one of which is aptly termed the phantom lamp.
It is commonly a strong solution of phosphorus in ciive oil, half filling a small phial having a wid mouth for the admission of air when in use. A better plan is to have a piece of porous earthen-
ware (biscuit) fastened to the lower portion of the stopper and dipping.beneath the oil; and when it is desired to use the lamp, the stopper (cork) is re versed, when the whole surface will glow quite versed, when the whole surface will glow quit
strongly with the characteristic phantom light.
(27) C. A. J.-Send us youraddress; we will be happy
Institute.
(28) B. H. S. asks: Would it be dangerous or unhealthy to sleep in a new bedstead painted with Paris green and varnished over? A. If the wood has been well varnished, we think not; but advise you to employ some other variety of pigment, that does not contain arsenic.
(29) C. H. R. - We are not familiar with the particular gas machine you speak of. You should state concisely what the mode of operating the machine is, or send us illustrations or drawings of character, unless constructed and operated with the greatest care, are not safe
(30, J. McD. asks:1. What chemical change takes place in milk when it turns sour? A. When milk is allowed to stand for a short time it sours and curdles, that is, its casein changes from the
dissolved to the solid state. This is brought about by a series of interesting changes, originating in the unceasing activity of atmospheric oxygen ists com bined with soda, and this compound is soluble in water. When fresh milk is exposed to the air, its oxygen seizes upon a portion of its casein
and causes it to ferment; this takes effect upon and causes it to ferment; this takes effect upon
the milk sugar and converts it into lactic acid, which causes the sourness of the milk. 2. How When a sufficient quantity of lactic acid is formed, it seizes upon, the soda, takes it away from the casein, and forms lactate of soda. The casein
thus set free shrinks in bulk, and gathers into an insoluble curdy mass. This precipitated casein may be readily redissolved by the addition of a little soda; the milk, however, although, it may still
be palatable, will byno means recover its original fiavor, owin
milk sugar.
(31) R. E. D. asks: 1. Will a 6 horse engine do to run a clrcular saw or a good sized corn mill? A. An engine of the size you mention will
run a circular saw from 48 to 50 inches in diameter, or your corn mill. 2. How large a sawmill will it run, and how much lumber will it cut per day? A. If your saw is run at the regular speed,
say 9,000 feet per minute at the periphery, every $1 / 6$ inch feed to every revolution will cut on an average 1,000 feet of lumber per day; 34 inch feed will cut 2, coo feet: 6 inserted teeth in the saw will be plenty to saw this amount of good smoothlum-
(32) W. A. W. asts: Why, if you make the bottom of a cistern concave, will it present a greater resistance to the action of the water than
if it were fiat? Δ. In some J ocalities the water in the ground rises to within a few feet of the surface; and in such places, when a cistern is sunk to goto depth, the pressure from beneath on the
bottom is considerable. The sides, being built in arched form, can withstand this outside pressure very well, but the bottom, when flat, has no power of resistance except what is given to it by its
weight. When the cistern is filled with water the construction is firm enough, but when it becomes empty, as frequently happens, the upward pressmences which eventually destroys the work. If in a dry time, the water then lies lower in the ground, the cistern will leak and become useless. The answer referred to said "that, if the bottom
werebuilt concave, it would present a greater rewere built concave, it would present a greater resistance to the action of the water beneath." We
know of one instance, somewhat in point here, where it cost $\$ 1,000$, spent in experiments, to proure of water coming from a surated unde stratum.
(33) E. A. K. says: In villages it is possibe to arrange, for water supply, a tank of boiler iron to receive the rain water from the roofs; but it is difficult to obviate rust, which discolors the water. To procurean easily working and durable
faucet is also difficult. Can you help us to solve these difficulties? A. Cast iron tanks do not rust keep tight. If you use what are called compres-
sion faucets, you would not be subject to the other annoyances complained of.
(34) S. F. S. asks: Can you give me a re cipe for an ink that will be invisible when written,
but which can be brought out by heating? A. but which can be brought out by heating? A.
Use a dilute solution of chloride of cobalt in wa-
(35) W. C. asks: 1. Whenshould timber be cut to give best results against rotting? Is it too late now (March) to cut timber here, where
there are 2 feet of snow on the ground? A. Yes: it should be done before the sap begins to flow. 2. What is dry rot? In our mill the fioors are cors
stantly damp, our ceilings are (between the doors and ceiling) dripping wet from condensed steam that rises from the drying apparatus. One mill built six years ago is so rotten from foundation up that you can push your thumb into the timber.
A. The rotting in your case is notdry rot, but de A. The rotting in your case is not dry rot, but de-
