(31) J. W. P. asks: Is there anything that may be added to collodion for ferrotype plates, er the picture is taken? A. The the picture is made : buta collodion made of long flber cotton, with an excess of ether, will usually answer best. If this will not do, flow the plate while wet (afte he picture is taken) with dilute albumen or gum rabic.
(32) I. O. A. says: I am straining my eyes by working in white wood and reading by lamp-
light. I want to use spectacles, but I am told that ight. I want to use spectacles, but I am told that his so? A. Spectacles of the proper kind may b sed toassist the eyes to see indistinct objects; bu if there is not light enough to see well wit
them, their use would certainly be injurious.
(33) A. E. asks: How can I make a good washing fluid? A. Make a strong solution of washuicklime
(34) W. C. asks: How can I cement emery
A. Use the best glue.
(35) L. J. T. asks: How can I make a good baking powder? A. Taks tartaric acid 5 part 6 parts. sieve, and keep free from moisture.
(36) J. E. J. asks: Has it ever been explained how the common turkey buzzard is able to mount up without flapping
think not. See p.292, vol. 32.

1. When will Saturn and Mars be in conjunction again? A. About 4 o'clock A. M., July 28, 1877. 2. Would an achromatic spyglass of 50 powers be
of any use for astronomical observation? Would it enablea novice to discern Jupiter's moons and Saturn's rings? Would it show the globular form of any of the planets? A. If you have a spy-
glass which will give you good deflnition with a glass which will give you good deflnition with a
power of 50 , you can see all you speak of and a power of 50 , you
buroing bitumper name of the gas generated y buraing bituminous coal? A. The larger part is carburetted hydrogen; carbonic oxide and car
bonic acid gas are also present. 2. Is it poisonous, A. Yes, slightly.
(37) J. H. asks: 1. How do engravers lay
the design on the plate before they commence the operation of eagraving? A. They coat the plate with a thin layer of whitenig in water, and then use a red traiser paper, tracing the design with a the face of a copper plate, will it not leave a rough or feather edge? A, Not if the copper is of the right quality, and the tool is sharp and in the hand of a qualitied operator
(38) J. R. C. asks: Can you give me the meaning and derivation of the word terra cotta?
A. Terra cotta (Italian) means "baked earth," and is the name for ware made of a paste of white clay, fine sand, and pulverized broken crockery, slowly dried, and baked to hardness.
(39) T. T. Y. asks: 1. What are quaternions? A. "A quaternion is the quetient of two divided right lines in space, considered as dependas expressible by an algebralcal symbol of quadrinomial form."-Sir W lliam R. Hamilton. 2. Where oan I and analysis of them? A. See three admirableletters of the above-named author. You may find them in Nichol's "Cyclopædla of the Physical Sciences."
you mention.
(40) J. G. S. asks: Can you give a good cure for cracks in the skin of hands? The points
of my fligers and thumbs are badly cracked, and of my fingers and thumbs are badly cracked, and
although kept as clean as possible, glycerin being applied, they will not heal. A. Try spermaceti ointment.
(41) W. B. H. asks: Please give me a reA. Take ivory black 16 parts, treacle 8 parts, oil of parts, gnm arabic 1 part, soft water (for flaal dilu tion) 64 parts. Mix well.
(42) Z. Q. Z. asks: What substance is bes to use on the back of postagestamps, edges of en velopes, etc., to makethem adhesive? A. Try a solution of gum dextrin (see p. 251, vol. 29) with a little refined sugar in
curling up when dry.
(43) K. says: When throwing the spec usual or best to use the condenser, as in the magic lantern, besides the focussing or condensing Place the condensing lens between the lantern and prisms.
2. Will there be any disadvantage in making up a battery of 12 one gallon Bunsen cup and 40 one quart Grove cups? Is there any loss of Grove's in the same circuit? A. No, unless the resistance of the circuit outside of the battery is very small. In the latter case the 12 one gallon cups alone will give the stronger current. If the external resistance of the circuit is of any considrable magnitude, the best effect will be obtaine by uniting all the cells in series. The latter com tential. 2. Please give full iustructions for setticg p the Chutaux battery; mentioned in your pape of May 22, 1875. A. There are several modifica lons of the Chutaux battery, one form is made a ollows: A glass or stoneware jar is perforated a the bottom, and an inverted saucer placed ove he hole. Single plates of zinc and carbon ar sheet of tin or other thin metal placed in the mid dle (between the zinc and carbon). The side con aining the zlnc plate is flled with sand, the oppo
itt side, containing the carbon, with pounded
oke, after which the metal partition is withdrawn nd a thin layer of sand spread over all. The exiting fuld is contained in an inverted jar over the battery; another jar beneath catches the liquid
fter it has passed through the sand and ooke ake 15 parts, by weight, of water, 1 of bichro mate of potash, 16 of sulphide of mercu
