，in which one row of vertical bars make the first link of depth，or rather in hight above the ground，and 13 by 19 feet one of the pair of chains，and the other row of similar vertical bars the other．Each bar at each end has a per orated circular head．The apertures in these heads，whe the bars are in place，are in a straight line，so that pins may be put through said holes and also through the openings on the heads of the bars of the next link，when the latter are placed in suitable position，thus connecting the two links and forming a joint．Similarly pins are run through the apertures of the heads，which，in the lowest link，come be－ low the anchor plates，and thus confine the chain to the lat ter．The heaviest pin used，as above mentioned，measures 7 inches in diameter，and the bare which constitute tiae links are $13 \frac{1}{2}$ feet in length，and vary in area of cross section from from 27 to 21 square inches，according to position The iron of which they are
After the bars which form the first links were in place the liging of the masonry was continued，and four courses of blocks of granite were built up above the plates．each stone weigbing about ted tuns．Then the limestone wor was resumed，and this，with appropriate granite trimmings will be continued through the forty courses，and to a tota hight of 89 feet As the masonry rises，the links of the in mense chains will be added，and the latter led in the curve shown in Fig．2，until they will have extended from the rea and bottom to the top and front of the anchorage．The last links have twice as many bars as the others，but occupy no reater epace，as the bars are only half as ihiok．The bars， moreover，no longer stand parallel to one another，but are set off in pairs，the members of which are at acute angles，so that，along the last pin，half the bars are inclined above the horizontal and half below．To each pair of bars，considered this time in a straight line above or below，a strand of the cable will be attached，so that nineteen strands in all will be fastened to the ends of two chains leading from each anchor plate：and as there are four plates，so there will be four ca bles，which will convey the strain to the masonry．
A glance at Fig． 2 will show that the \in ffect of the cables pulling at A，is to upset the anchorage on its front edge．The strain on each cable is estimated at 1,833 tuns，or 7,332 tuno for all four．Against this is the dead weight of the struc－ ure，equal to 44,000 tuns．Tbere is，besides，on the masonry resultant pressure on the joints of the imbedded links of 2，267 tuns；and to meet the pressure at each of these knuckles，a heavy plate of iron is interposed，backed with a arge granite block．The strain on eaeh anchor plate is 1,352 large

The general aspect of the structure is excellently shown in the large engraving．It decreases in size toward the top， the area of the summit being 85 feet 3 inches in width by 117 feet in length，and the surface slopes to the rear at the rate of 3 feet in 100 ．Through the interior of the pile are t wo arched passages，in front $61 \frac{1}{2}$ feet high and 23 feet wide， in rear 22 feet $7 \frac{1}{2}$ inches hish by 14 feet wide，the differenc in size being due to the upward slope of the surface of the ground to the rear．At the present time the structure is 44 feet above tide，or 35 feet above Water street．
As soon as the New York anchorage is finished，the large unobstructed area of its summit，as well as that of its com panion structure in Brooklyn，will be occupied by the ma－ chinery for spinning the wire cables，which will be one of the most interesting meohanical features of the whole en－ terprise．The first cord will probably be thrown across the river sometime next June，and from that time forw ard the building of the wire portion of the bridge will，it is expected， be vigorously prosecuted．