cay of the wood from the constant absorption of water from the surface, and the consequent disentegration of the fibers. Dry rot manifests it. self in cases where the material is closely encased n iron, brick, cement, etc., so as to be entirely ex-
iluded from the preservative infiuences of the at-
mosphere, and is most frequently found at the neased in an ironshoe. A prominentinstance of
the latter occurred where the tie beams of the rincipal roof trusses of a church were discov ff at the ends, where they were encased in a very large airtight iron shoe. Theremedy in your case would seem to be to protect the wood from contact with the water, and at the same time to ive it free access to currents of air; thereshoula be sufficlent change of air to carry off all the moisture without depositing it upon the sur
counding surfaces of the room. 3. Would good ounding surfa hemlock or chestnut, buried in hy draulic cement concrete, be proof against decas of any and every kind? A. No.
(36) J. A. asks: How can I build a filter on udden rises of from 2 to 8 feet, times very muddy? A. Several attempts have
been made to flter large quantities of water from ivers without success; the filter beds weresoo material useless by ine great amount of filtered material deposited into them. The plan that ha
been adopted after the failure of the filter beds that of a reservoir with a central dividing wall One of the compartments thus formed is periodi cally filled, the water allowed to settle and then drawn off clear into the other, from which a con tant distribution is made. The authorities at
Poughkeepsie, N. Y., as also the Hudson River Hospital for the Cnsane, at the sam
(37) W.S. C. and others.-Wherever the waste water of a bouse can be conveyed away by
drain, it should be done, instead of letting it stand in a cesspool or suffering it to settle int theground. Thirty-six feet of filtering material sou mention, ought to purify the water as fa asit can be satisfactorily done uy mechanical and partially chemical means, but not wholly; a drai
(38) J. C. asks: Does galvanizing cast iro end to weaken the iron? A. We think not
(39) F. P. asks: 1. Will a shaft or a spindle of a machine that is run at 2,000 revolutions pe minute take more power than one run at 4,000 a
minute. A. No. 2. Is not the balance wheel of a engine merely to govern the motion of the crank shaft? A. Yes. 3. Will a circular saw spriogmore rom not having any set, or will it spring mone
from heating of the saw mandrel? A. From not having any set. 4. Is it a good plan to givea saw set enough, so that it does nut bind on its sides A. Yes 5. Is an engine which runs at 150 , or one wich runsat 200, revolutions a minute more ece nomical A. Quick piston speeds are the most eco (40) S. F. B asks: What are the compara ive lasting qualities of upright tubular boiler a. So fare of locomotive or horizontal tubulars A. So far as we know, there is not a gr
difference, if the boilers are well built.
(41) A. W. S. says: I have seen several references to cutting copper and other soft metal by means of a disk of iron running at high speed
We bave to cut up a great deal of $21 / 2$ inch No. gage seamless copper tubing into short lengths: and usiig a fine saw, we have considerable trouble with its runnic. g. Can we cutit in the former way
A. Yes Use disk running about $2 \overline{5}, 000$ feet pe minute. of about 10 inches diameter, made of best arcoal iron.
(42), W. F. R. asks: What is meant by the xis of a magnet? A. The straight line joinicg th (43) A. J. says: 1. I have a 12×20 inches engine which will run two planers, rip saw, an ing under a boiler 42 inches $x 18$ feet with nch flues. The engine runs at 125 revolutions per minute. Would it not be better to speed the engine down? A. Yes, if the engine would still be powerful enough for this duty. 2. How should th valve be set to use steam most economically? A. fourths of the stroke. 3. What would be the proper shape of the furnace? We have a good draft. A. We cannot say, unless we know the decription of your boiler.
(44) L. B. C. \& S.-There is probably somevalves, as the ram arrangement of your pipes or given circumstances. We think the wheel you speak of will give plenty of power. It would b
better to have a valvein the delivery pipe.
(45) F. W. B.asks: What are the objections to the use of clockwork as a motor, to run a
churn? A. The principal objection is the labor rechurn? A. The principal objection is the labor re-
quired to wind the spring. There are numerquired to wind the spring. There are numerby corresponding with their manufacturers yo It has occurred to us that spring motors, suit able for household operations might be de-
vised, to be wound up by a steam engine at some central be wound up by a steam engine at so
(46) T. H. asks: How is the water got to the working barrel of a pump? Is it by suction, or atmospheric pressure? A. By atmospheric pres
sure. See artiele on "Suction"" p. $3 \mathfrak{5} 2$, vol. 31 .
(47) W. D. M. asks: The grist mill in this place is driven by a 10×16 inctes horizontal enof cylinder into a $3 \% / 8$ inch tio pipe which runs hor izontally for about 8 feet, then turns up $23 /$ feet,
and enters the heater. They are troubled by the tin pipe collapsing. This always has happened when starting the engine. What is the cause? A. The steam condenses in the pipe, so that a vacuum part of the pipe near the place where it collapses

