\%ustimss axd sertsoual.

The Charge for Insertion umter this headis is one Dol lar a Line. If the Notitese exceal Four Lines, one

Apricultural Implements andindustrial Machin-

Baxter Wrenches fit peculiar Cornersw where no
other wrench answers.
Greene, Tweed $\&$ Co., 18 Park

 Addres, with full part,
Box Z zs, Burlington, V .
 Meterand Yard Comparing Rods, Meter Sticks,
and Meeter scales of every deseriptoton, at reunfel d Tsere
 ditct, East Randolph. N. Y.

 American A Ageney in London will push sales of

J. W. T. T, Sulas ananah, Gatomatic Table Fly Brush ?

Surylar Alarm, Door and Windoor Fastening | Seath by mall on |
| :--- |
| Undalee. Mase |

"Abbe" Boit Forging Machines and "Palmer" werth reanced prices. s. c. Forsatth \& Coo, Manches. Engineers, Read about Allen Governor, on our
ast pase. send to Mr. Alen tor ctrcular.
 Fille-cutting Machines. c. Vogel, Fort Lee, N.J.
 Inalaying and Fret Sawing in Wood, Shell, Metal

 New Yorl

 Compans. 37 and 88 Park Row. New York
Steel Castings, from one lib. to five thousand bbs.
nvaluable
where 8 graat strengti and durablity are re

American Metaline Co., 61 Warren St., N.Y. City For Solid Emery Wheels and Machinery, send to
he Union Stone Co., Boston, Mass., for circular.

 Diamond Tools-J. Diokinson, 64 Nassau St., N.Y Temples and Oilcans. Draper, Hopedale, Mass. Peck's Patent Drop Press. Still the best in use.
Address Milo Peck, New Haven, Conn.

