(27) J. F. R. says: I am building an icebox suspended in a grate. There is an air chamber inches wide all round it. Is ventilation necessary ? A. A certain amount of ventilation is necessary. We would suggest an opening 3 inches in diameter upon oue side at the bottom, and a like opening upon the opposi te side at the top, these openings
should be covered with wire cloth. The should communicate with the interior and not with the 2'inch space
(28) D. P. W. asks: If a tuba mirabilis stop in an organ be weighted 18 inches water gage pressure of wind, what will be the relative pressure on
a steam gage? A. About 0.65 lb . per square inch.
29) A. C. C. asks: Does the friction increase with the diameter of the journal, the weight and the velocity remaining oonstant? A. Under these circumstances the friction would not var.
(30) J. E. D. asks : 1. Will quicksilver re move the lead from gun barrels? A. Yes, but the
black lead (carwon) and oll with which the bullets are covered, and the percentage of arsenic witb method unsuccessful 2. If so how can the lead be separated from the quicksilver so that the lat ter can be used again? A. Heat the alloy in a suitable iron retort, the beak of which, or its connection, must dip beneath the surface of a quan-
tity of water. The mercury will distil over and condense beneath the water, while the lead will re main behind.
(31) J. S. O. says: The generally accepted theory of intermittent springs is that a cavity in the earth has two water channels, one leading in-
to it, the other out, the former being the smaller, to it, the other out, the former being the smaller, of an intermittent spring. Let \mathbf{A} be the outlet, 2

inches in diameter, and B the inlet. If water flow in through this channel, it will rise to the level, C and instead of filling the channel, A, which is ne steady stream as long as water flows in at B. Ca any one give another theory to take the place of the long accepted but evidently incorrect one? A. In accounts of several intermittent springs which we have seen, it is stated that the water first issues with great velocity, and runs for some time with a continually decreasing velocity. It would not be difficult, therefore, to believe that the cavsupply being sometimes greater than the discharge and sometimes less. Perhaps some of our readers have devoted more attention to the subject than we have, and will send us their views.
(32) W. F.T. asks: 1 How high will an hy draulic ram raise water? A. In general, it should the ram works. 2. If I attempt to raise all the water that runs from my spring with an hydraulic
ram, what proportion of the water will the ram raise? A. It mas raise from $1 /$ to 1 the whole amount. 3. Can an hydraulic ram of any size be made to work, or is there a limit to the size a which it can be made to operate successfully ? A As a general thing, the size of a ram is approximately fixed by the conditions under which it has
to work. You will find the whole matter fully explained on p. 259, vol. 31.
(33) B. W. S. says: The head of a horse rake, being green when manufactured, has warped
in drying. How can I remedy the defect? A. in drying. How can I remedy the defect? A.
Possibly by steaming the wood, and securing it in the proper position, you may give it the origina shape
(34) M. W. H. asks : At what angle should a rifle be held to throw a ball to the greatest dis-
tance over level ground? A. A general value would bedifficult to ascertain. In practice, the angle will probably be between 30° and 40°.
Can a horse do more work walking at 30 or at 60 yards per minute, in both cases pulling his best for the space of one minute? A. He could probably do more, for a short time, at the greater speed. grooved and matched 2 inch oak plank, of 10 feet hight and 8 feet diameter, sustain, being bound with nine $1 / 4 \times 2$ inches iron hoops? A. Between 30 and 40 lbs. per square inch.
(35) R. H.-If, as we understand you, the thrashing machine runs with sufficient steadines at present, we do not see that any advantage
would be derived by using a heavier cylinder.
(36) C. W. C. asks: 1 . Is a screw steame of 1,000 horse power, faster or slowerthana sid wheeler of the same power? A. In still wate the screw would have no great advantage; but in periority over the side whel is very decided. a two-bladed seras more powerful than on with more blades, other things being equal? A Experiments seem to show that screws with two blades are not as efficient as those having three o four, other things being equal.
(37) I. J. H. asks: Can I cover steel-pointed poles with any preparation that will prevent their attracting lightning? I want to use those I have
to make a garden fence, but am half afraid to do to make a garden fence, but am half afraid to do so. A. Metals do not attractlightn
(38) F. A.S. asks: Can you inform me what lathe? A. A revolving emery wheel.
(39) F. N. W. asks: In connecting a tank in the top of a building with the standpipe from
the pump, will there be any difference in the pres sure on the pipe whether it be connected at the bottom or at the top of the tank? A. If the tank
is kept full, there will be no difference. This also is kept full, there will be no differen
answers S . F.'s plumbing question.
(40) S. C. says: I offer the following as an easy method of dividing circles. In a given circle (FIg. 1) divide the diameter, A B, into as many
equal parts as you wish the figure to have sides