(44) K. asks: 1. What is the best sized cell ight? A. With an equal number of cells, the arger of two sizes gives the most heat and light. In amalgamating zincs with mercury, will it do immerse the zincs in mercury, or would this ter the zincs have been properly cleaned, to place hem in a shallow dish and pour the mercury ove them with a spoon. They should be carefully brushed afterwards to remove the excess of mer-
cury. 3. How long should the nitric acid last in the Grove battery? Why does the current be
come so weak when the nitric acid beco come so weak when the nitric acid becomes
weak? A. That depends upon the intensity of hemical action. With a given quantity of acid, Inc, etc., a certain definite quantity of electricity will be evolved. This we may obtain in a longer circuit iarge or small; if it is vers small the bat ery becomes perceptibly weakened in a very
hort time. 4. Does not the current depend en tirely upon thedecomposition of the zinc? A. The current is the resultant of all the chemical action which take place in the battery. 5. As platinum ened when passing through the platinum strip from the nitric acid to the zinc? Sometimes the trips become so hot as to almost boil the acid in the circuit necessarily reduces the current proportionately.
(45) P D. S. asks: Is there anything that will destroy the attraction of a magoet whe
placed between it and steel? A. No; but the at traction may be partially neutralized by interposng a heavy piece of iron.
(46) N. S. asks: 1. Should all spirals, for ifting electromagnets, induction machines, mag neto-electric machines, relays, and souvders, be
insulated and wound on bobbins ? a. All wir for electro-magnets, etc., should be insulated; es pecial care must be taken in this particular fo
gecondary coilsof induction machines. electro-magnet is small, it is often covered with paper, and the wire then wound on the core it self. 2. If I should wind flat spira's by commenc ing at one end of the bobbin, and wind a single flat spiral of the requisite diameter, then dro down to the sbaft of the bobbin, the wire remain ing unbroken, and then wind anŋther flat spiral
and so on till the bobbin is tlled, will I have and so on till tbe bobbin is illed, will I have properly between the coils? Or if I take a piec of insulated wire, commence at its middle, and wind both ways with opposite ends, and so wind the fiat spirals, and continue each way from cente of bobbin toward the ends till fllled, will this be equally good? Which is the best of these two?
A. For medium sized coils, It is better to dividethe bobbin in two parts. Then place it in a lathe, put one end of the wire through the dividing disk, and wind back and forth continuously until one end of the bobbin is full. Turn the bobbin end for end, connect with the finished coil by the wire passin through the div
(47) A. S. F. aska : 1. Does it make any difference in the power or the wear of a horizonta engine whether it runs over or under? A. No.
3. Is a speed of 125 revolutions per minute too fast for an engine of 14 inches diameter of cylinder well and carefully congtructed with a piem to such speed? Band wheel is 8 feet in diameter and of 18 inches face, and weighs about 3,600 lbs. A No. 3. Is it entirely safe to runa line shaft, of $23 / 2$ or $23 / 4$ inches diameter and 140 feet long, recelving the power of a 70 horse power engine at one end, and carrying pulleys as large as 42 inches diame-
ter and of 16 ic ches face, at a speed of 300 revolutions per minute, such shaft being first class in a respects and carefully put up? A. Yes. 4.Would it be safe to use 20 horse power from such shaft, at
the farther end from the engine? A. Yes, if its bearings are not too far apart.
(48) J. C. says: There is a pump in a well
85 feet deep; the pump is situated 65 feet helow the surface (20 feet from the bottom of the well) The pipe above the cylinder is 65 feet long and 1% nches in diameter. The cylioder of the pump is 234 ioches in diameter, and the length of the stroke of the plunger is 6 inches. The pump will pump
water, but itis very hard to work it. The plunger makes 40 strokes a minute and is worked by crank. Is the pipe containing the pump rod large enough to take the quantity of water as fast as it is pumped? A friend says the pipe is large enough, but that the plunger should make a larger number of strokes; and if it does this, he thinks it whl wortion pipe,would enable the pump to worts more easily if they were a little larger in diameter. (49) T. J. S. says: How can I quarter the of quartering do you mean?
(50) J. B. F. says: In a recent issue, you tate to a correspondent that you know no way of orth or two south poles. I send you herewith sketch, showing several waysin which this may be
done, as it may interest those of your readers who are experimenting in electro-magnetism. Fig. net, coiled in the usual manner, but with the ter
minals of each coil connected as shown. Now, if
if weconnect one pole of the battery at -, and the other at + , the current will divide, one half pass ing through each coil in the same direction, pro-