C. M. will find a recipe for filling for woo on p. 315, vol. 30.-J. E. M. will find a recipe for
chicken cholera medicine on p. 395, vol. 30 .-A. G chicken cholera medicine on p. 395, vol. 30.-A. G
will find a good recipe for mucilage on p. 196, vol .-H C S can bronze castings by the cribed on p.11, vol. 34.-A. B. R.'s discovery of a lectric phenomenon is similar to A. S. G.'s, ex
plained on p. 186, vol. 34.-W. L. D. will flad direc tions for repairing the silvering of his mirror on . 267 , vol. 31.-R. S. can coat cellular substance with silver by the process described on p. 203, vol economically. See p. 10, vol. 34.-J. C. C. will fin
en n p. 203, vol. 34, particulars as to molding wax fo electrotyper's use.-T. E. L. will find direction
for stainiug wood inimitation of mahogany on p 170, vol.34.-C. W. K. will find a full deseription o Dr. Crookes' torsion balance on p. 149, vol. 34.-E B. and others will find full directions for making
n æolian harp on p. 315, vol. 33.-A. A. H. will Bn wolian harp on p. 315, vol. 33.-A. A. H. wil
find directions for making a battery for medical purposes on p. 196, vol. 27.-T. H. H. can utilize mica scraps by the method described on p. 42, vol
5.-W. F. S. will find a description of an incuba tor in a forthcoming number.-J. L. R. Jr., will Ind on $p .42$, vol. 26, directions for fastening leath er covers to iron pulleys.-W. W. N. Will find on
p. 202, vol. 30 , directiosss for painting tin roofs.-R. a 20', vol. 30, directiobs
J. O'C. can fasten rubber covers to wooden spindles vith good glue.-O. B. F. will find directions fo amalgamating zines for batteries on p. 27, vol. 30.-
J. M . will find that timber will bend more easily eptfor some time in boiling water.-J. T. S. wi nd a description of malleable cast iron on p. 13 cial stone on p.113, vol 24.-J. p will find dire icial stone on p. 113, vol. 24.-J. P. will find direc 34.-E. C. B. will find a practical recipe for tinnin on castings on p. 362, vol. 31.-R. C. M. will fln directions for soldering gold on p. 251, vol. 28.-T
P. F. willfind formulasfor calculating thestrength P. F. willfind formulasfor calculating thestrength
of boilers on p. 186, vol. 32.-W. T. D. will find diof boilers on p. 186, vol. 32.-W. T. D. will find di
rections for bluing steel onp. 123, vol. 31.-J. E.M rections for bluing steel onp. 123, vol. 31.-J. E.M
will find directions for preserving natural flow wirs on p. 204, vol. 28.-J. J. will find directions fo putting a white enameled surface on iron vesse melting rubber on p. 119, vol. 28.-J. W. B. wil find directionsfor browning gun barrels on p. 11,
vol. $32 .-$ H. C. S. will find directions for electrosilvering on p. 362, vol. 31.-E.D. will find a de ription of the sand blast process, which is pat nted, on p.195, vol. 27.-L. L. F. will find a de
cription of the gyroscope, on which the toy which he describes is founded, on p .91, vol. 31.-C R. will find directions for utilizingleather shaving on p. 105, vol. 25.-A. P. will find directions for var
nishing violins on p. 281, vol. 26.-A. L. S. can run solder into thin bars by the method described o
p. 282, vol. 31. -W. C. W. will find a description testing lubricating oils on p. 360 , vol 33.-J. w will flnd directions for lighting gas by electricit will find directions for highing tove polish on p. 169, vol. 33.-F. G. P. will find an explanation of the theory of color on p. 180, vol.
33.-A. B. can blacken the inside of brass tele cope tubes by the method described on p. 362,vol 25.-J. O. will find on p. 27, vol. 34, directions fo find directions for making battery carbons on p 187, vol. 32.-T. H. R. can ascertain the amount o moisture in the air by using a hygrometer. See p.
09, vol. $32 .-W$. S. can season his wooden hubs by the process described on p. 58, vol. 32.-G. W. S,
will find a recipe for cement for rubber on p. 119 will find a recipe for cement for rubber on p. 119 ,
vol. 28.-H. E. J. must use Indian and Chinese ink or Patent Office drawings.-W. W. will find, on and the shrinkage of gases when cooled, are disor stencil ink on p.273, vol. 28.-C. H. C. will find irections for calculating the speed of pulleys, tc., on pp.26, 73, vol. 25.-G. B. F., C. E. C.,K. Q.X.,
nd J. A. have sent correct answers to W. C. S.' problem published on p. 107, answers to W . C. S. The replies (1) G. D. T. asks: 1. What is the actual horse power of a steam engine $10 x 14$ inches, run ning at 215 revolutions per minute, with a boiler
pressure of 60 lbs., cutting off at 1 ? A. A test pressure of 60 lbs., cutting off at $\frac{1}{8}$? A. A test
would be necessary before this question could be would be necessary before this question could a
answered. 2. Can the exhaust steam pipe on a ngine be turned into the smoke stack without in that it discharges upward, in the middle of the smoke stack.
(2) F. E. H. says: Please give me a recipe ones are simply sulpho-cyanide of mercury mad up by means of gum waterinto the form of cones, pills, or cylinders. They are still made and sold,
on a small scale, in this city. We are not aware of ny law specifleally referring to them. Severa ubstitutes for the dangerous mercury preparaduce are not so life-like nor so big. The follow ing is said to be the best imitation: Take white sugar 3 parts, bichromate of potash 2 parts, salt-
peter 1 part. Pulverize separately and mix inti mately; flnally press the mixture into small pape
(3) E. L. S. asks: What diameter and pitch of propeller would you advise for a boat 58 fee
ong, $71 / 3$ feet beam, with $31 / 2$ feet draft of water ong, $71 / 2$ feet beam, with $31 / 2$ feet draft of water,
ngines having 6×8 inches cylinders? A. Diam ngines having 6×8 inches cyli
