IMPROVED KEG AND BARREL MACHINERY.

 In our is sues of March 8, 1874, and February 6, 1875, w published several illustrations, together with detailed de scriptions, of new coopering machinery, patented and manu factured by Messrs. E. \& B. Holmes, of 59 Chicago street, Buf falo, N.Y. The devices then referred to, which, as we stated worked a practical revolution in the cooper's trade, related mainly to the manufacture of barrels by machinery, said mechanism in many instances being the first ever invented for performing operations hitherto done by hand labor. To this valuable category of apparatus, the manufacturer have now added a new production of kegs and small casks of all kinds and sizes less than barrels, beside a number of novel de vices devoted, as be fore, to improved bar rel manufacture.In Fig. 1 is repre sented an entirely new machine for leveling and then trussing slack barrels. It is constructed with an iron frame upon which ironframe upon which ing plates upon slide ing plates uponslide or guides, whic platesare oparated by cams. There are al so two other plates placed upon slides, and operated at each end by cranks. Upon these plates are hoop drivers, for driving all the truss hoops upon a barrel at one and the same time The leveling plates are first moved to ward each other and against the ends of the barrel by cams. The barrel is thus le veled and held in po sition while the hoop MACHINE
drivers force all the truss hoops to their places. The leveling plates and drivers then recede, and places. The is discharged from the machine by the introduction of an other. The apparatus is so rapid in its operation that, by the help of one man, from 4,000 to 5,000 barrels can be trussed per day.
Fig. 2 is a machine for chamfering, howeling. and crozing kegs and small casks. It is adapted for finishing the onds of kegs or small casks of all sizes, from small kegs to half barrels, ready to receive the heads. It finishes both ends of the keg at the same time with great accuracy. The keg is placed on the machine and forced into chuck rings, which are caused to revolve by teeth, upon their outer edge, engaping with pinions upon a common rotating shaft. Rotary catters are brought in contact with the ends of the keg, which are in ished by a single revolution. The machine is easily altered from one size to another by changing the cluck rings. Its capacity is from 2000 to 3,000 kegs per day
In Fig. 3 (see next page) is repre sented a machine for rounding heads of all sizes for kegs and barrels. This is so constructed that every size of heads for kegs, small casks, and barrels can be made upon it for both tight and slack work, and the change f om one sizg to another is easily and q rickly accomplisbed. The saw and cutters are brought in contact and passed through the woud on such lines as to prevent the tearing, split. ting, and slivering of the material used, and to give a smooth finish to the work done. No more set is re quired in the saw than is necessary in a common circular saw. The machine is made with a strong iron frame on which is placed a clamp for holding the pac a clamp for holding the head. There are, besides, a swing frame, carrying a concave saw and cutters for round ivg and chamfering the head, and ar automatic apparatus for dis charging it when finished.
In operating the machine, the blank is placed between the clamps, and at the same time the foot treadle is pressed. This clamps the blanks, and also brings the soncave saw and cutters in contact with it, and holds them there until the head is finished, when the latter is released through the automatic action..
In the following engraving, Fig. 4, is exhibited a power windlass for kegs and slack barrels. This is for drawing up
or together the ends of staves of a keg or barrel, ready to receive the head truss hoop, after they have been set up in the setting up form with their other ends in the other head truss hoop. The machine is constructed with a frame upon which is planted a windlass supplied with a rope, whic windlass is operated by friction wheels
After the barrel or keg has been set up with the ends of the staves in one head trusshoop, itisplaced in the machine, and the rope is placed around the faring ends of the staves. The friction wheels are then brought in contact with each ther, when the windlass is set in motion, drawing up the