ducing at $a a$ two north poles. If we change the onnections of the battery, reversing the curren both cores at $a a$ will become south poles, and in epresents similar cores, but so coiled io one coninuous line that the current shall flow aroun both cores in the same direction. When connecpoles will be of similar neme sas noths and the connections are changed, both poles will be alike but oppositeto those last named, and in bot cases B^{\prime} will be a consequent point. Fig. 3 repre ents similar cores, but so coiled that the curren
shall flow around each core in opposite directions. This will produce one north and one soutb pole and a neutral point at B". Fig. 4 represents site directions; when connected with the poles of the battery, both ends of the cores will sbow simi-
lar polarity, while the center will be a consequen point. In order to understand how these effect re produced, I think it is only necessary to refe the electric force clrculating around a wir that the direction of this force or influence is du to the direction of the current in the wire. To how this in the most simple form, place a galvano meter needle over a wire through which an electric urrent is passing, and the needle will be deflecte in one defnite direction; now place the needle posite direction. Now benefled in the op direction opposite to that in which the curren deflects it, and its polaritywill soon be reversed by the action of the current.
(51) A.S C. says: W F. C. deserves credit allows an ice boat to travel faster than the wind which drives it, but his diagram carnes a confuta tion upon its face. He says that, with the sail set to an angle of 45°, the bolt, which represents the rectlon of the wind but not its forse, if pushe to move forward a like amount True; but the again he says: Make the angle of the sail 22140 instead of 45°, and the space passed through by the boat will be double that passed through by the bolt or wind. This result would be equally true with the first, had he not neglected to state that four times the speed or force of the wind was necessary for its accomplishment in the same time.
Does he suppose that the wind, at a known pressure, after doing its full duty in driving the vesel at a certain rate, can be made to double that duty by increasing its resistance twofold, which h does by lessening theangle of the sail one half? if that were true, wbat is to prevent his attaining, by iminishing the angle sufficiently, a speed inflnite traveling faster than the wind should, like it twin sister "negative slip," be relegated to the shades.
(52) E. D. C. says, in answer to a query as dopted: My way gage of 4 feet $88 / 2$ hat the was originally 5 feet, and the flange of the whee was on the outside. Phat not working satisfac torily, the flange was cbanged to the inside, which

Minerale, etc.-Specimens have been re ceived from the following correspondente, and eramined, with the results atated:
E. W. P.-They are scales of mica.-C. W. D. Both contain pyrites. By exposure to the air hate of iron.-W. J. S.-The glistening powder is ulphuretof iron; the black is hornblende. Nei her is valuable.-J. K. S.-It is flbrous steatite or oapstone.-G. P.-No. 1 is quartzite. No. 6 is fer ruginous quartz. We do not find the other specimens spoken of in your letter.-T. H. A.-The
amount of substance was too small for chemical examination. Try aniline red, or madder red, or red lead.