(4) R. S. B. asks: I have some liquid which is neither good old hard cider, for it has a vinou taste, nor yet is it good vinegar. How can I con pare a large barrel, with a false bottom h. Pr pare a large barrel, with a false bottom having
number of holes bored through it. Place this in
the barrel aboutsix inches above the real bottom, nd fill in above the false bottom to the top of the barrel with good, well burnt charcoal, in coarse
powder. Moisten the charcoal thoroughly with ome of the cider, cover the barrel with a piece of felt or woolen goods, and allow to remain un then add the cider in such a manner as to keep up con gar may be drawn off from a spigot at the bot
(5) R. J. C. asks: How much power is there an overshot wheel propelled by a spout of wate 2 inches wide by 3 inches deep? A. A good over ater
(6) F. O. says: P. is testing a boiler with water from a pipe showing a pressure of 60 lbs age is half way from top of boiler: now, if th pressure be added from the pipe, should the gag on the boiler show 60 or 65 lbs. ? I claim the cause of the 5 lbs. pressure is due to the weight of wate
above the gage, and must be added to the 60 lbs., and make the gage say 65 . P. sags the 6 lbs . ha and make the gage say 65 . P. says the 6 lbs. ha
nothing to do with it; the pressure must be 60 lbs Who is right? A. If the pipe enters the boiler a he lowest point, according to the data furnished he pressure at the highest point of the boiler
ould be 60 lbs ., and the gage would show a press ure of 65 lbs .
(7) C. G. N. asks: How large a boat will horse power engine propel, with side wheels? A Make her from 20 to 25 feet long. Good frictio side wheels give vory satisfactory results in side wheels
smooth water.
(8) R. B. H. L. asks: 1. What kind of canon is used for chain shot? A. Chain shot hav we believe that occasionally a peculiar form of un has been employed, consisting of two barrels, lightly diverging at the muzzles and having common vent. 2. How many kinds of cannon
have ever been used? A. Cannons are generally bored as muzal 3 . If a cannon 1 inchooth 0 feet from a target, be loaded with 100 No. hot, to what width would the shot spread? A. It impossible to give a definite answer to this ques ion, since, as you must be aware, the differenc spect, is very marked.
(9) T D and oth
(9) T. D. and others.-There is no work o anly to saw makers, and attainable only by lon practice and a thorough knowledge of the princi ple upon which saw plates are worked in order to impart that strain upon different parts so as to
overcome the expansion by centrifugal force aused by the velocity of the saws in use.-J. , of Pa .
(10) D. W. W. asks: 1. Is it possible for boiler tubes to get heated to the point of produc
ng a spheroidal state when the proper supply of ng a spheroidal state when the proper supply of
water is kept up in the boiler? A. Experiment eem to show that, in order that water may as ume the spheroidal state, a small quantity must be dropped upon a plate which is heated to a higher temperature than the boiling point of the water. 2. What is the lowest temperature a
which the spheroidal state can exist in the case of which the spheroidal state can exist in the case of on and water, and required is about 290° Fah. In a boiler properl designed, the temperature necessary for the pheroidal state could not be produced, if the or inary water level was maintained. We have, irculation was so poor that tubes were burne
(11) W. C. B. asks : 1. Is it practicable to ump water through a pipe 150 feet long, it being veep? Yes. 2. Is it better to have the pipe high r at the well than the pump? A. Lay the pipe a traight as possible, with the highest point at the pump. 3. Should there be a check valve at the
well? Yes. Put it at the bottom. 4. What sized pipe should we use? A. A 2 inch pipe
(12) S. H. S. asks: What is the matter with ur stove? When the damper was closed, th raft went around under the bottom of the stove thing else will condense into liquid and run hrough the chimney, through the upper floors and into the room below. A. This may be owing o some peculiar kind of fuel you are burning, which you do not specify. When the draft i losed the flue soon becomes cold, and the air car ying the smoke precipitates its latent moistur
upon the sides of the flue; the moisture naturall carries the particles of unburnt fuel with it. I difficulty
(13) M. B. says: I have a boat 50 feet long and 10 feet wide. The engine is 8×9 inches. What size and pitch of wheel should I use? A. You can
use a wheel $31 / 2$ feet in diameter, with 5 feet pitch. In general a wheel that is properly proportione or speed is likewise suitable for towing
(14) J. J. says: It is claimed that the outcenter, gains only so much as he gains in the firs ound and no more, astheinside horse foinows al horse gains each round plowed, and will the outsid round so long as they continue plowing in a circle and that each and every day the outside horse has
traveled the farthest. Which is right ? A. This is a very pretty question, of little or no practica mportance; and we therefore forego the satisfac petition of those who may be interestedin findin
(15) M. J. asks: What is the method of ists in eage a small quantity of the dry powd with water, and immediately immersing it in wa er. If the sharper edges crack or break away
fter a short time, the cement is too hot or fresh or is inferior in quality.
(16) J. H. D. asks: What weight can an verage horse raise, if hitched to a rope, the rope
o pass over a pulley, and the weight attached be to pass over a pulley, and the weight attached be-
low? A. The following table, given by Mr. Trautine, furnishes a fair statement of average re
ults, the speed of horse being miles per hour and the traction in lbs.

