in hot sand under pressure apon plates of chalk or plastor for several days. The chalk supporting plates mast be re newed daily. The resulting material can be readily carred. If greater darability, whiteness, and elasticity be desired the potatoes are macerated in water containing 3 per cent o soda instead of the acid above mentioned. To produce the horn imitation,the potatoes, after being treated as last atated, are boiled in water containing 19 per cent of soda. By sab-
stituting carrots for potatoes, a good imitation coral is pro duced.

a remariable erdption.

Δ carious land slide recently occarred on the line of the Had. son River Railroad near Datchess Junction, N. Y. At about 200 feet above the Hudson river, there is a level platean the Sugar Loaf, and apparently is a rocky spar of that hill. Suddenly a portion of the plateau was lifted from its place and harled. with its load of trees and shrabs, into the cove beneath, dashing ap the water like a tidal wave over the railroad track and destroying the fences beside the same. A crater about 200 by 150 feet in size was left. Four hoars af terward, another slide took place, accompanied by an explosion, and during the saccoeding night still another apheava occarred, which was followed by a torrent of water gashing from the crater. So great was the force of the explosions that trees nearly a foot in thickness were harled from their places to great distances like straws; and one massivetimber was driven into the solid bed of the railroad to a depth of 8 feet. The phenomenon was due to a vast accumalation of water which had formed in the sandy land. This had been fed by the watershed of the Sugar Loaf and by the recent rains, antil the hage underground lake found vent with the tremendous force described. The most recent reports at the time of writing (three days after the event) state that the water is still escaping, and the land still crumbling away, a condition of affairs which will probably continue antil the water has spent its force.

Correspoufleuce.