COMMONICATJONS RECEIVED
The Editor of the Scientific Amerroan act
knowledges, with much pleasure, the receipt of snowledges, with much pleasure, the receipt of
original papers and contributions upon the followlig subjects:
On the Etheric Force. By W. E S. On the Yellows in Peaches. By P. H. F.
On a Hydro-Pneumatic Puzzle. By C. K. On a Hydro-Pneumatic Puzzle. By C. On Diphtheria. By J. P.
On a Boiler Explosion. By T. E. K. On the Scientific American. By S. S. B.
On the Laws of Proportion. By I. H. H. \& S On the Laws of Proportion. By I. H. H.\& S.
On Carbonic Acid as a Preservative. By C.W.S On Heating Cars. By G. W. P On Laying Outa Square. By J. M. D
On Gravity and Matter. By W. I.L. uso loquiries and answers from the following : P. G. G. N.-A. M. J.-S. D. S.-F. E. B.-W. C.-
J. A.-W. E. D.-N.E.-C. T. W.-J. B. E.-R. P.-
G. B. R.-J. G. S.-W. C.

HINTS TO CORRESPONDENTS

Correspondents whose inquiries fall to appear may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patenta tility of inventions, aesignments, etc., will not be nuly are given, are thrown into the waste baske sit would fill half of our paper to print them all but we generally take pleasure in answering briefly oy mail, if the writer's address is given. Hundreds of inquiries analogous to the followine are sent: "Who selis Portiand cement? Whose the best shingle-splitting machine? Who sells co lections of minerals? Who sells machinery for
maklngschool slates? Who makes papier maché Why do not the makers of the sand blast apparatu advertise in the Scientific A merican? Whose is the best tile-making machine? Who sells the best photographic lenses;" dAll such personal in quirlesare printed, as will be observed. in tae col mn of "Business and Personal," which is spe charge mentioned at the head of that column 1/most any deared information can in this wa be expeditioualy obtajned.
[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the United States were

December 7, 1875

and each bearing that date.

Adding machine, D. L. R. Butt

Alarm, burglar, A. A. Buda
Alarm. burglar, H. A. Sherman
Animais in giving birth, alding, w. Duling
Auger. earth, M. and T. R Way
Bag, knitted, J. D. Culp (r)
Baggake seal. J. S. Crary
Barrel, , E. E. Sunderland
Barrel-pollshing machine, H. s. Smith
Barrel-shaping machine, B. s. Smith
Basket, Melnlkhelm and Chase
Bath tub seat. J. W. Nye....
Bath waste valve, w. S. Carr
Battery, galvantc
Batery,
Bearings, Inning for machine, Lathrop and webe Bed bottom, spring, E. Barton
Bed lounge. D. J. Powers..... Bedstead, Invalid, J. Crobby (r) Bedstead, sora, G. J. Henkels
Bedstead, sofa,
G. N. Setdler Blrd cage, , G. Gunther.
Brd cage, C. F. Holde.
Bird cage, hanging, G. W. Fuller Boat-detaching apparatus, J. J. Patterson.
Boller Injector, steam, w. T. Boot-polishing machine,
Boot rubber, J. Plenov
Boxes, machine for making, E......
Boxes, making cushlons for, B. s. Dennlison (r) Brace, hip and thlgh, B. R. Allen.
Brick dryer E Brick machine, Mitchell and Kenned Brick machine,
Buckle, A. Dyke

Bustle, A. Carter.
Buter carrler, B. \mathbf{F}
Can, palnt. M. Bras
Can-seaming machine, w. J. Gor...
Cane gun, c. Melaye...............
Car axle box wat,
Car axle box washer, C, H. Brown.
Car axle washer, w. H. Fitz Geral
Car coupling, J. T. A. Lewis.......
Car ventllation, G. H. Storey
Car wheels, casting, w. Wilmington.
Cardng engine feed, J. G. Freeman.
Carrlage axles, collars on J. Krtch

Carriage bows, sectlag, J. H.
Cartage whel. s. w. Ludlow.
CartrIdge primer, w. S. Smoot
Cartridge primer, W. S. Smoot..................
Chandeller. J. Matthews...............
Churn, reclprocating, W. McEinley
CIgar, M. Rosentha
Cigarette mouth plece, D. Marquis.............
Clay pulverizing machine, J. N. Kerper.. Cleanigg compound
Clevis, J. G. Miler
Clothes dryer, घ. J. Brown......
Clothes line prop, C. C. Schw
Coan chute portale, R. R. H
Coal oll motor F. Birg
Coai oin motor, F. Bürger....
Coking utensil, A. viehmeger..........
Corn drill, J. R. 8. B. and G. W. Rude........ 170,
Corn eneller feed belt etc., W. R. Quartob.... 170,

