IMPROVED KEG AND BARREL MACHINERY.

In our last issue, we pablished 6ive engravings of the improved barrel-making machinery introduced by Messrs. E. \& B. Holmes, of 59 Chicago street, Buffalo, N. Y. We now resume the sabject, continaing it to its close, and illastrating lour other machines, which complete the series.
Fig. 6 is a stave equalizer, with reel feed and conveyer. This is adapted to eawing off staves to uniform longths as re uired, and will equalize staves of different lengths for mqking casks of all sizes, from the smallest kegs to barrels. It ahas a continuous reel feed and convejer; also two circular saws upon the same mandrel, which can be adjus ted and placed at diferent distances from each othar. The stave is placed upon the feeder and is presented to the saws, which cat off both ends. The reel then carries it to and drops it apon, the conveyer, which de livers it wherever desired.
In Fig. 7 is shown a machine for dress ing and jointing headings of all lengthsand sizes for casks, from small kegs to hogs heads. One or both sides of the materia can be finished as desired. The machine is constructed with a heavy iron frame upon which is mounted a large iron wheel On the wheel are placed catters for dress ing and jointing the heading. The inner set of catters is for dressing the heading, and the outer for juinting. There is also a sliding clamp located upon the frame, in which the piece of beading is placed and clamped, and passed up to the catters, which dress it and take it out of wind. The piece of heading is then taken from the clamp and placed upon the juinting rest, and and placed upon the jointing rest, and
brought in contact with the catters, which brought in contact with the catters, which
give a smooth and perfect sarface to its give a
edge.
Fig. 8 is a machine forjolnting staves for kegs and small casks. This is so construc ted that the operator can instantly change the carve or bilge of the stave, through a foot lever, by which the operator raises or lowers the clamp or rest apon which the stave is placed. Theclamp is fastened by an eccentric at any point desired. The stave is placed upon the holder, and is passed up to and against a concave disk, in which are cutters which make a perfect joint upon the edge of the stare. The machine is made with or without the casing, which, in connection with the revolving diek, forms a fan, to remove the shavings and dust to the fuel room or where desired.
In Fig. 9 is represented a machine for bending and rendering flexible wooden hoops. By the operation of this device all the stabborn and ungielding portions of the hoop are rendered flexible. The hoop is pat into this greatly im proved condition without breakage, thas saving a large amount of valuable stock; and the work of the cooper is greatly expedited. The machine is made with an iron frame in which are placed three iron turned or finished pulleys. A strong belt is so placed upon the palleys as to drive them all when one is pat in motion. The hoop is entered between the belt and the middle pulley, which is carried around the pulley and held close to it by the belt, which prevents its breaking. Hoops are passed through this ma chlne very rapidly.
Lack of space precludes our presenting more than the brief description here given of tbese valuable machines. We are in formed that the inannfacturers are the only parties in the Uni ted States, or in theworld, who makeand furnish fall and com plete apparatus fur making all kinds of barrels and kegs. A fine representation of all varieties of their machinery will be found in section 37 , columns $50.51,52$, of the machine ry department of the Contendial Exposition.

Fig. 7.-BARREL HEAD DRESSING AND JOINTING MACHINE For farther particulars, address the inventors and mana facturers as above.

Nrcesm deposite, from which ore contalning $\mathbf{3 0}$ per cent of pure nickel has beeu obtained, haverecently been discovered at Oasillou, New Caledonia.

Fig. b.-BARREL stave equalizer and conveyer.
then they are sabjected to heat; then there follows conges. tion. reaction of heat, pouring out of fluid matter, and the other local phenomena of catarrh.
loigea d's patent fuel.
We have already chronicled the excellent success which Mr. E. F. Loiseau has encountered in introducing his pat onted process for the manafacture of fuel from the hithert