The Cause of the claclal Epoche.
To the Editor of the Scientific American
It may be said of the earth that she has five distinct mo tions, which are these : First, a rotary motion, on an axis, say, in harself. Second, an orbital motion, on an axis, say, in tie sun. Third, a retrogyratory motion, on an axis cen tered in the center of the sun's orbit. Fourth, a retrogres sive motion round the center of the sun's orbit, and alway at the same rate as Sol's motion. Fifth and last, a motion at right angles to the plane of her equator. It is by this motiouthat the earth's obliquity to the plane of the ecliptic is gradually becoming less and less.
It was held by La Place and several other astronomera that the obliquity of the earth to the plane of the ecliptic would ever be permanent, and that the earth woold, as it were, " rock to and fro, never departing more than two or two and a half degrees from her present inclined position." We clain that there is not a power, neither in the earth no the sun, that will sustain that idea. The earth must (and we claim that the forces in her and in the san compel her to) revolve round an axis running throagh her equator, as it were from one side of it to the other: and thas comes first say the equator, next her pole or poles, if you will; next he equator
the sun.
It is by this motion of the earth that she has had all her glacial epochs; and the motion is not at all pecaliar to the earth. No doabt all the planets have seen their glacial times, for they all revolve in the manner alluded to. See Uranus at the present hour; he is passing now through such an epoch. Fearfully grand it mast be, compared'to those of
the earth; but it is nothing to what it would be were the the earth; bat it is nothing to what it woald be were the plane of his equator in the plane of the ecliptic or of solar motion. No, that is the period when the vastly broad and thick sheets of ice gather over and all around his poles for many thoasands of miles. Look at Jupiter, and think of the vast ice sheets which mast now and for many centuries to come cover his poles and nearly one half of each hemi sphere. How exceedingly thick and vastly broad must Jupiter's glacial ice fields be at this present moment.
Turning to the earth, we find, by quoting from certain of our authors, that at the beginning of this centary the obli quity was $23^{\circ} 27^{\prime} 544^{\circ} 78^{\prime \prime}$, and that it shall be, by the ond of this centary, $23^{\circ} 27^{\prime} 9^{\circ} \cdot 8^{\prime \prime}$. That gives, for the ninetoenth
century, $45 \cdot 70$." Now sapposing the motion to be regalar and century, $45.70 . "$ Now supposing the motion to be regular and
aniform, the earth will complete her revolution, and, sasy, uniform, the earth will complete her revolation, and, say, her glacial epoch revolution, in a period of about $2,832,700$ years. Therefore, we have four glacial epochsin less time than three millions of years. Five hapdred and twentrearth lay in the plane of the ecliptic. Then each pole, daring its winter, would be sabjected to intense cold and darkness for more than three months, and in summer tothirty days (720 hours) of almost perpendicular sunshine. Daring such epochs as that, tropical vegetation would grow right at the poles, and animals, accordingly,would foed and dwell there. Broad and thick sheets of ice would accumalate annually, and cover nearly a whole hemisphere at a time, although but thin around their edges. And the speedy thawing of them would canse great floodings and carryings of débris from certain localities to other parts. But now to the coming epoch.
In aboat 184,800 years from now, the equator of the earth will again lie in the plane of the ecliptic. That will be the middle of one of the greatest glacial epochs which come to
our earth. It comes on and goes off gradually, of course and therefore it will begin some fifty or sirty thousand ears before that, and be gone in another fifty or sixty thonand years.
Then will be the time when the vast ciroular fields of ice grow in thickness to perhaps several miles, especially at and near the poles. Think of ice accumalating for perhaps 100, 000 years, and conceive of its thickness. Think of the ai ractive force of the an drawing such hage fields outwardly toward the equator, and causing them to move with an esst ward tendency all the time; and see how it becomes possible or the ice mass to tear the crest off one moantain and set it down on the top of another lying in its path. It was, thing near $1,231,000$ yeara ago) that the crest of a certain mountain was placed on the top of another. I forget thei ames just now, bat the fact is well known to geologists. These are the periods which, as it were, turn animal an egetable creation upside down. Thegradual change of in clination of the earth to the sun canses all her climatic changes ; and thas creatures and vegetation, foreign to cer tain localitios now, will be found in others than they ar now in, in the far future, as has bepn the case many times in the past ; for the earth has seen several glacial cycles, and her animal and vegetable genera may truly be called wandering, restless, and ever shifting things,for neither, in dividually, has any permanent abiding place on the earth No, not any one thing !
I humbly recommend the above theory to geologists an other scientists,men whose practical knowledge and saperio talent can show the facts up to better advantage than I can
Gloncester Clity, N. J.
John Hepburn

To the Eliter of the Bointifle Ameriean:

I send you a sketch of a registering barometer, which dif fers from the ordinary barometer in having a longer tabe The cistern is below the end of the tabe a distance equal to the greatest difference of the barometer, with sufficient clear-
 ance for the mechanical part immersed in the mercury. From the open end of the tabe projects upward a small insulated wire, proferably of tempered steel, terminating in a platinum point. This point is amalgamated, and is hook shaped, the ond being bent down so that it is the lowest aninsulated part. This wire is represented at 1 in the en graving; the wire and all of its conneetions are insalated from a to b. At 2 is a standard, to gaide the working parts. The bearligs, c, d, and e, are in holes drilled in the standard; and the sliding parts should be covered by smal iron tabes, slipped on over the insushellac or its equivalent. The atandard should be made of iron. For work pog he instrament, I ase an ordinary strik ing clock, and I deopen all the teeth of the count wheel so that the count hook wbove this, there in in the train a wheel which makes one revolution to each stroke; and on the end of the arbor of of this wheel is a crank, which will stand with the crank pin ap, when at
rest. This crank ehould have throw rest. This crank ehould have throw saffcient to covar all of the variation,
fiy should be of large size, to give a very slow motion to the crank, to prevent producing waves and flactuations in the mercary; and for the same reason the tabe should be large In connection with the crank motion there smooth as possible of feed rolls, carrying a paper ribbon for the record. There should be a ratchet motion to bring the paper to a new place for each record. I usechemical telegraph paper for the record, as it requires a smaller battery, not lisble to produce spark to tarn the connections, one or two emall cells of the gravity battery being safflient. The connection to the crank is
made with the rod at f; the top of the wire, 1 , is adjusted so that, when at rest, the end of the wireinside of the tabe, at δ, will always be above the highest point that the mercury reaches. Connection with the battery is made by putting one pole in commanication with the mercary in the cap, and the other with a plate which the paper passes over, and lies apon. The record can be taken hourly, half-hourly, or at as short periods as 5 minates. If it be desired to take it once an hour, the hand arrives at the hour and, instead of striking, the wire inside of the tabe begins to descend; when the plat. inum tip toaches the mercury, electric commanication is made through the mercury in the cistern to the top of the tabe, thence through the steel wire down the tabe and out side to the clock movement. This crank movement carries an iron wire, which moves down, pin-like, over the paper;
at the instant that the platinum tip touches the mercury, the at the instant that the platinum tip touches the mercary, the to the bottom of the stroke ; when, or just before, it begins to rise, the iron pen lifts from the paper, to prevent trac. ing both ways or tearing the paper, also to secure greater acabove the actanl the connection toolong, and so will spoil the accuracy of the record.

