a piece of plush.
A weak solution of cyanide of potassium cleans gold lace well.
To prepare skins for fur, mix bran and soft water suff clent to cuver the skins. Immerse the latter and keep them covered for 24 hours; then remove, wash clean, and carefully scrape off all flesh. To 1 gallon of water (hot) add 1 lb . of alum and $\ddagger \mathrm{lb}$. of salt. When dissolved and cool enough to admit entrance of the hand, immerse the skins for 24 hours, dry in the shade, and rub. Stir the liquor again, im merse the skins for 24 hours, dry, and rub as before, immerse for 24 hours in oatmeal and warm water, partially dry in the shade, and finally rub until entirely dry. This leaves the skin like whiteleather, and fit for immediate use
Never dilute varniah with turpentine as it kills the glose
If too thick, warm it by the stove or place the cap on a If too thick
To bend amber, drop it into hot beeswax. After it has been To bend amber, drop it into hot beeswax. After it has been
immersed for a few minutes, remove it, and, holding it before the fire, bend it to the desired shape.

AGRICULTURAL MACHINERY

Wo extract from Knight's '• New Mechanical Dictionary,"* this week, a series of engravings of various agriculturalimplements, which doubtless will prove of timely interest to farmers. In Fig. 1 are represented several forms of cultivators,
under which heading may be included harrows, grubbers, drags, shovel plows, and like implements. The A-shaped harrow, a, is well adapted for new ground and in fields where there are occasional obstructions. The rear corners may be readily raised by a hooked stick, so as to allow it to pass a stump without swerving the team. Better still is a bow of hickory, as shown at b. Another mode of affixing handles is exhibited at c. Wilkie of Teddington, Scotland, wasthe inventor of the cultivator proper; he devised the plurality of shares, the expanding frame, and the caster wheel. His cultivator is shown at d. The share frame is so suspended from the traction frame as to be raised bodily, by a parallel movement, by means of a single lever at the rear. The teeth are prongs curved to enter the soil obliquely. Finlay son's cultivator, e, f, is made of iron, and the prongs are ar ranged on parallel transverse bars of the frame, which is supported on a caster wheel in front and two wheels at the rear. The depth of tilth is regulated by a lever, which is connected to the carriage of the caster wheel so as to raise the apex of the frame when the lever is depressed, and con

[^0]versely. Wilkie's horse hoe and drill harrow, g, has a cen tral fixed share and adjastable side shares, which are expan ded or contracted according to the state of the crop or the Fig. 1.

width of the balk. Following the shares is a frame with harrow teeth. Either the share or the harrow teeth may be removed, and the remainder used separately. The depth is adjusted by the caster wheel in front. h shows another form, somewhat modified. In Fig. 2, a is Colman's cultivator, and

that below it is known as a skim cultivator with a long curved, flat share, whose depth is regulated by a crank and screw.

grain drills

were invented by the Chinese, ages ago. Their machine is Fig. 3.

nothing more than a wheelbarrow with a hopper for the seed and three spoats by which the seed reaches the groand; it has drills three rows at a Hme. Fig. 3 is an English grain
seeding and manuring the land. All kinds of grain and seeds may be deposited at any required distances apart and at any depth, either with or without manare. The machines are constructed of various widths and made to deposit the seed in rows from 6 to 15 in number. Fig. 4 is a form of hand drill, mounted upon a stock resembling thatof a single shovel plow. Forward is a hollow tube shod with a share and leading the grain from the box. E. A share following tarn

a furrow upon the sown grain, and the wheel, B, followng, compacts the soil upon the seed. Fig. 5 is a
liquid mandre cart,
which consists of a tank on wheels for the conveyance of liquid manure, to a field, for distribution. It is made of boiler iron, riveted, and is filled by means of a vortable pump Fig. 5.

and hose, shown in position. The tank is hung apon crnter as to remain level on inclined ground. Fig. 8 is a mn are drag, an implement with hooked tines for hauling ma nure over the sarface of the ground. It is gaided by rear Fig. 6

handles, and a lever is provided, to bold the tines in action or release them at will. A
mechanical cow milker
is represented in Fig. 7. This is constructed on the principle of the breast pamp, with cups for the several teats. The elastic caps communicate with the coni. cal chamber of the diaphragm pamp, the piston of which is worked by the handles. The milk is discharged by a spout into a is discharged by a spout
pail beneath. Fig. 8 is a
hay elevator and conveyer by which hay, lifted by the horse
 fork, is conveyed to distant parts of a barn or mow. It con sists of a carriage traveling on a fixed rope and resting on rollers as shown. To one portion of the carriage is affixed the standing part of the hoisting rope, which passes down through

Fig. 8 .

a palley attached to the fork, and then to another palley on the carriage. A guide line is also attached to the lower pul ley. The fork, full of hay, is first hoisted a suitable dis tance, and then, by slackening the guide line, continued pulling on the hoisting rope draws the carriage along the fixed rope to the desired point of anloading.

[^0]: Pablithed tn numbers by Messrs. Hurd \& Houghton, New York city.