Fig. 8.- Keg stave jointing machine.
wasted coal slack. Preparations are now in progress fo making the the fuel on an extended scale, and sup making the the fuel on an extended scale, and sup-
plying it fur pablic use. A factory located at Port Rich plying it fur pablic use. A factory located at Port Rich-
mond, Pa., bas a set of Mr. Loisean's machines capable mond, Pa., bas a set of Mr. Loisean's machines capable
of making 150 tans per day, and admitring of the sale of the material at one dollar per tun less than the price of stove coal. Contracts have been entered into for immens quantities of coal slack, so that before very long we may expect to see the enormous heaps of that refuse, which now simply encumber the ground in the vicinity of the breakers in the coal districts, disappear. For several months past the Philadelphia and Reading Railroad Company has been experimenting upon the fuel, and it is found to yield more heat and produce more steam than similar quantities of large conl.
We pablished some time ago complete illustrations, with desoriptions, of Mr. Loisean's very ingenious machinery. Th beanty of the processis its continuity : 95 per cent anthracite slack, 5 per cent clay, and some adhesive material enter one
end of the series of apparatus, and the compoand never
atops moving antil it emerges at the other end in the shape of neatly molded hard lumps, covered with a waterproof varniah, and ready for instant use.

A BUBMARLNE RALWAY.

One of the most remarkable and at the same time imprac ticable plans, which have been suggested for rapid and agreeable transit across the Eoglash Channel, bas recently been exbibited at the Palais de l'Industrie in Paris, by its inventor, Dr. La Combe. He calls his project " the sabmarine boat," but the boat is really a portion of a hage carriage which is to ron upon a railroad laid on the sea botiom. There is notunnel, nor anything thereanto resembling. The road bed is of bêton, which is to be laid by divers, and on this re fastened three gelvanized iron rails. The outer ones are for the wheels of the carriage, and the inuer one is raised so as to be embract by rollers, centrally attached to the latterin rolles,
order to preven rollig and derailment. cured to the hery carriage, and ige is se is driven by a screw actuated by compressed air transported in suitable reser voirs. The latter also supply fresh atmo sphere for respiration within the boat, and a machine is provided for removing any ex cess, as well as the vitiated air. The inte rior is illuminated by the electric light, the current being led to the veseel by a wire from Dover; said wire also serves for tele graphic parposes.
The inventor proposes to arrange gaard rails so as to keep the track always clear, add te provides a double-doored chamber in the $v \in s s e l$, so that, in case of necessity, diver can emerge to examine the line Should by any possibility the vessel stop, a baoy is immediately sent to the surface of the water, carrjing an air tube, so that the supply of air may not fall short; and in case of grave accident, the vessel can be altogether cat loose from the carriage, when it will rise to the surface and float. A serie of buoys on the surface will mark the lin of the road. Dr. Ls Combe thinks that his project is practicable, and believes that his vessel could mate the jouraey of twenty-one miles in abou half an hour.
pURIFICATION OF sUlpheric acid
The method generally employed, consisting in removing he arsenic by sulpharetted hjdrogey, is tedious and costly. Professor Thorn, of Pesth, says the Moniteur Industrie Belge, has devised a more simple process. The acid coming from the lead chambers and marking $60^{\circ} \mathrm{B}$ is carried in a lead vessel at a temperature of from 189° to $212^{\circ} \mathrm{Fah}$., and a quantity of sulphate of soda oissolved in water, correspond ing to the quantity of arsenic contained in the acid, is added The sulphide of arsenic is thereby formed in yellow flocculent The sulp which argregate and for withdrawing the acid, the sulphide remains on the bottom of the vessel, whence it is removed. The operation is easily of the vesse, whence it is removed. The operation is easily
carried on, and bat very little sulpharous acid is produced carried on, and bat very little aulpharous acid is produced.
The parified acid contains from 3 to 4 per cent of salphate of soda, which offers, in the mejority of applications, no in convenience. In experiments made al Pesth, acid at 50 B contained 0098 per cent of arsenic, on leaving the cham bers, and 0004 per cent after parification.

ARTIFICIAL MEERECHAUM, HORN, AND CORAL
A new way has been found of making excellent imitations

FLg. 9.-MACHINE FOR BENDING WOODEN HOOPS.
f meerschaam, horn, aud coral, out of potatoes and carrots. To make the false meerschaum, the potatoes are peeled and macerated for 36 hours in water acidulated with 8 per cent sulpharic acid. They are then dried on blotting paper, and