I pat in connection with the iron pen a thermostat, which Ialses or lowers the pen, making allowance for the expa sion of the mercary by heal, so thala thermometrical record could be kepl al the same the and on the same paper. On the paper I place points of copper in connection with the battery, and these make lines at right angles with those of the barometer record, which will be perpendicular. These copper points are placed to indicate inches or their fraction. They are adjustable to the eract point, and then are set by screws. They are all in electric commanication, bat the conductor to them has a greater resistance than the iron pen, to prevent their taking too mach force from it. The paper going between the copper points is lined lengthwise in red, and these lines are crossed by blue lines, of grester or less ongth, according to the state of the barometer, all ending like at the bottom, each line representing the period of tim which the clock registers. I can dispense with all bat oneo he copper points; and if this represents the 30 inch point, an messure from this. It is, however, bat little troable to raduate to very small divisions, if necessary. The copper oints I make by soldering thin pieces of copper, with th dges toward the paper, to pieces of steel wire. I place two of them very close together for the whole inches, the fine white line between being the inch line.
The advantages I claim for this barometer are chespness in making and ranning. There is no work for the mercary to do whatever, as the mechanical part is all done by the clock; and it will do the most accarate work possible, if it is rade nicely. I should be pleased to hear, from any one who ies this plan, as to its success.

Wm. A. barnes
Bridgeport, Conn.

THE MOON.

lecture deliverid at the bievina inbtitute or tachanogi bi phofibbor C. A. fouta, of dartmouth collzei.