starting the engine.

(48) W. A. says: I am making some experi sene in a machine in which 1 wish to light ker not some cheap magnetic machine by which I can complish it? A. Yes. Two or three cells o unsen battery will heat a short length of No. 3 uit is not too great.
(49) J. H. S. asks: What is the best meth pe battewing a carbon plate used in an electro er. If it is A . Soak the carbon in warm wa hromate battery pou will find it slightly advaz ageous to place it for a short time innitric acid. tic acid in makere proportion of zinc to mur inc until the acid is nearly exhausted.
(50) J. L. asks: 1. Must steel be tempered before being magnetized? A. Yes. 2. At what
heat does steel lose its magnetism? A. At a red
(51)
(51) J.H. says: 1. What is meant by the brass rim of the lens, which the pieces of looking glass are fitted into,in your description of a home-
made microscope of October 30,1875 ? A. Magni ying glassesare usually mounted in a brass or ard rubberring. We presume suchis the rim re ferred to. 2. Where can 1 procure the lenses re-
quired? A. At any optician's. 3. Would the same ized stand do for a microscope to magnify 1,600 to 1,500 times? A. Yes.
(52) H. S. T. says (52) H. S. T. says: In regard to propellere
used a two-bladed, one of the ordinary kind, for two seasons, and the vibration was very unpleas-
nt ; but for the last two summers I have used modification of Dr, Collis Browne's (illustrated in be SCIENTIFIC A MERICAN some time ago); with that, the speed was increased about one third and
all vibration ceased, ard she glides along with al the smoothness of a sail boat. I make my pro pellers with cast iron hubs, into which I screw wrought iron arms and rivet on sheet iron blades,
(53) R. W. R. says, in answer to W. H.'s query as to the tension of a codton rope : Midway pulleys, elevated 20 feet, over which the rope runs, traight line on each side of the idters keeps up the tension when the rope stretches.
(54) H. S. T. says, in answer to many corespondents: I will give you my experience with carriage; it is 15 inches in diameter and 30 inche high. The firebox is 14 inches in diameter and 1 inches high, with 207 copper tubes $1 / 2$ inch in diam-
eter and 10 inches long. Plates are only $\frac{1}{1}$ inch eter and 10 inches long. Plates are only $\frac{1}{16}$ inch
thick, of the best steel. Total weight, including thick, of the best steel. Total weight, includin ders of $3 \% /$ inches bore by 10 inches stroke, and ran the carriage (weighing 550 lbs ., complete) on a smooth road a mile in 4 minutes, with one perso and fuel and water. I have the boiler now in a boat, 21 feet long and 5 feet wide; it drives two
cylinders of $23 / 4$ inches bore and 5 inches stroke Propeller is 22 inchesin diameter. It makes plenty of steam, and, with good dry wood, I have the
fur, ace door open much of the time to keep down the steam. I usually run at 60 lbs ., and at that with about a bushel of wood.
(55) L. L. L. says, in answer to E. P.' clearly, use the finest quality of powder and size use as little size as possible, and distribute it well roll it thoroughly on the type, use only two sheet of smooth paper on the platen (frr blanket), place ive or six thicknesses of soft paper beneath the orm, pull a light and quick impression, apply th camel's hair pencil.
(56) C. R. L. says, in reply to T. C. M.,wh f copper solution, after being allowed to stand for a few weeks, has deposited a hard, greenis coat, which prevents the working of the batier of which it forms a part, and asks how it can b emoved: This is by no means unusual where
the copper salt is very impure or contains a con iderable excess of sulphuric, nitric, or aceti acids. When a piece of sbeet copper is placed in with the salt, and containing a free acid in excess, a thick scum of eopper salts soon forms on the surface of the copper, which, if allowed to remain or accumulate long enough, not only very materi ally weakens the current (in case the copper plat is a negative element in a battery) but offers oo that the addition of strong nitric acid is with out action, or nearly so, upon it.
(57) J. . V. says, in reply to W. A. F. Who asks for a plan for straightening wire: Fiz and the third one above and between the other Thislast one can be moved up and down by screws, The lower ones should turn freely on tbeir cen-
ters, but have no other motion. Grooves of difters, but have no other motion. Grooves of dif
ferent sizes are cut on the rollers, and the wire erent sizes are cut on the rollers, and the wire is
passed between the rollers in the groove nearest the exact size of the wire
(58) L. S. W. says, in reply to J. C. W. whoasks how large a cube can be cutout of a ball
12 inches in diameter: The largest cube has for one of its sides the side of a square inscribed in
one of the large circles of the ball. If x is this nonnown side, $x=R V_{2=6} V_{2}$,that is $x=8 \cdot 485281$ inch e3. The volume of this cube is $610 \cdot 4026$ cubic inches. (59) J. H. asks. What cement is the best (59) J. H. asks: What cement is the best ness the longest, without losing its firmness? A.
Portland cement.