MACHINE FOR LRVELING AND TRUSSING SLACK BARRELS

Iron Freight Cars.
The La Mothe Manufacturing Company, of Providence, R: I., is building iron freight platform cars. which are thus de scribed : Six sills, 30 feet in length, each being composed of hree 2 -inch boiler tubes, are placed one above the other. These are three inches apart, but are secured to each other by bands or tie blocks of the best charcoal iron, forming a single sill, which is, from its nature, of great strength. These sills are placed under the car 20 inches apart, and are connected and held in place by forty five inch soft steel rods, running through the tie blocks and riveted at each end, rods, running through the tie blocks and riveted at each end,
by which means the entire structure is rendered perfectly compact, and becomes a unit. Transom beams are placed at each end at the proper point, to connect with the trucks. These consist of four boiler tubes of like size with the sills, and are securely fastened to each other. Large rods are e mployed to stre ngthen the center of the car, and are fixed to the sides by improved and pitent couplings. This arrangement is actually stronger than the sills themselves. The usual truss rods are also used, the best inch steel for the purpose being employed. The only wood used is the planking of the platform. which is secured to the sills by means of staples. The ontire mechanism is void of welding, nuts, joints, or mortises, The actual weight of the car without the trucks is not over 40 per cent of that of the ordinary car. The carrying capacity of or head truss hoop. This apparatus is very rapid in its ope- \mid this car is set at 20 tuns. The ordinary platform car weighs ration, and will windlass from 2,000 to 2,500 kegs or barrels
per day.

per day.

Fig. 5 is a machine for leveling and trussing kegs and small casks, from the smallest kegs to half barrels, and can be easily and quickly adjusted. The truss hoop drivers are attached to two plates, one of which is stationary and adjust able, and the other is moved to and from it perpendicularly by cranks and pitmans. The drivers move automatically in and out, to allow the reception and discharge of the keg int and out, to allow the reception and discharge of the keg into

BARREL CHAMFERING, HOWELING. AND CROZING MACHINE. a fair burden being from 8 to 10 . The ordinary car, capable of carrying but 10 tuns, must carry a dead weight of 6 tuns; while this new invention will, it is claimed, with absolute safety carry 20 tuns, with a dead weight of but 3 tuns. The same principle is to be applied in building box cars. Greater safety in case of collision or fire is claimed for these cars. A platform car of this kind has been in use on the Providence and Worcester Railroad since September for transportirg stone Its weight is 3560 lbs less than their ordinary platform cars and in strength and durability it gives great satisfaction.

Condensed Eges.

It is astonishing, says the British Trade Journal, what progress has been made during the past few years in the art of preserving aliments generally, and that a great boon has thereby been conferred all round we have daily evidence. The superflu. ous herds of Australasia and South America are now potted, or, we should perhaps say, "tinned," for tbe English and other markets, thus a fording comparatively cheap anima food for the less opulent classes. America sends us in large quantities the products of her waters, which but for preservative processes would be lost to the old world; Switzer land is fast ruining the milkman's business in this country; from across the Channel come eupplies of vegeta bles in a form qualified to journey round the world without deteriora tion : and Denmark exports her delicious butter in ever-increasing quan tities, well protected from the effects of keeping and climatic change. In fact, preserved provisions now in clude a vast variety of substances hailing from all parts of the world Although more the recipients than the producers of such goods, there are many articles of the kind which we are able to send abroad, and the productions of the Scotch provision factories are especially esteemed in
drive the truss hoops at one and the same operation upon the keg, by the movable plate being brought in contact with the upper end of the keg by the action of the cranks and pit mans, the two cranks being on the same shaft. The ma chine works rapidy, and will level and drive the truss hoop upon from 4,000 to $5,000 \mathrm{kegs}$ per day.
This subject will be resumed in our next issue
of which, prepared in Bavaria, has reached us. This article is prepared from fresh raw eggs by a process of desiccation, which, while effectual in removing all traces of moisture, leaves the natural properties of the egg unimpaired. It is only necessary to add a due proportion of water to the egg powder to render it fit for culinary purposes, the active constituents of one egg being contained in about a teaspoonful of the powder. That this is a valuable addition to the line
the carbonic acid was absent; namely, copper only abou one sirth; lead, only about one hale as much; tin and Britannia metal not at all. With access of air, with or without carbonic acid, a considerable quantity of each metal went into solution, with the exception of tin and Britannia metal, of which, in both cases, not a trace was dissolved.
The action of copper, and in a less degree of brass and
to 8.1 cubic inches of water, in an open glass covered with paper, lost only 3.68 grains. If copper is boiled in a solution of sal ammoniac, with or without access of air, ammonia is continually liberated, even for hours.
In water containing chloride of magnesium, in the presence of air free from carbonic acid, lead and zinc were most strongly attacked, tin and Britannia were only very slightly. The action upon lead and copper is about the same as that

MACHINE FOR ROUNDING BARREL HEADS.

of conceritrated natural aliments will be admitted, we think,解 amall sized tin are about equal to twelve eggs.