ercet the perpendicular ; O F , divide the radius in to 4 equal parts, and set off 3 of these parts from Y to H ; draw lines from H to each division on
diameter, and produce them to cut the circumferdiameter, and produce them to cut the circumfer-
ence. Join any two of the points by a chord, and ence. Join any two of the points by a chord, and
it will be the side of required polygon. When the it will be the side of required polygon. When the polygon is io half the number and draw from
diameter in through each division. Join any two points where they cut the circumference, and the chord so drawn will be the side. To do the same (Fig. 2) when each side is to be a deflnite length : Divide

quotient from 150°, the remainder will be the um and B, one inch or whatever length you wish for side apart make the angles, O A B or O B A, each
equal to half the angle of the polygon; from 0 as equal to half the angle of the polygon; from O as in center, with O A or OB as radich place A B continually.
(41) M D. asks: Can you inform me what olors or combinations of ingredients I must use eather? A. Try the bisulphide of tin. Apply with a hot iron.
(42) W. C. asks: Will dry steam, taken from a generator, at 100 lbs. pressure, passing into water in a closed boiler, the blow-off valve being
set at 80 lbs., evaporate that water,orwill the steam from generator condense and increase the quantity in closed boiler? A. After the water is heated up to the temperature due to the pressure,
the steam would merely escape through the blow the steam
off valve.
(43) S. S. H. says: 1. I have a window, the the splay. Which is circular,and the inside casing is on the splay. Is there a rule by which I could cut
out a board to bend around it, and make the marks across it so that I can saw-kerf it? A. We presume you have reference to the splayed soffit of your jamb instead of the casing. Let A B be the width and splay of the jamb, and CD a line
drawn through the middle of the window, at right

angles to the direction of the wall. Prolong A to intersect C D at D. With D A for radius, draw BE. With $G H$ for radius, draw the semicircle, HCA. Make H I and A I each equal to $H A$, and from I, through A and through H, draw the lines, IJ and IK. Make A F equal to JK, and join
and D. Then AFEB will be the shape of the sof fit required. 2. What is a transom? Is it what is
called the fanlight over the door, or is it the rail called the fanlight over the door, or is it the r
across the head of the door? A. The latter.
(44) F. S. B. asks: Please give me a recipe
cr cleaning white rubber coats. A. Try rubbing the coat with a little benzine but do not allow to remain too long in contact with the rubber. You fail to sta
come stained.
(45) I. H. W., of Ouchy, Switzerland, says Why is it that many (perhaps all) liquids will per colate more rapidly through two than one thick ness of filtering paper? My theory is that, with one thickness, the paper, becoming saturated, a tion of air, whereas, when two thicknesses are used, a circulation is established between the pa pers themselves. Am I correct? A. Yes.
(46) C. F.M. asks: What is the strongest and best kind of alkali for bleaching oil? A. Use
a strong solution of caustic potassa or soda in water.
(47) M. asks: What is a good plan for compressing air on a small scale? A. Try a small air pump or bellows.
(48) W. B. W. asks: Whatacid will do to bite flgures, etc., in mica? A. Try a mixture of strong sulphuric and hydrofluoric acid.
(49) W. L. asks: In casting gun metal or what is the best coating or parting to put on the iron in order that the gun metal may form a smooth surface in close contact to the iron, without any blow holes? A. Use plumbago for a parting and dry the mold.
Minrralb, etc.-Specimens have been r eived from the following correspondents, an sxamined, with the results stated
F. W. R.-It is decomposed granite, and the shining scales are small pieces of weathered mica -r. A. B. Jr.-You are mistaken in supposing the mica, and the black portion of hornblende, which is a silicate of alumina, lime, etc, and some oxide of iron.-A. W. S.-No. 1 is silex, alumina, and a is earth containing scales of mica. No. 3 is sile and oxide of iron. No. 4 is silicate of alumina with oside of iron. The percentage is so small that they are not to be considered as iron ores.-
T. L.-No. 1 is graphite (black lead). No. 2 is mostly iron pyrites, but you should send a large piece and have it assayed.-G. C. R.-It is the American holly (alex opaca). The deep green fo-
ligeis less glossy than that of the European holly. -R. W. B.-It is Eprom salts, as you have stated The discovery is of the greatest interest and value.-B. M. R.-It is a small fragment of fossil, with clay and oxide of iron.-G. S. M.-It consists mesily of silex with silicates of lime, magnesia, and alumina. It is not of much value.

COMMUNICATJONS RECEIVED.