A New USE for the east river bridge，

It is a well known fact that，owing to the rapid increase In size and population of the city of New York，the water supply is insufficient to mest all demands．The daily con sumption is on an average something over $100,000,000 \mathrm{gal}$ lons，a much larger quantity in proportion to the population thas is the case with either Paris or London．There is no question but that at the source，the valley of the Croton，into which the watersheds of Putnam county and vicinity direct their streans，there is an abundance of water．The difficul－ ty is found in the aqueduct，which is a brick tube 53.34 square feet in area of cross section，and which is called upon to supply pipes aggregating 57 feet．The friction of the fuid in the smaller tubes and the approximate cessation of drafts on the reservoirs between midnight and morning alone prevent absolute deficiency in the ten days＇supply which the Croton Bureau is obliged to keep constantly on hand．The new aqueduct，of which，we understand，the preliminary surveys are begun，will without doubt cure the diffisulcy；but in the meanwhile a large part of the built－up portion of New York，including the exclusively business sec． tion，suffers severely from a lack of water for fire purposes．
How to provide for this want is just at present a mooted question；and among the various plans proposed is one by Mr．A．W．Craven，ex－chief engineer of the Croton Aque－ duct，which consists in constructing large storage reservoi s in the lower part of the city and keeping them filled with sea water by powerful pumping engives．The principal ob jections urged against this project are its expense and the fact that the reservoirs themselves might not be wholly fret from danger in case of an extensive conflagration in their vicinity．It seems to us，however，that both of these objec tions might in a measure be obviated by using as the tanks wo enormous ones which are now built and lying empty，and of which no one，so far as we are aware，has hithertosuggested any means of utiliz tion．We mean the hollow towers of the New York pier of the Brooklyn bridge．Thisimmense struc－ ure containe within it two watertight cavities 120 feet in
in cross section，An approximate calculation of the contents ives about half a million gallons to each ；or in both together aver one million gallons of sea water might be stored．It is not assumed，of course，that the supply from these could or would
be utilized for up－town districts，and there supply is not so much needed；but it would，in case of a conflagration，offer a valuable addition to the present deficient water facilities down－town，among the warehouses and shipping of the city． Similarly the interior of the Brookyyn pier would offer a reservoir for water for protecting the valuable storehouses and shipping in its vicinity．The hight of the head is fully 0 feet above the tallest buildings，excepting，of course，the very lofty structures recently built by the Western Union Telegraph Company and the Tribune，and a few other fire proof structures，and therefore the water could be led under a heavy pressure directly to any story．

ELECTRICITY AS AN EXECUTIONER

The revolting scenes accompanging the execution of several crimiuals in this vicinity are well calculated to bring to public notice the disadvantages of hanging as a mode of capital punistment．
The t achings of Science are heeded and sought for in the build，ing of prisons，in the management and care of convicts， and in every modern correctional system；and yet in so sim－ ple and easy a process as the extinguishing of human life， hey are utterly ignored：
The most certain and painless death known to Science is caused by the lightning stroke，or by，what amounts to the same thing，the electric shock．When a powerful discharge of electricity is received in the body，existence simply stops， and the reason is obvious．Helmholtz has proved that，for any vibration which results in sensation to reach the brain through the nerves，one tenth of a second of time is required Furthermore，time is also needed for the molecules of the brain to arrange themselves through the effect of that vibra tion，through the motions and positions necessary to the completion of consciousness，and for this an additional period of one tenth of a second is expended．Consequently，if，for example，we prick our finger with a pin，it takes two tenths of a second for us to feel and recognize the hurt．It can easily be conceived，therefore，that if an injury is inflicted which instantly unfits the nerves to transmit the motion which results in sensation，or if the animating power is sud－ denly suspended by an injury to the brain before the latter completes consciousness，than death inevitably follows with no intervention of sensibility whatever
Now a rifle bullet，which traverses the brain in the one thousandth of a second，manifestly must cause this instant stoppage of existence，and proof of this is found in the placid faces of the dead，and in the fact that there is nothing more common than to find men lying dead on battle fields，shot through the brain，but with every member stiffened in the exact position it was in when the bullet did its work．But rifle ball is slow beside the electric shock．Persistence of vision impresses a lightning flash on the retina for one sixth of a second，but its actual duration is barely one one－hun－ dred thousandth of a second．
The effect of the shock on the system is excellently de－ scribed by Professor Tyndall，who，while lecturing before a large audience，inadvertently touched the wire leading from 15 charged Leyden jars，pnd received the whole discharge through his body．Luckily the shock was not powerful enough to be fatal ；but as the lecturer regained his senses，he experienced the astonishing sensation of all his members being separate and gradually fastening themselves together． He says，however，that＂life was blotted out for a sensibl interval，＂and he dwells with much stress upon the opinion that＂there cannot be a doubt that，to a person struck by ightning，the passage from life to death occurs without consciousness being in the least degree implicated．It is an abrupt stoppage of sensation，unaccompanied by a pang．＂So much for the death which，by suitable alteration of the law， we would have substituted for slow strangulation．The next point is its practical accomplishment
Instead of building a gallows and providing rope，the sheriff，advised by a competent electrician，would procure a powerful Ruhmkorff coiland a heavy battery．These instru－ ments would rarely need replacing，and would last indefi nitely for other executions．The battery and coil should be of sufficient strength to deliver an eighteen inch spark． case of their being more than one person to be execuled，al of the condemned would be conducted with all due ceremony ．o the place of execution，the left hand of one man hand cuffed to the right hand of his neighbor，and the conducting wire fastened to bracelets on the disengaged wrists of both criminals，if only two are to be hanged，or to the wrists of culprits men，if more than that number are to suffer．The the shats being seated so as to be seen by the is instantly tablished from the coll，passes through the bodies of the men，and all is over．With a competent electrician，who wight be a member of the police force，and specially charged with the duty，there would be no possibility of mis cakes．The same ignominy which attaches to the gallows would be transferred to this mode of destruction，while the peculiar death by lightning，which，among the ignorant of all nations and ages，has been the subject of profound supersti tion，would without doubt，through its very incomprehensi bility and mystery，imbue the uneducated masses with a deeper horror．