Action of Different Solutions on Metais.

 Professor A. Wagner, of Munich, has recently made a series of careful experiments to determine the action of different solutions on copper, zinc, lead, tin, Britannia metal, brass, and German silver, first in air free from carbonic acid, then in the presence of carbonic acid and air. These metals and alloys were in the form of foil, of equal surface, namely two square inches, and of as nearly equal thickness as possible. The copper foil was as good as chemically pure; the zinc was common sheet zinc with 0.68 per cent of lead; the lead was cut from commercial sbeet lead; the tin was the pure cast metal. The Britannia metal was a piece of new sheet metal intended for the drums of gas meters, and consisted of 90 per cent tin and 10 per cent antimony. The brass was composed of $64 \frac{1}{2}$ per cent copper and $35 t$ per cent zinc. The German silver was 702 per and $35 \frac{1}{4}$ per cent zinc. The German silver was 702 per cent copper, and $29 \cdot 8$ zinc and nickel. These pieces holding 61 cubic inches of the solution to be tested, the holding 61 cubic inches of the solution to be tested, themetal being completely covered with the solution. In the experi ments they were left in the solution for a week. The results of these experiments, as given in the Bavarian Industrie und Gevoerbeblatt, were as follows
In freshly boiled distilled water, zinc suffered the most change of all the metals tested; tin and Britannia metal suffered no change. With access of air and carbonic acid, the action upon lead, copper, zinc, brass, and German silver was much more energetic than in the presence of air free from carbonic acid. In the latter case only traces of copper, zinc. and lead were dissolved; tin, Britannia metal, brass, and German silver were not attacked at all. In the presence of carbonic acid and air, tin and Britannia metal were the only metals not attacked; all the other metals were perceptibly dissolved.

In chloride of sodium and chloride of potassium solutions, with access of air and carbonic acid, copper, brass, German silver, and zinc were violently attacked, while in the absence of carbonic acid they underwent comparatively little change. The contrary was the case with lead, tin, and Britannia ware, they being attacked more violently when exposed to air free from carbonic acid than in air and carbonic acid. In the latter case, lead was only half as much affected as in former, tin not at all, and. Britannia metal very little. With access of air free from carbonic acid, not a trace of any of the metals was dissolved; with access of air and carbonic acid, considerable quantities of copper, brass, Ger man silver, zinc, and lead were converted into soluble compounds, only a trace of Britannia metal went into solution, and no tia was dissolved.
In sal ammoniac solutions, with access of air free from carbonic acid, copper was attacked prodigiously, also brass, German silver, and zinc ; Britannia metal, tin, and lead comparatively little. In the presence of both air and carbonic acid, strangely enough, all the metals, with the single xception of German silver, were less attacked than when
attention. Within a week, a large quantity of copper was dissolved, the liquid became dark blue, and contained a perceptible quantity of ammonia. By allowing the sal am moniac to act upon the copper for a long time, at ordinary temperature, a compound of ammoniocuprous chloride with ammonio-cupric chloride was formed. The action of sal ammoniac solutions on copper seemed, however, to be essentially dependent upon the unrestricted access of the