The Editor of the Scirntific AMRRICAN ac original papers and contributions upon the followlng subjecta:
On Footprints in the Carboniferous Sandstone By J. L.G.
On a Day's Work. By E. L
On Saving Life
On Saving Life. By M. P.
On Supply and Demand. By W. L.
On the Newfoundland Railway. By H. A.C. On Machinery and Labor. By W. P.
On Type-Setting Machines. By T. E. A
Also inquiries and answers from the following: J. P. B.-P. D.-A. H. L.-W. T. H.-R. L. D.- B. B.

- F. H. W.-D.N. S. - B. B. -W. A. :R.-W. S. T.-
W. E.F. - H.

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appea,
ahould repeat them. If not then published, they ahould repeat them. If not then published, they
may conclude that, for good reasons, the Editor may conclude that, for good reasons, the Editor
declines them. The address of the writer should declines them.
Enquiries relating to patents, or to the patentability of inventions, aesignments, etc., will not be published here. All such questions, when initials only are given, are thrown Into tne waste basket.
as it would fll half of our paper to print them all; as it would fll half of our paper to print them all; but we generally take pleasure in answering briefly
by mail, if the writer's address is given. by mail, if the writer's address is given.
Hundreds of inquiriesanalogous to the are sent: "Who makes toughened glass? Who sells machinery for manufacturing starch? Who sells incubators\% Who sells hydraulic rams? Who makes the machines used in the manufacture of friction matches?" All such personal inquiries are printea, as wisbe observedin the col-
umn of " Business and Personal," which is specially set apart for that purpose subject to the charge set apart for that purpose, subject wo the charge
mentioned at the head of that column. Almost a y desired linformation can in this way be ex1 editiously obtained.

[OFFICIAL.]

INDEX OF INVENTIONS Granted in the Week Ending March 28, 1876,
AND EACH BEARING THAT DATR.

A complete cops of any patent in the aunexed list cluding both the specila please state the number and date of the patent desired

Animal poke, H. Ames.............
Annanclator, elevator, J. R. Creight
Annunctator, pneumatic, D. Morris.
Anvill bed, A. Hitch cock
Apr n J. Malonzo......
Morris...
..............
.. 175,234
. 175,338
. 175,486