Corn uncoverer, H. H. Gllchrist....
Cotton gins, power for, L. B. Stth. Cotton openers, beaters for, R. Kitso Countershaft, W. Frech. Cult|vator. E. B. Moore............................ Curry combs, C. A. Hotchk188... 170,733, 734, 735, Curtain fastener, T. E. King. Curtain roller bracket, H. L. Judd Cuspadore, J. B. Connolly Demijohn, D. H. Shourds Dental plates, disks to, Q. A. cot.... Dlah washer, M. E. Whiteside.
Drop light, R. M. Shouls. Drying apparatus, A. Wilder Egge, substitute for, J. A. Griflin Elevator, hydrault, T. Stebins.. Engine, Are, G. E. Barker ... Equalizer, spring, W. Smith.
Fan, automatlc, B. Lingane
Faucet, w. I. Brownell
Fence, W. A. Couch.
Fence, J. Dwyer.
Fence, T. Harding
Fence wire, barbed, J. E. Page Fire arm, breech-loading, C. Green
Fire, extingulshing, J. H. Connelly Fireplace heater, J. M. Atkinson. Flue lining. C. A. Freema
Frultand egg packing box Frutt basket, N. L. Tuck. Fuel, molding artificlal, H.Cottrell Furnace, puddilng, s. Caddjek (r) Furnace slag, disintegrating, c. Diebold Gage. steam p:essure, J. Burden Game apparatus. M. C. Burr. Gas, generatios, c. Alalre..
 Glass mold, H. Fran Glassware, removing blow from, w. Adams Graining plates, frame for, R A. Adem Grate bar, W. C. Chill
Gun, cane, c. Melaye
Gun carrlage, M. M. Franzli Hammer, , crop, C. Lusted.. Harness asadle. J. W. Schwaner Harness sadale, A. Tcas....................... Hay loader, C. M. Young Heater, feed water, N. W. Kirby.
Heater, Hireplace. J. N. Atkinson Heater, locomotive feed water, w. Halsted. Hides, treating, W. H. Holmes.. Hinge, D . W. Long
Hinge attachment, strap, H. Freeman Hinge, strap. J. G. Reynolds

```
Horseshoe, N. J. Blatherwick
```

Horseshoe, A. W. Smith
ноrseshoe nalls, Inishing.
Hose and tubbing. T. H. Dunham..............
Hose, etc., preeserving cotton, T. H. Dunham.
Hose, hyarsullc, s. W. Baker
Jack, hydraullc, E. M. Dudgeon (r).
Jelly cup. E. F. Cash..
Keybook, J. H. Gates......... .
Key hole guard, F. W. Bechmann
Kitchen atensll.J. C. Noble........
Kitchen ventilator, J. V. Montgomer
Lathe for spools, w. R. Landfe
Lathes, planers, drilling machines, J. Mctaren.
Lthographic damper, H. Volrin.
Lock, time. S . W. Hol
Locomotive feed wate
Loom for feav water heater, w. Halsted
Loom for plled fabrics, webster \& Wh
Loom temple, J. C. Thleki
Louvre, ventllating, G. Haye
Lunch pall. H. W. Schussler
Meat cutter, G .
Mechan tcal movement, C. B. Withington
Motor, coan oill. F. Burger.
Oatmeal maclifne, H. Kruge
Oill, mat for pressing, T. H. Murph
ore concentrator, J. Longmatd
Pannler or justle, R. Blering
Paper hos, E. W. Dennliaon.
Paper drylng machinc, C. S. Clark
Pavement, stone, J. McBean
Photo printing in fatty inks, P. A. Despaqui
Ple plate stand, A. Moody
Pitman connection, G. H. Earnest.
Platting mactine, M. M. Macdonald
Planing machie cutter head
Planter and distributer, seed. M. P. Curlee
Planter, check row, W, H. Johnson
Planter, corn, Gmelner \& Schïttler
Planter, hand
Phtllips.
Plowing and seeding, D
Printing press, perforated, J. C. Forman
Pump, W. McBarnard
Pump bucket coupling, N. D. Da
Pump valve, Hubbard \& Hart..............
Radlators, alr vent for steam, G. W. Blak
Rati holder, C. W. Matthew
Refrigerator, E. B. Jewett.