Minerrals, btc.-Specimens have been received from the following correspondents, and exsmined, with the results stated:
G. G.-I' is iron pyrites.-W. H. S. -It is lignite containing iron pyrites.-A. J.-One is quartz, and No. 1. The shiniig particles are scales of mica No. 2 is crystallized carbonate of lime. No. 3 is quariz. No. 4 is impure limestone. No. 5 is gneis rock-C. M. D.-It consiets e.-I. R.-It is a variety of brown It is of no particular value.-J. L. I.-They al mall amount of oxideof iron. They are not iron

J. J. W. asks: How are glass marbles of ifferent colors made?-J. I. asks: How can I pre

COMMUNICATJONS RECEIVED.

The Editor of the SCIENTiFIC AMERICAN ac mowledges, with much pleasure, the receipt of
riginal papers and contributions upon the follow ng subjecta :
On a Raft in a Stream. By R. K. B.
On a Scroll Saw. By C.
On a Seroll Saw. By C. A
On Barbecues. By C. S.
On lncubation. By G. N.
On Man in Limestone. By
On Small Engines. By J. S.
On Sailing Fasterthan the Wind. By J. G On Italy. By C. E.
Also inquiries and answers from the following:

HINTS TO CORRESPONDENTS
Correspondents whose inquiries fail to appear
hould repeat them. If not then published, the may conclude that, for good reasons, the Edito eclines them. The address of the writer should ways be given.
Enquiries relating to patents, or to the patenta bility of inventions, assignments, etc., will not be
published here. All such questions, wheninitial only are given, are thrown into tne waste basket as it would flll balf of our paper to print them all but we generallytake pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following re sent: "Who makes elevators, worked by hy raulic power? Who sells waterproof matehes?
Who sells eracker-making machinery? Who makes chilled iron or cast steel balls, turned up to a perfectly spherical shape?" All such personal min of "Busincss and Personal," which is speciall eet apart for that purpose, subject to the charg mentioned at the head of that column. Almost
any desired information can in this way be exany desired information

[OFFICIAL.]