If this were a literary instesd of a scientific leoture, it could not be more appropriately introduced than by quoting some of the bearatiful lines which the poete of all ages hav avished apon the moon, the empress of the night. The oon was perhaps the first of the heavenly bodies that wa egalarly observed. The ancient observations of eclipses form the basis of many determinations in the chronology of the asrth's history. To the mariner at sea, its regular passag across the heavent hes always been a means of knowing the time. The modern astronomer is able, without leaving the obeervatory, to determine the earth's size more accurately by stadying the moon than he could by traveling all over the prifece. To a person observing the path of the moon from 05 poldt of the earth's surface, it will appear less than amicircle by an amount proportional to the radius of the sarth at that point. If the moon could be observed from th conter of the earth, we assume, for the sake of simplicity of Illustration; that its path would appear a complete semicir e. Hence we have the means of determining the radius of he earth. Even the density of the earth could be deter mined by a careful observation of the moon's infinence apon the tides.
The most convenient wes of determining the distance o the moon from the earth in from two distant stations, whose positions on the earth's surface have been accurately aseer thined. One of these stations is usually at the Cape of Food Hope, and the other either at Greenwich, Paris, or Eer lin, etc. The distance between the two stations, maneund on the same meridian, forms the base line, and the otearred di ection of the moon, when it croeses the meridien, will giv the angles at the base, from which the distance oan be cal alated. This distance is in round numbers, 288,000 miles or about ten times the circumference of the earth. Agoo pedestrian could travel that distance in 23 or 24 years. The determinations of the mon's distance are so accurate that the probable error doee not exceed 15 or 20 miles. This dis tance is not, however, constant, because the moon's path is not a circle
The size of the moon's diameter is determined by measur ing its apparent diameter in the telescope, the difficulty of the operation consisting in the fact that the brightness of the disk causes it to present a circumference which is not de fined with perfect sharpness. Having measured the appa rent diameter of the moon, and knowing the value of the earth's diameter, as seen from the moon, a simple proportion will give us the moon's real diameter, $2169 \cdot 6$ miles, or about the $1 \frac{1}{2} \sigma$ part of the distance between the earth and the moon, that is to say, 120 moons placed in a line would fill up the distance. The determinations of the value of the moon' diameter are correct to within two or three miles. Then, as the volumes of spheres are to each other as the cubes of their diameters, the volume of the moon is $7830^{3} \div 2160^{\circ}$, or about $\frac{1}{49}$ that of the earth, that is, 49 moons rolled up together would make a ball as large as the earth. The determination of the density, and consequently of the weight, of the moon is more difficult than that of the most remote of the planets. One method of accomplishing it consists in stadying the offect on the tides when the attractions of the san and moon conspire to raise them, and when they act in opposite direc tions. In this way a relation is established between the masses of the sun and moon. If the sun and moon were a equal distances from the earth, their attractions would be in direct proportion to their masses, but the san is aboat 400 times further off; hence the law that the attraction is inversely as the square of the distance must be also applied This method, however, is not very accurate. $\mathbf{\Delta}$ better one de pends on the fact that the earth and the moon revolve about center must necosearily depend on the relative masses of the

§rientific American.

two bodies. The earth describes a much smaller orbit aboat two bodies. The earth describes a mach smaller orbit about
that center than the moon, and would be displaced from the that center than the moon, and would be displaced from the
position which it would have if it traveled alone around position which it would have if it traveled alone around
the sun. This displacement will appear in the observed position of the san,and can be calculated. It has beenfound to be $6 \frac{1}{2}$ seconds of arc; and from this it results that the earth's mass is $81 \frac{1}{2}$ times that of the moon. Hence the monn's density is 娄 that of the earth.
The force of gravity on the moon is only $\frac{1}{8}$ of that on the earth, that is, a man able to jump up 3 feet on the earth would be able to jamp ap 18 feet on the moon's sarface.

FIg. 1.-THE CRATER OF PLATO.
The moon's path around the earth would always be an ovel of exactly the same dimensions if the earth alone acted u_{f} on it ; bat owing to the attraction of the san, the moon is sometimes in advance and sometimes behind the placeshe
cent, and marble 50 fer cent. Sir John Herschel had come to the same conclusion. "I have frequently," he stated, "compared the moon setting behind the gray perpendicular facade of the Table Mountains illuminated by the sun just risen in the opposite quarter of the horizon, when it hasbeen scarcely distinguishable in brightness from the rock in contact with it."
Until quite recently, it was supposed that no heat could be detected in the rays of the moon. They were collected in the focus of a large mirror, and directed apon a very delicate thermopile connected with a galvanometer. The lecturer had this apparatus upon the table, and showed the effect of the heat of a candle placed at a distance. It was discovered by Melloni that the feeble heat coming from the moon was rendered insensible by the earth'satmosphere, and Professor Smyth, on repeating the experiment on the summit of TeneSmyth, on repeaning the experiment on of the sea, discovered
riffe, about 10,000 feet above the level of that the heat of the full moon was equal to $i t$ that of a candle placed at a distance of 15 feet from the apparatus. The moon ishottest between the last quarter and the new moon because it has then been exposed continually to the sun fo 14 days. Its temperature mast then be from 400° to 500°;
sults are well known. The lecturer then threw apon the screen a large namber of photographic representations of the moon's surface, showing the principal mountains, craters, valleys, and other points of interest. Some of these monntains have a hight of 18,000 feet.
Fig. 1 represents the crater of Plato, the bottom of which has been observed to grow darker as the sun rises higher above it, which is by some sapposed to be due to its being covered with some sort of vegetation. Notice also the ravine below, looking like a deep railroad cut. Fig. 2 is a view of the crater Wargentin, which presents the peculiar ity of being entirely filled ap, while the other lunar craters resemble that of Kilauea on one of the Sandwich Islands, a great basin about 1,000 feet deep, ont of which numerou cones rise.
Fig. 3 is a representation of a comparison of craters on the moon with the appearance of the volcano Vesuvius and the country in the vicinity of Naples. Both were studied topographically and modeled in plaster of Paris, with the most scrupalous care, by Nasmyth, and the accompanying ongraving was made from a photograph of his models.
The only difference between the lunar craters and that of