...

..... 17

W. H. Anderson.

 H. Baker...P. Curle.

Planter, check row, w, H. Johnson.
Planter, corn, Gmelner \& Schïttler
Planter, corn, Gmetner \& Schïttler
Planter, hand seed, T. J. Hubbell.
Plow, gang, T. M. Shaw
Printing press, perforated, J. C. Forman
Propeller, cseew,
Pump, W. McBarnard..............
Pump bucket roupling, N. D. Dav
Pump valve, Hubbard \& Hart
Pump, expanston bucket. D. W. Witmer....
Radlators, alr vent for steam, G. W. Blake Ratchet wheel, J. F. Thoma Refrigerator, E. B. Jewett..
. 170,726
170,726
170,782
170,675 Retn holder, G. W. Muler.
Rice mortar, N. O. Tilton
Run Rlce mortar, N. O. Tilton
Runnitg gear. L. D. Hurd
Sad Iron, A. L. Parcelle...

110,882
170,661

786,857
6,738
10,674

170,674
10
1070,810
$.170,740$
170819
$.170,883$
170,906
170,883
170,906
170,766
170,776
170,844
17
170,844
10,923
170,98
S
170,887
170,799
170,924
1
170,924
170,670
170,781
170,670
170,781
170,832
1 170,832
170,699
170,690

10 \begin{tabular}{c}
170,699

170,699

170,691

\hline

170,691

170,83

170,704

1701

\hline
\end{tabular}

170,891
170,725

170,669
170,520 170,669
170,62
170,801

1 | $.110,80$ | St |
| :---: | :--- |
| 170,80 | |
| 170,841 | St |
| St | | 170,841

170,65
17020 170,685
170,920
170,200
10, 170,920
170,200
170,713
1 170,711
6,778
6
170,717
. 6,778
170,717
170,776
170,707 170,706
170,707
110,799

170,788 | 170,799 |
| :--- |
| 170,788 |
| 170,677 | 170,677

170,899

170,899 \begin{tabular}{l|l}
170,839 \& The

170,788

170,711 \& To

To

170,711 \& To

170,695 \& To

170,835 \& To
\end{tabular}

\section*{	1170,817
T 170,684	
T	
T	}

$.170,855$.${ }^{170,50}$ 170,813

\section*{	170,750
170,043	
10,702	}

170,769
$.170,89$
170,11
.. 170,82
. 170,80
. 170,75
4

.. 170,815 \cdots \cdots 170,901

. 170,668
$+170,701$
$.170,888$
170,80
$\begin{array}{r}\text {. } 170,888 \\ \text {. } 170,880 \\ .170,846 \\ \hline\end{array}$
.... 170
... 170
170 170,399
6,787
170,729
1029

$.170,729$ $. .170,895$ $.170,922$

... 170,924
$\cdots .17,085$
170,852
$.170,785$
\cdots
$.170,852$
$.170,903$
…. 170,981
… 170,91
… 170,8
170,

170,686
170,751
120,890
120
120
LIEE

 CENTENNILL DRLLL CHUCR-
 A. F. cushman, To ele cindoplatris hemelers,

PILES.A. Aif $\overline{\mathbf{W}}{ }^{\text {ITHERBR, RUGG }}$ \& RICHARDSON, Man-

 Theinomay ped aduriter :
 early as Firlday morning to appear in neaxt isesice.
 Advertisers!

WHIPPLE'S
Patent Door Knob.

NEWSPAPER FILE.

 CELEBRATED FOOT LATHES.

 Bigelow Rninine,

 $\frac{1}{\text { A GIFT WORTHY OFA ROTHSCHLD }}$

One Cent.

 Ren to any one free who whll send us their adaress on a
sene cent postal card. Address

 INDIA ROBBER,