INDEX OF INVENTIONS
Letters Patent of the United States were March 21. 1876,
AND EACH BEARING THAT DATE. A complete copy of any patent in the aanexed list
ncluding both the speciflcation and draw'ings, will be
curnished from this office for one dollar. In ordering lease state the number and dateof the patent desired,
ndremit to Munn \& Co., 37 Park Row, New York city

Alarm, burglar, P. Abrell.
Auger, earth, J. Campbell.
Babing powder, C. Arnois.............
Ball and socket foint. A. P. Welber
Barrel. H. C. Sheffeld.

Bedstead, cot, G. L. Unverzagt....
Bedstead fastening, J. W. Strong.
Bedstead, sofa, D. Lovett...............
Bee hive, o. Colvin....
Birc cage, A. B. Hendryx
it brace, Ives \& Rutz
Bitbrace, F. P. Pfleghan
Bind slatt, tenoning, w. H. Doane.
Boat-detaching
Boat-detaching hook, R. \& A. McMaug
Bobbin. I. Cundey
Boller. wash, D. D. Hooper........
Boller, water tube steam, W. R. Parks.
Bolting safe doors, , C. o. Yale.........
Boot counters, skiving, 0 . Littlefleld..
Boot jack, J. Green. .

Bridge, J. J. Reicheris....
Brdgee, flying, D. M Pfaut
Broom stay, J. H.
Broom stas, J. H. Ande
Bucket ear. F. L. Roy...
Bural case, Cise \& Rich
Burr dresser. J. D.
Burr dresser. J. D.vis .
Button, N. C. Newell.
Button polishlng machine
Can echield, G. W. Banker
Cap pad. S. A Taylor.....
Cap pad. S. A Taylor...
Carbrake, Waitt\& Garr
Carbrake ehoe. I. H Cong
Car dumplng, G. A Gregg,
Car, dumping, I. B. Howe
Car, mamp, J. W. Groà...
Car mararter, J. M. Mayhe
Car starter, J. Putnam...........
Car truck, one rail, A. G. Buzb.
Car signal. electric. D. Rousse
Cars, ventilating, E. E. Hargra
Carrige, child's, F. Traub..
Chain link, ornamental, V. Dra
Carriage, child's, F. Traub.....
Chain link, ornamental, v. Drape
Chair bottom, w. E Pruyn