machine for leveling and trussing kegs. atmospheric oxygen. The loss of weight of one square inch of copper foil, in the experiment, in which air free from carbonic acid was passed through the solution, was 13.50 grains in a week; while one square inch of copper foil, standing vertically in a solution containing 15 grains sal ammoniac
of the alkaline chlorides; zinc, brass, and German silver are more strongly affected. In the presence of carbonic acid and air, chloride of magnesium has about the same effect upon copper and German silver as the alkaline chlorides, and a much stronger one on lead, zinc, and brass. In this case, tin is perfectly protected from corrosion. When carbonic acid is perfectly protected from corrosion. Wencen carbonic acid is as well from sheet zinc as from brass and German silver. In the presence of air and carbonic acid, considerable quantities of all the metals are discolved, except tin, of which none is dissolved, and Britannia metal, of which trace only are dissolved.
In solutions of sulphate of potassa, copper, lead, brass, and German silver were perfectly protected from loss of weight in the presence of air free from carbonic acid, the loss of weight of zinc was considerable, of tin and Britannia metal inconsiderable. With access of air and carbonic acld, lead, tin, and Britannia ware suffered no loss of weight; copper, brase, ard German silver lost equally and slightly in weight, zinc considerably. None of the metals were dissolved in the absence of carbonic acid; but in its presence, copper, zinc, brass, and German silver weredissolved in perceptible quantities; lead, tin, and Britannia metal were not dissolved.
In water containing saltpeter and air free from carbonic acid, lead and zinc were attacked most violently; tin and Britannia ware a little; copper, brass, and German silver not at all. With air and carbonic acid present, zinc and lead were attacked most; copper, German silver, and brass were not more acted upon than by distilled water; tin and Britannia metal were acted upon somewhat. None of the metals were dissolved when carbonic acid was absent; when it was present, perceptible quantities were dissolved
In carbonate of soda, and air free from carbonic acid, lead, copper, brass, and German silver lost notbing in weight: but zinc, tid, and Britannia metal were sensibly affected Perceptible quantities of tin and Britannia ware were dis solved; none of the other metals went intosolution. It was not possible to pass carbonic acid into the solution, as this would convert the carbonate of soda into bicarbonate of soda.
In water containing caustic soda, and air free from carbonic acid, lead, tin, Britannia metal, and zinc suffered a very considerable loss; brass and German silver an incon siderable loss; copper, none. a good deal of lead, tin, Britannia metal, and zinc were dissolved; only a little brass and German silver, and no copper. It was impossible to pass carbonic acid and air into the solation, because it would convert the caustic soda into carbonate of soda.