Speed.	Traction.	Speed.	Tractio
$3 / 4$.. 333	23/4.	
	250	21/2.	
11/4	300	234.	
11/2	167	3	
3/4	143	31/2	

(17) J. A. K. asks: What causes an explo it the sudden generation of steam, or does the the sudden generation of steam, or does the
oiler crack? A. When an explosion takes plac nder such circumstances, steam is formed rapidy; and the iron, weakened by overheating, cannot
(18) J. W. A. McC. asks: By what rule can find out what quantity of water will be supplie y a wooden pipe, with a 3 inch bore, having head of water of 250 feet, the length of said pipe
being about 10 miles? A. If we knew all the parti ulars of the cese we could onis give you appro mars of the case, we could only give you approx urnish information from the meagre data you ind, in special articles, before long.
(19) R. E. B. says: If I take out a wate Wheel 10 feet in diameter, and replace it with one eet in diameter, using the same quantity of wa f, its being larger. If the new wheel is a bette ne than the other, per se, there will, of course, be gain
(20) T. A. B. asks: Should the balanc heel of a gig saw or vertical re-sa wing machin perfect balance, to preventthump or far? A.Ver ical resawing or other rapidly operating machme should be balanced so as not only to counter ing rod, but also the momentous force, and thi atter depends upon the velocity at which it is ru no established ruie for accomplishin perfect counteraction is to construct the balanc wheel with more counteracting weight than is really required. Then remove the surplus little
bylittle until the machine moves properly.-J. by little un
E , of Pa
(21) W. M. K. asks: 'To what extent, if any will air in an open inverted vessel, mingle and ersed and under a pressure of 500 lbs . to th quarefoot? Would hydrogen or some other ga emin longer unchanged in bulk than arbed much more readily by the water, unde these circumstances, than under ordinary pres
(22) G. H. says: I have in my cellar a hor ontal single flue boiler for the generation of e caused by a sluggish combustion. It does no moke nor emit gas; but no matter how muc putin at one time, the fire burns dull, an he flue fills with to 3 quickly, which hangs in fe oons, indicating that there is no draft. A. You description will not enable us to help you very in-
telligently; but we would recommend that you elligently; but we would recommend that you
ee whether the chimney, per se, is in good work ing order.
(23) H. F. J.-We cannot estimate the per formance of your engine and boiler accurately rom the data sent. If you will put a check valv more trouble.
(24) O. K. and others ask: 1. How is the Focal length is reckoned from the center of the ombination. 2. How can I test lenses for chro is the matic. The best lenses are made of two kinds of lass cemented together and burnished in th ell, there being no necessity for removing them f microscopes? 1 In ing power of microscopes onticions menerally hav greed to consider 10 inches as the distance of dis inct vision; then by comparing the real size the object with the apparent size of the image a distance of 10 inches, the magnifying power asily determined. See p. 25, vol. 33
(25) G. W. S. asks: What should I put on
wooden plug joint to harden the wood (poplar, bass, or lime) and at the same time to keep the ingt ight angles to the plug? A. Powdered resi
(26) G: W. J. says: 1. I am running a pair of high pressure engines, 15×28 inches, with 100 lbs team, at 150 revolutions per minute. These en
gines are both connected to the same shaft, with a fly wheel only 3 feet in diameter but very heav On the crankshaft is a cog wheel 2 feet in diame ter, geared in another wheel on a countershaft, feet in diameter, or why to one. Connected to thi countershaftis a screw 10 inches in diameter, with square thread of 13 inch pitch, or $91 / 2$ threads to
the foot, running through a cast iron nut. How
A. The greatest pressure on the nut will be be tween 9 and 10 times the maximum pressure on the crank pins. 2. Would a cast steel nut wor better and cooler than a cast iron or gun metal
one? A. With sufficient bearing surface, we think you will find cast iron a satisfactory material for the nut.