Chair desk attachment, C. B. Sheldon........... 175,176	Nut lock, Millerand Davis....................... 17,13
Chimney, freproof, Bolton et al................ 174,939	Oil squeezer, H. Olsen... 174,971
Cburn, Br	Oll
Cburn, J. C. Daman.......................... 175.043	
Churn, rotary. H. E.	
Cigar case, C. F. Ru	Ore from refuse, separating, o. D. Woodruf
Clock cas	
Clothes sprinkier, A .	
Coal screen, W,	
Coffee pots	
Conee steeper, E	
Cooking utensil.	
Cooler, milk,	
cooler or warmer, milk, D. D. Whitaker 17,	
set spring, C. A	
	Pen, fountain, D. Mack
Cultivator, S. Walton	
tivator	
combs,	
	er,
Cylinders, forming welded,	
	Pla
Dental articulator,	
Dental mallet, ele	Plu
Dental rubber dam	Postage and
Directory and deak	Press, cott
Door check, S.	
Drier, Lee	
Drill, rock,	
Drills, making twist, E. S. Taber 175.201	
E	
Engine valves, E.	Pun
Envelope, H. E.	
En	
Feather renovator, L. W. Manning................... 175,126	
Feed water regulator, J . s Tresize et al........... 17,9 ,s6	Ra
Felly expander, J. K	1am, hydraulic, W. W.
e, L. Parker 174,	Rattan m
e, iron, T. Robinson........................... 175.18	Reaper expansion reel,
e, portable, D. S. Harner.................. ... 175,083	Refrigerator,J. O. Beck
for drugs.etc., C. E. Gates................... 175,066	Refrigera tor, C. B. Pag
arm, revolving, T. J. Sloan........ 175,180	Resinous gums, cutting,
	Ring,
Flshing rod reel, Winans and whistier.............. 175,277	Roan rammer, steam, s . John
Swers, making stamens for A. A. Giraudat....... 175,069	
wers, dipping stamens for, A. Giraudat....... 175,070	Sand, raising and screening, H. Schultz...... ... 174,981
ting machine, H. Albrecht........ 144,999	Sash fastener, T. K
175,010\|	Sash holder, J. A. Ada
ot powers, treadle for	Saw jig,
ace. M. G. Fagan 175,059	Sawmill head block,
rnace, gas, H. Coll.	Sawing machine, Frank and Spire 175,950
ace, gas, W. S. Gil	Saw
ace, gas, W. L. McNair........ 175,131	Scaffold, painter's, w. Hoehn 175,095
ard, F. Homrighausen............ 174,958	Scr
174,992	Screw-cutting machine,
fying pump, J. Boyle.................... 175,020	Scrubber,J. Deasey.... 175,048
Injecting apparatus. Van Kannel et al 175,213	Seeder
illuminating, J. C. Tiffany 175,206	Separator, grain, H. H. Veli
Glass melting pot, A.Harcum........................ 175,081	Sew
Glassware, pressed, B. Bakewell, Jr........ 175,006	
tretcher, C. C. Wilso	Sewing machine fringer, G. Frame...... 175,064
in,	
Grain drill, H. Garrett 175,065	
rain drill, G. M. L. McMillen................. 174,967	
Crass leveler, R. . Newton........... 175,141	Sintt
5	$\mid \mathrm{sh}$
Harness trace, Sla wson and Triphagen 175,179	Shu
	owne
	Squa
Harvesters, dvider for, S. D. Locke14.964	Sta
bodt	
Hay loader, Wilson and Bartlett.................. 175,226	
leater, feed water, J. C. Stead...................... 175, 193	
oops, shavingroand, G. B. Selden............... 175,174	St
	So
Ho	
se sweat pad, etc., E. R. Jone	
Horse power, D. Cushing	
	Tab
	Tab
Horseshoe blank, C. H. Perking................. 174,	Tag
s9 coupling, A. J. Tyler.	Telegraph apparatus, electric, ${ }^{\text {a }}$. \& J. M. Smith 175,183
Hose coupling, Work and Gil	
Hubs and fellies, boring, L. Willams.... 174,9	Thil
Hulling machine, G. H. Peabody....... 15, 15,	Thill coupling, Lee \& Ostrander................... 175,115
Ind, Indelible, D. M. M.	
bars, polishing, B. Lauth (r).... 7,004	Ticket case, S. Simons.......................... 174,982
, making, B. Lauth (r) 7,003	Tobacco machine, plug, т. F. Morrin........... 175,136
dder, step, , 8. C. Bla uvelt..................... 175,0	
mp, S. S. Newton	Toy
np collar, G. W. Brown. 175,	Toy money bank,
mp extinguisher, F. H. Furn	Trace joint, elastic
mp extinguishe	Track clearer, Phipps and Quinn
mp-Alling cabinet, T. L. Hariow.. 174,9	Trap, animal, Thrapp \& Hindman
	${ }_{\text {Trap, }}^{\text {Trung, }}$ Tr.L. Pl Pl
Lathe forturning rolls, T. S. P. Poole.................. 175,	Trunk, c. L .
er pow	Trunk, stay, F. E. S. Crane..
, tim	Truss, E. A. Campbell.
ks. winding, chronometric, E. Stock well..... 17,	${ }^{\text {Truse }}$
ket, Woglom and	
m shuttle, M. s .	Type distributers, C . \mathbf{w}.
ricator, H	Type-distributing machi
netic machine, J. Kidder.......... $\%$...... 175,1	Type.distributing mac
ch safe, W. Dawson.............................. 175,01	
al, s. M. Anth	
Meat, preserving, A. Bertch......	
Mechanical movement, W. . . .cComble..........15, 175,	Umberella. U. G. St
er, water, J. J. Burrows..................... 174,943	
Mop wringer, H. D. Cooker................... 175,011	
r,	Vegetable silcer, A. C. . slocum................. 175,181

On each Trade mark.
On filng each application for a Patent (17......................
On sears)
On appeal to Examiners-1n-Chief..........
On appeal to Commissioner of Pateats...
On application for Relssue
On filing a Disclaimer....................