In lime water, with air free from carbonic acid passed into it, lead lost considerably in weight; zinc and brass an inconsiderable quantity : copper, tin, Britannia metal, and German silver, none at all. A perceptible quantity of lead was dissolved, but only traces of zinc and brass. It was, as before, impossible to perform the experiment in the presenc of carbonic acid, as this would form carbonate of lime.
Reviewing these results, and classifying them according to me metal, we find that they are affected as follows:
Copper, in the presence of air free from carbonic acid, is very energetically attacked by a solution of sal ammoniaq
(loss of weight, 1356 grains) only slightly by chloride of (loss of weight,
magnesium (0.075
grain) and alkaline chlorides (0.06 grain) extramely little by distilled water (0.015 grain), not at all by sulphate of potassa, saltpeter, carbonate of soda, caustic soda, or lime water. Quite a considerable amount of copper was
dissolved by sal ammoniac, only traces of it by distilled dissolved by sal ammoniac, only traces of it by distilled
water; none of the other solutions were able to convert any copper into soluble compounds. In the presence of carbonic acid, the copper was attacked by all the solutions, most violently again by sal ammoniac (lose, $2 \cdot 14$ grains), the action being only about one sirth of that without carbonic acid. Thealkaline chlorides dissolved 1.76 grains, chloride of mag. nesium, 1.72 grains, being nearly as strong as sal ammoniac. edilled water (0.045 grain) dil saltpeter (0045 graid) in distilled water (0.045 grain). All
Zinc, in the absence of carbonic acid, was attacked by every Zinc, in the absenceof carbonic acid, was attacked by every
solution, most violently by caustic soda (loss 0.90 grain) solution, most violently by caustic soda (loss 0.90 grain)
and sal ammoniac (076 grain), considerably by sulphate of potassa (0045 grain), less by chloride of magnesium, distilled water, and carbonate of soda ($0 \cdot 195$ grain), quite feebly by saltpeter (0185 grain) and alkaline chlorides ($0 \cdot 105 \mathrm{grain}$), iuconsiderably by lime water (0045 grain). Percoptible quantities of soluble zinc compounds are pro duced by the action of caustic soda, sal ammoniac, and chloride of magnesium ; traces only by distilled water and lime water. None of the other solutions prodaced soluble zinc compounds. In the presence of air and carbonic acid, all solutions act upon zinc; chloride of magnesium acte the strongest (loss 0.810 grain); next to it, sulphate of potasse (0795 grain). The alkaline chlorides act considerably (loss 0.57 grain), and almost equally with saltpeter (0555 grain) and sal ammoniac (0.54 grain); distilled water less (0.285 grain). Perceptible quantities of zinc were dissolved by each solution.
Lead, in air free from carbonic acid, was very strongly attacked by caustic soda (loss, 645 grains); considerably by lime water (2.055 grains); less by alkaline chlorides (0.315 grain); chloride of magnesium (0.3 grain); saltpeter (021 grain), and sal ammoniac (0.18 grain); still less by distilled water (0.045 grain) ; and not at all by sulphate of potass and carbonate of soda. Caustic soda, lime water, and sal ammoniac converted perceptible quantities of lead into soluble compounds, chloride of magnesium and distilled water only saltpeter, and alke sulphate of potassa, carbonate of soda, access of carbonic acid and air, the chloride of magnesium acted most strongly (loss, 0.525 grain); next saltpeter (031 grain) and alkaline chlorides ($0 \cdot 18$ grain); still less distilled water (0.12 grain) and sal ammoniac (0.075 grain) Sulphate of potassa was again powerless to affect the lead, and did not dissolve a trace of it, while all the other solutions dissolved perceptible quantities of it.
Tin, in the absence of carbonic acid, was energetically attacked only by carbonic soda (loss, 0.33 grain). Of the other solutions, it lost, in carbonate of soda, 0105 grain; in alkaline chlorides, 090 grain ; in sal ammoniac, 0.075 grain in saltpeter, 0045 grain ; in sulphate of potassa, 003 grain and in chloride of magnesium, 0.015 grain: while it was unaffected by distilled water and lime water. Only caustic soda and carbonate of soda were able to dissolve perceptible quantities of tin. Carbonic acid and air hinder, in a re markable manner, the action of these solutions upon tin,
with the single exception of saltpeter, which acts very with the single exceptio
faintly (loss, 0.015 grain).
Britannia metal acts quite anslogous to tin. In air free from carbonic acid, caustic soda acts most violently (loss of weight, $1 \cdot 41$ grains); the others act inconsiderably. The loss of weight in alkaline chlorides was only 0.135 grain; in carbonate of soda, 0.09 grain ; in sal ammoniac, 0.045 grain ; in sulphate of potash, chloride of magnesium, and saltpeter, each only 0.015 grain; and in distilled water and lime water, it was unacted upon. Caustic soda and carbonate of soda alone dissolved perceptible quantities of the metal. In the presence of carbonic acid and air, as in the case of tin, distilled water, sal ammoniac, and sulphate of potassa do not act at all; the alkaline chlorides, chloride of magnesium, and saltpeter act very feebly (loss, 0.015 grain); and saltpeter alone dissolves enough metal to be detected.

Brass acts, on the whole, in a manner analogous to copper. With access of air free from carbonic acid, it is strongly attacked by sal ammoniac (loss of weight, 4.035 grains), only slightly by chloride of magnesium (loss, 0.6 grain), alkaline chlorides, caustic soda, and lime water (each 0.03 grain). and not at all by distilled water, sulphate of potassa, saltpeter, and carbonate of soda. Perceptible quantities of metal are dissolved by sal ammoniac and chloride of mag. nesium, and traces of it by caustic soda and lime water. In the presence of carbonic acid and air, it is acted on mos violently by sal ammoniac (loss, $2 \cdot 505$ grains) very strongly by chloride of magnesium (loss, $1 \cdot 38$ grains), and alkaline chlorides (loss, $1 \cdot 2$ grains); less by distilled water and carbonate of potassa (each 0.06 grain), and saltpeter (loss, 0.045 grain). All the solutions dissolved perceptible quantities of the metal.
German silver acts like brass, but on the average is less energetically attacked. In air free from carbonic acid, it is less strongly attacked thanbrass, although quitestrongly by sal ammoniac (loss of weight, $0 \cdot 129$ grain), less by chloride of magnesium (loss, 0.045 grain), alkaline chlorides (0.015 grain), and caustic soda (015 grain), not at all by distilled lime waiphate of potassa, saltpeter, carbonate of soda, and by sal ammoniac and chloride of magnesium; traces only by caustic soda. In carbonic acid and air, the sal ammoniac act caustic soda. In carbonic acid and air, the sal ammoniac acts
magnesium (1005 grains), and alkaline chlorides (0.915 galtpeter (each 0015 grain). Perceptible quantitips of meta are dissolved by all these solutions.