Armplt shteld, H. D.
Auger, w. H. C. Smith
Auger, earth.
Auger, earth, O. Rus
Bale tie, W. Carson
Bale tie, W. Carson....
Bale tie, J. Thayer....
Barrel washer, A. Zoller.........
Barres, drip pan for, D. M. Hagh
Bed bottom, smidt \& Hupfeld......
Bed bottom, smidt \& Hupfeld.......
Bed bottom, sping, s. P. Hamilto
Bed bottom, spring, Smidt \& Hupfe
Bed bottom, spring, Smidt \& Hupfel
Bee hive, A. McQueen........
Belt fastening, A. D. Power.
Belt gearing, C. Under wood.
Belting, J. Neum
Biting, J. Neumann.........
Begister, Llpman
Bc
Billard register, J. F. Miller.
Billiard table, H. Pottin........
BInder, temporary, B. J. Beck
Binder, temporary, B. J. Beck......
Boller Injector, steam, w. T. Messin Boller Injector, steam, W. T. Messinger.......
Bollers, furnace for steam, J. Q. C. Searle. Bolt blanks, machiue for sawing, G. B. H Book, scrap, B. J. Beck..
Boot and shoe, A. Burke..
Boot and shoe, R. S. Manning...............
Boot-burnishing machine, G. E. Burgess Boot-burnishigg machine, G. E. Burgess. .
Boot heell, finishing, , E. Ramlose......
Boot-nalling machine, McKay \& Fairfield (r) Boot heels, inishing, C. E. Ramlose..........
Boot-n alllng machine, McKay \& Falrfild (r)
Boot and shoe seam, C. F. Glanville....... Boot and shoe seam, C. F. Glanville.
Break water, J. G. Bruggeman....... Bronzing machine, F. J. Emmeric Buckle. reversible, Wallace. Furne
Buckle, harness, W. G. Bunker.... Buckle, harness, W. G. Bunk
Bung extractor, W. Heinle.. Burlal cases, etc., preserving, A. T. Can-flling apparatus, Merrill \& soule Canal boats, propelling, Dolch \& Haydn Canister, E. Norton
Car axle journal box, w. M. M. Watson
Car brake, Bennett Car brake, Bennett \& Gangwer
Car couphing, G. W. Burnett. Carcoupling, J. H. Lands. Car coupling, D. J. Martin...
Car coupling, R. D. Thomson
Car coupling B. W. Thurman Car pusher, C. A. R. L. Verininius
Cartruck and wheel, P. Banning. Carpet, C A. Read.................
Carpet stretcher, W. S. Hamiln ...
Carrage, child Carriage rug and pocket, combined, J. Milwain. Carriage top, E. Marsh
Carriage top, folding, C. W. Blackman
Carriages, ventlating, Carriages, ventilating, E. Marsh
Cartridge, metallic, J. Merwin... Cartrldge eshells, loading, , ©. W. Park
Catridge, shot, T. Wulkinoon Cartrige, shot, T. Wilkinson ... Chair,opera, w. Hyland.
Chair, tilting, A. s. Cushing..........
chill for mold boards, G. K. Smith.
Churn, W. H. Conver.
Churn, R. Evans.......
Clasp, Church and Eam
Clasp, Church and Eames...
Clocks, lizhting alarm, F. F1
Clothes pin, S. W. Derham.
Clothes pin, J. H. Marshall.
Clothes pounder, F. G. Clarke....
Clutch de vice. Wheeler and House
Clutch. friction, E. F. Williams
Coal hod, N. Hawins
Coal hod, N. Hawkins ...
Coffee pot, M. H. Curtis
Cooker, steam, F. J. Shinn.................
Cooler and stralner, milk, c. Weinels.
Cooler, Hquid, J. Downing.
Cooler, milk, J. B. Marquis
Cotton batting, folding, C. H. Prescott.
Cotton gin. O. W. Massey ..
Cows, stock for milk, J. Page
Cultivator, A. B. Reeves....
Cultivator, L. P. Thompson.
Curtain fixture, M.
Damper, G. Merrill.
Dental rubber dam puuch, Rix and Smith
Dlamond-cutting machine, H. D. Stover.
Dlamonds, etc., polishing, . H. D. Stover
Ditching machine, F. L. Delfer.
Ditching machine, F. L. Del
Drip pan for barrels, D. M. Haight.
Electric machine, T. W. Livingston.
Elevator bucket, o. W. Clark (r).
Elevator, hydraulic, Elevator, hydraulic, c. W. Baldwin (r)........
Engines, expansion joint for, H. M. Durphs Equaliizer, draft, c. C. Hewitt.
Equalzer, draft, A. Meharry...
Equalizer, draft,
Fan, K. Roblison
Fare register, H. Pottin
Feather renovator. A. Carbonow........
Fence, portable. Cuykendall and Kellogg
Filter, B. Schteffelln.
Fire arm, breech-loading, W. R. Pape
Fire arm, , revolving, E. T. S. Starr......
Forge, portable, J. Bayiss
Fork, carving, R. Richmond
Fork, potato, R. W. Trussel
Fork, weft, C. H. Warfield.
Frult crate, S. Hughes
Frult jar, J. Halnes..
Furnace for pulverulent fuel, M. Perret
Furnace for steam botlers, J. Q. C. Searle
Furnace heat regulator Furnace heat regulator, A. C. No
Furniture tip, Lloyd and Coogan
Game apparatus, C. Oberly.........
Gas, making, Weber, Herzo
Gas, making, Weber, Herzog, and schuessle
Gas generator, carbonic acid, H. W. Dopp
Gas generator, carbonic acid, H. W. D
Gas lighter, Faloon and Iseminger....
Gas lighter, Faloon and Iseminger...
Gas purffer and regulator, L. E. Flsh
Gas regulator, M. Toulmin....
Gate, automatic. W. A. Baker

Glass, rollingplate, Cassidy, Ford, and Sne
Grann scourer, brush, H. A. Barvard........ Grain scoure, brath,
Grater, nutmeg, s. w. Gear.
Hame tus
Hame, tug and buckle, G. W. Haslam.
Hammer, tack, w. C. Avery..........
Hammer, tack, w. C. Avery..............
Hammers, die for making, H. W. Kip.
Harness, J, Fischer......
Hariess pad, E. F Beck.
Hariester, A. Hart, J
Harvester
Harvester, cotton, W
A. Pedrlck

Harvester dropper, J. A. Coulter
Harvester rake, H. J. Silve
Harvester rake, E. Wilcox.
Heater and purt.
Harvester rake, E. Wilcox...................
Heater and purififer, water, J. L. Wiaston
Hook, mousing, N. E. Johnsen....
Hoop poles, splitting, G. B. Selden
Horse
Hoop poles, splitting, G. B. Selden...
Horse-hitching device, A. E. Francls
Horse power, W. Deering
Horseshoe, H. Gourdier...
Horseshoe, H. Gourde