Fig. 3.-SURFACE OF THE MOON.
again, daring the long night. 14 days long, it mast cool down to something like 100° to 200° below zero.
No atmosphere exists on the moon, as is proved by the absence of refraction, when the moon passes between as and a

Fig. 5.

star. If there were an atmosphero, wo wound continue to see the star some time after its disappearance behind the disk of the moon; bat this is not the case. The star is instantly extinguished. The observations on this point are so accurate that a refraction of 4 seconds of arc could be oasily detected. If therefore, there be an atmosphere at all, it mast be more rare than that under the receiver of an air pamp after we have exhausted all the air we can.
The moon always turns the same face towards the earth, and we only obtain glimpses of the edges of the opposite and wo hemisphis, on account of the irregularios of ts motion called ibraio. Hil it perfors around its axis while it performs one revolution about th earth; otherwise we should see the whole of its sarface.
If the moon ever had an atmosphere, as is very likely, it may have been absorbed, or it may have entered into combination with the rocks on its sarface; bat this is mere con jecture. As there is no atmosphere, there is also no moistare, and hence the moon cannot be the abode of beings constita ced as we are.
It has been stated that the powerful telescopes of modern times bring the moon down to within 40 miles of as; bat that is not sufficient for distinguishing any of the works of inhabitants, ifthere beany. A city would appear as a mere dot The sarface of the moon has been carefully stadied with the telescope and by means of photography. The first successes by the latter method were obtained by Dr. J. W. Dra per, of New York, in 1840, and Ratherfard's exeellent ro

VESUVIUS AND ADJACENT COUNTRY, ITALY. Kilauea is that the former are of enormous dimensions. Co pernicas, for example, is 56 miles in diameter; its central mountain is 2.400 feet high, and the terraces around it rise to a hight of 12,000 or 13,000 feet above the bottom, and are composed of ridges, cliffs, and deep ravines.
Figs. 4, 5, and 6 illustrate Nasmyth's theory of the formation of these craters. The first eraption, keing probably the most violent, projected the stones, lava, etc., to a considera ble hight, and these, in falling, would accumalate in ridges encircling the craterat some distance. The hight to which encircling the craterat some distance. The hight to which
they would rise would be mach greater than on the earth, they would rise would be mach greater
becanse the force of gravity is much less.
because the force of gravity is much less.
During the second eraption, which would probably be less violent, the projected matter would not rise so high, and in falling back it would canse the formation of the central cone. During the subsequent eraption, when the force of the volcano was almost entirely spent, the lava would simply verflow and tend to fill ap the basin to agreater or less ertent. There is a gradual change going on in the orbit of the noon, which deserves to be noticed. The ellipticity of the aarth's orbit is slowly diminishing; so that it is becoming Fig. 6.

wore and more nearly circular, and its area is becoming great or every year. As a consequence the earth tends to draw the noon nearer and nearer to itself, and canses it to describe a constantly diminishing orbit. The end of this might be to pall the moon down apon the earth. The change is, how. ver, so exceedingly amall that we need not entertain an apprehenaions for our posterity for many years. C. F. K