Copyrighte.

Mr. Rowland Cox, says: In the case of Lawrence vs. Cup ples, Judge Shepley has announced it as his opinion that, in an action for the infringement of a copyright, where the re semblances are accidental or arise from the nature of the subject treated in the two books, there can be no recovery To constitute an infringement of a copyright, the learned jndge says, there must be piracy; the defendant must have used the plaintifi's book as his model. Although the defendant's work cover the same ground as the plaintiff's, and answers the same purpose in toto, it will be noinfringement if it is not an appropriation of plaintiff's particular method Hence, where the plaintiff had compiled a book bearing the title "The Advertiser and Collector's Chart," containing certain lists and names, and defendant issued a book entitled "The New England Mercantile Guide," which con tained
ment.
There can be no doubt that a copyright which purports in ferentially to cover anything akin to a subject is of no avail. It is idle to attempt to make a copyright effect, directly or indirectly, the functions three are possibly of the same genus, but, as species, are
widely separated; and to confound them inevitably leads to widely separated; an
illogical conclusions.

The Comacho Electric Machine

The Comacho magnetic machine, with its cencentric iron tubular magnets, may be seen at 171 Queen Victoria street There can be no doubt of the advantage of this form of magnet; but experiment on the resistance of the circuit weight lifted, electro-motive force, and consumption of zinc etc., would form an interesting subject. The machine, with five cells of a bichromate battery, works three or four sew ing machines. Attempts to work it with the thermopile have hitherto failed. This is very likely, because the ele ments of the thermopile are coupled up in considerable series, so that, considering the resistance of each element the whole resistance must be great compared with the resis tance of the wire round the magnets. A thermopile should be made of low resistance by conpling a number of element together in parallel circuit, and then taking some ten o welve, or more, of such series conpled in succession. It is o doubt worth considerable experiment to attain a success ul result from the thermopile, as in that case, by merely curning on the gas, a lathe or sewing machine be made work.-Telegraphic Journal.

Rotary Engines.

Accurding to the invention of Mr. Urbain Chauveau, of Paris, a cylinder is arranged with a piston which may be ac tuated by steam, compressed air, or gas, so as to move round an axis passing through a center. If a point of the piston rod is forced to move in the space of a fired circle having for its center a given point, so that the distance is equal to one half of the stroke of the piston, it will be readily under stood that the alternate motion of the piston in the cylinder will produce a continuous rotary motion of the said cylinder round the axis. Different arrangements of mechanical parts may be employed to carryout the principle abovementioned, and the construction of rotary engines of this character may be varied to a graat extent, and yet in accordance with the same principle. The admission of steam may: be made in any ordinary manner.

Drllitige and Boring.

An invention by Mr. J. Dodge, of Manchester, England, consists in an improved compound machine, by which four or other convenient number of holes can be drilled or bored at the same time, and by which the spindles of the drilling or boring tools at opposite sides of the machine are set simultaneously, and in unison with each other. His im proved machinery consists of a foundation plate, and of four standards, which are connected by crossslides support ing the boring headstocks; the cross slidesare raised or lowered, and the boring headstocks are traversed to and fro on the cross slides by screws, all of which are connected to gether.

Large Lap-Welded Tubes.

The National Tube WorksCompany have just completed their works at McKeesport, Pa., a sample pipe for exhibition at the Centennial. It is 14 feet in length and of 14 inches outside diameter and 10 inches inside, the iron of which it is made being 2 inches in thickness. This is said to be the heaviest piece of lap. welded pipe ever made in this or any other country, and it is stated that such heavy work has never been attempted by any other establishment.