J．F．H．says：＂I have six volumes of the Scientifio american，in which I can find nearly overything that is known as to ongines and maohinery

Srientifir Ammericam．

MUNN \＆CO．，Editors and Proprietors． published weetly a
 NO． 37 PARK ROW，NEW YORK

O．D．MUNN．A．E．BEACR．
TERMS．
One copy，one year，pobtage included．． . .8320
OInbrates．
Ten coples，one year，eacb 8270 ，postage included．．．．．．．．．．．．．．．．．．．．．． $\mathbf{8 2} \mathbf{8} 00$ Over ten copies，same rate each，postage included．．．．
By By the new law，postage Is payable in advance 270 subscriber then receives the pader free of charge．
Notr．－- srsons subscribing will please to give their full names，and Post Uffice and State address，platnly written．and also state at which time they wish tneir subscriptions to commence，otherwise the paper will be sent from
the recelpt of the order．When requested，the numbers can be supplied freceipt of the order．When requested，the numbers can be supplied
from January 1st．When the volume commenced．In case of chanking resi－ dence，state former address，as well as give the new one．No changes can oe made unices therormeraddress ts kiven
If any of our readers fall to recelve their numbers regularly；if the direc．
ion is not plainly written；if premiums are not received；or if there is ault of any sort at thils oftice，we will thank our friends to send us posta ard complaints，and repeat the same，if need be，unt1l the remedy is effect． urselves and patrons right and satisfactory．

VOLUME XXXIV．，No．2．［NEW SERIEs．］Thirty－first Year．
NEW YORK，SATURDAY，JANUARY 8， 1876.

the scientific american supplement

 For the Week ending January 8，1876．table of contents．

 Allied Substances．－Coumarin and othr Acide．－LIquil Carbon－dioxic
in Minerals．－Analysis of the Lowe Gas．
PROCEDINGS OF SOCIETIES．－New York，Academy of Sclences．
Manufacurre of Iron in Japan．－Chemical Soclety，London．－Royal Scot
 I．METEOROLOGY．－On the Formation of Gail．By M．FAYE．

 Ha＝$x=2$
 \％ivemantaz

III．AGRICULTURE．－Feeding of farm hor

まサジv＝uasuaw

 $=3=5$