 Engravingsmay head advertisements at thesame rate
per line, Jy measurement, as the letter press. Adverearly as Friday morning to abpear in next iss

SCROIT SAWS
5.5760 Agents' Profits per Week

$\mathrm{H}^{\mathrm{OUSEHOLD}} \mathrm{Hopking}$ A Paper contanining directions for the

CMENT DRAIN PIPE MACHINERY $=$ Tnmix
and press by bower. This the time to begin
J. w. STOCE WELEi \& Cu. Portlana, Me
It Pays to Alveritise.
profit of so doing. But it is not all who advertise that
 ell or wishes to purchase, in papers having the larges
irculation among the class of persons likely to be interested in the article. Parties having Manufacturing
Establishments to sell or lease, or who wish Estimates made for Constructing Bridges, Dams, Iron Bulldings,
uriaces, Heattng Apparatus. Steam Engines, Bollers Wood and Iron Working Machinery, Agricultural Iminds, will find that
IFIC AMERICA
The value of the SCIENTIFIC AMERICAN as an ad-
Shertising medium cannot be over- estimated. It goe hto all the machine and workshops in the country, and Whited States and Europe.
We Invite the attention of those who wish to make heir business known, to the annexed rates Back Page................ $\$ 1.00$ a line.
Inside Page.......... $\left.\left.\begin{array}{r}.5 \\ \text { Business and line. Personal.. } \\ 1.00 \text { a line. }\end{array}\right\} \begin{array}{c}\text { EACH } \\ \text { InSERTION }\end{array}\right]$ Engravings may head advertisements at the samerate
per line, by measurement, as the letter-press. Adverper line, by measurement, as the letter-press.
tisements must be received at the publication o
early as Friday morning to appear in next issue. If anything is wanted in the mechanical It it in the SCIENTIFIC AMERICA
If one has a patent or macbinery

The Supplement. Next to the sCIE TTIFIC AMERICAN, the BCIEN PLEMENT is a distinct publication from the SCIEN TIFIC AMERICAN, and has a large circulation other
than among the subscribers of the regular edition. than among the subscribers of the regular edition.
Terms for advertising are very low, as follows: Back Page, tinted Cover....35c.a line.\} $\underset{\text { Each }}{\text { Enside Page.................25. a line. }}$ Discount for large space, and to quarterly advertiser

Munn $\sin _{\text {Park }}$ \& Cow, Now
87 Park How, New York.
 Tratixawnatim S250 2 ? Cuxymext=

A MAN FAMILIAR WITH PATTERN MAK-

Brass Goods.
Ebvewduab
$\pm \pm= \pm$

5waw 32 Shat Ifpulivsimperis

 WILLIAM SELLERS \& CO.,and 79 Liberty St., New York

OPIOM $=$ =
Patent Door Knob.

This work is just fresh from the press, and al flled; and the publishers are now ready to receive ew ones.
The Scies
The Science Record for this year-the fifth of its publication-contains 600 octavo pages and a coveries, novel inventions, etc.
overies, novel inventions, etc.
THE Volume for 1876 embracesthe most Interesting
acts and Discoveries in the various Arts and Sciences
 CHEMISTRY AND METALLURGY,
MECGANICS AND ENGANEERNG,
 eresting and Valuable Boor, and ehould have a plac in
verv Household and Librart.
Hrice diomenel Boond discount to the trade.
rither. Sent, post-paid, on recelpt ot price. All the preceding volumes of Science Record may be had separately at $\$ 2.50$ each, or $\$ 10$ for the volumes comprise a library of information which every student or man of science should preserve.