The Fell Gate Obstructions

The drilling of the chief obstruction at Hell Gate is in shed, and the machines have been transferred to Flood Rock. The débrio have been cleared away from the shaft, and the caves formed by the deep headings are now in a good condition to be explored. Experiments are being made daily in explosive material. to ascertain the safest. The mine will be spruag next Jaly or August. There are 172 pillars which support the rocky roof; 8,000 borings have been made for in serting explosive matter. Those in charge of the work ap-
prehend more danger from the surging of the water than at Flood Rock is carried on day and night.
M. Cerpaux proposes a battery made of a certain num ber of plates of copper and of zinc separated by a wooden lath. The plates are piunged in sand or moist earth, and an electric current is at once produced. If on the earth chloride of sodium be poured, a very intense current is generated.

Steam Street Cars in Phlladelphia
Steam street cars are now in operation on one of the railroad lines in Pbiladelpbia. The local papers state that the objection that horses will be frightened by the exhaus has not been realized, as no runaways have occurred, nor do the animals seem at all a:armed by the proximity of the machines.

DECIBIONS OF THE COURT8.

United Staten Circuit Court--Dintrict of Massacbue

Inventions Patented in England by Americans.

rCompiled from the Commissioners of Patents' Journal. rom February 29 to March 27, 1878 inclussve applying Mottve Powrr.-J. Doubler, Philad.
Batine Powdr.-Dodge et al., New Yort city Barbid Fence Wire.-H. W. Putnam. Bennington, vt. Boller.-D. L. M. Moore (of New York city), London, England.
Boiler Tvbe Apparates.-J. H. Faxon. New York city. boller Tube Apparates.-.J. H. Faxon. New York city.
Boot-Screwing Maceine--American Cable Screw wire Co.,Boaton, Ma Booot-Skwing Machine.- - Mills (of Brooklon, N. Y.), Aston, England Brick Kiln, etc.-G. S. Reddeld, Chtcago, Ill.
Brice MAchinery.-C. B. Bigler. Harriblurfh, Brice Machine.-W. A. Graham, Carlisle, Pu Burning Lime, etc.-A. Smith, Buffalo. N. Y
Carding Machine.-J. F. Foss, Lowell, Mag Cleanaine Wheat.-D. M. Richardson, Derroft, Mich. Covering Umbrellas.-J. P. ©nderdonk, Philadelphia, Pa Cvtlipry.-J. Pedder et al., Beaver Falls, Pa. Enaine Valveg. bto.-H. E. Marchand, Pitt sburgli, Pa,
Fare Reater Fare Regibtir.-J. Sangeter et al., Buffalo, N. Y.
Fieding Carding Ma Mines.-W. T. Bramwell, fring carding Maobings.- W. T. Bramwell, Terre Hate, Ind
Fitid metrr.-J. C. Guerrant. Danvile, Va., et al. Gabrilifr.-C. Deave, New York city Bat Enipe, bTt.-H. Holt, East Wito
Heat Radutor - Me, hiat Radiator.-E. C. angell, New Yook chig Horershor Machine.-J. A. Burden, Troy, N. Y.
Enitting Machinery.-C. J. Apuleton, Elizabeth, N. J. Knitting Machinery.-C. J. Apheton, Eliza.
Life Raft.-N. H. Borgeidt, New Pork city. Lighting Gas.-H. B. Stock well el al, Brook.
Machine Gun.-W. Gadner, Hartford, Conn. MAEING GAB.-M. H. S rong, Brooklyn, N. Y.
 Making Pie iron.-C. Hlu.rod, Youngstown,
Making Steil.-W. Fields, wilmington, Del. Miner's Pick--J. I. Fewkes, Phiadelphta, P Pıpre Box.-B. Obborn, Newark, N. J.
Ptanoforte.-C. E. Rogers, Masb,
Pith Venerrb.-S. H. Penley et al.
Railway Switch, bto.-J. S. Willams, piverton, n.
Roller Shetter.-J. G. Wilson, New York city.

tring Machinz.- - . L. Du Laney, New York city OAP.-S. S. Lewis (of Boston, Mass.), London, England. obmarine Telegraph Station.-R. F. Bradley, Moffettoville, s. c.
Trpa-Sbting Macbine, bto.-s. W. Green, New Yort city Vabisibing Metal Cabre.-F. A. Pratt et al., Hartoord, Conn. Ventilating Minks.-F. Murphy, Streator, Ill.
Wabing Machiniri.-C. W. Littlefeld, Boston, Mass. Wiri boor Prg Machinery -O. L. G. Noble et al., Chicago, ill