(27) W. H. asks: Is there any rule for the ence in weight between green timber and dry timer ? A. It would be impossible to answer thes questions very exactly, without experimenting in 25 lbs. per cubic foot, and green pine from 30 to 37
(28) J. B. K. asks: 1. Which is the best fo a base to plate on (for such articles as spoons and forks), nickel silver, white metal, or albata? A
All these alloys are good for the purpose. 2. what metals are these different bases composed A. Nickel silver is a variety of German silver, ich many kins are in use. The following is ood one for plating on. Copper 55, nickel 24 , zin of : Tin 82 , lead 18 , antimony 5 , zinc 1 , and copper 4 parts. Albata is another name for German sil
(29) W. H. E. asks: What should be the number of revolutions per minute of a screw pro
pellerin a model 3 feet 6 inches long, to gain the maximum speed? A. The question is tooindefin ite. Probably you could not get a
tion in any way but by experiment.
(30) W. G. M. says: 1. I have become near d. I can en to ed. I can see to read well at the common reading
distance, which does not seem to be the case with others I have noticed similarly afflicted. What has caused it, lamplight or too constantly lookin at near objects? A. The natural eye has the powrome more or less come more or less convex as objects looked at ar nearer or farther from it. In your case that pow at near objects. 2. Can my sight be restored? Probably it can, with proper care and rest. In looking at distant objects I am compelled partly close my eyes, when the objects become
far more distinct. Why is this? A. In closing the eye, the light passes only through the central portion of the lens, and this part is of long
er focus. 4. Will the use of glasses strengthe he epes, or cause a growing necessity for them A. If used constantly they will not be likely to remedy the defect. 5 . Would their use have a ten dency to make both eyes alike? A. Probably not . Should they be worn continually? A. No.
(31) G. C. asks: Is the steamer Great Eastf parts, each part to sail independently on enter ng a small harbor or in case of a rough sea? A If itever was constructed in this manner, th matter was kept a profound secret.
(32) J. P. W. says: In Science Record for 1874, on p. 574, are directions for making a portaections, but it will not work, as the lens will not throw the image downward. A. The difficulty probably is that the lens is not long enough in focus. The distance from the center of the lens to the mirror and thence to the paper should be the focal length of the lens. It will not be practic
ble to use a lens of a shorter focus than 2 feet
(33) C. K. asks: 1. Will a good achromatic object glass of 2 inches diameter and 3 inches fo eus, with an eyelens of $1 / 2$ inch focus, make a telscope strong enough to see the phases of the show the globular form of Jupiter and the ring of Saturn? A. Yes; with a steady atmosphere you should see the belts on Jupiter also.
(34) J. M. T. asks: 1. I wish to make a telescope. Which will be the cheapest, a reflecting
or refracting telescope? A. In small telescopes there is not much difference. 2. What will an object glass, $21 / 2$ inches diameter, of 44 inches focus, cost me? A. About \$20. 3.
stand? A. A power of 150
(35) C. R. says: It is desired to surround upright cylindrical stoves by shields to prote Can you suggest some simple and efficient form and material? There should be a door to permit the introduction of coal. A. Sheets of zinc will be the best, unless you require an orname
fect. In the latter case, use Russian iron.
(36) J. M. G. says: A steamboat boiler is filled to top of steam chimney with water, and
shows 5 lbs. pressure on the steam gage from weight of water in pipe connecting the gage with boiler. In testing the boiler to 60 lbs. water press in order to have 60 lbs . on the boiler? Will the gage show 5 lbs. more than a gage placed at the pressure pump? A. When there is a pressure of 60 lbs.; at the higbest point of the boiler,'underthe circumstances stated, the gage will indicate 65 lbs., and the gage in pressure pump will indicate a is subjected to the action of a still higher column of water.
(37) A. N. asks: How can I write or draw on smooth plates of zinc, and afterwards etch the acid and 100 parts water: pour over the plate, and let it run to and fro. Wash with water, and pour weak gum water over the plat
(38) X.X. X. asks: How can I make a good oleate of soda? A. Oleic acid forms two classes of salts, normal and acid. The normal salts of the alkalies are the only soluble ones. They form lution may be obtained in the condition of an
amorphous mass. The isolation of oleicacid in a
ate of purity is a matter of some dificulty, ow bg to its tendency to combine with oxygen. To onified with potash ; the soap is decomposed by artaric acid, and the separated fatty acid, afte eing washed, is heated for some hours in the waer bath, with half its weight of lead oxide, previously reduced to a fine powder. The mixture ther, which dissolves the oleate of lead and leave the stearate; the liquid after standing for som ime is decanted and mixed with hydrochloricacid he oleic acid thereby eliminated dissolves in the the ether, and the etherial solution, which rises to vater, and freed from ether bs heat The aci hay now be converted into soap by the addition of pure caustic soda, which is afterwards separaed from its aqueous solution by the addition of chloride of sodium, and pressed to remove exces moisture. Owing to the strong aminity of the quid acid for oxygen, as prepared by the abov metbod, it has a brownish col
(39) A. B. C. asks: Can oleate of soda b ade chemically pure? A. If absolute purity be requisite, try the following. Redissolve the oleate that has been boiled for some time to expel all th ar, and again decompose with tartaric acid in vessels filled with carbonic acid gas. Allow the acid to settle, decant the supernatant liquid, and wash with water free from air. Then add a large ex ess of strong ammonia, ana, when solution is complete, precipitate with chloride of barium. The with alcohol. During this operation the salt melts and forms a viscous liquid, but a portion of it is dissolved, and is deposited in crystalline plate as the liquid cools; these are again crystallized
rom alcohol, and on decomposing them with tar rom alcohol, and on decomposing them with ta
(40) W. S. D. says: 1. A church is bein eated by a hot air furnace, but there is a fault he ventilation, whichis effected by one large pan hurch wow whe is a old ampair the the nace draws cold air from the inside of the church A. The supply of fresh air to the furnace should be taken from the exterior of the building, by means of an enclosed shaft, which may be contructed of matched boards for the most part, be ing of brick near the furnace. Place a valve, hutter on pivots, within the shaft,to close it whe required. Additional openings
should be provided at the ceiling.
(41) J. F. B. asks: 1. Is it necessary tha (41) J. F. B. asks: 1. Is it necessary tha ron wire do? A. Not absolutely necessary; but as the conductivity of copper is about seven time greater than that of iron, it is better to use cop
per. 2. Is the vapor of a battery, consisting of per. 2. Is the vapor of a battery, con
copper zinc plates, poisonous? A.No.
(42) X. Y. Z. asks: 1. How is an ohm, electricity, measured? A. An ohm, the unit of electrical resistance, is roughly pquivalent to
1 foot 1.9 inches in length of German silver wire of No. 29 British Association gage. It would not do however, to place much dependence on 1 s accur ous samples of wire vary considerably. Standar copies of the ohm are supplied by various foreign manufacturers of telegraph apparatus, and possi-
bly, also, by some American houses. 2. How ar the connections made in the open circuit system of telegraphy? A. The key is provided with stations the line is connected to the key lever; one pole of the battery and the back contact pointare connecte 1 to eartb, and the opposite pole of the
battery to the front contact of the key. Except battery to the front contact of the key. Excep
when the station is transmitting, the lever is alowed to remain constantly on the back contact.
(43) B. S. S. asks: 1. How long will a silve solution hold its strength? A.The cranide solution from the action of air. 2. Ought it be bottled from the action of air. 2.
when not in use? A. Yes.
(44) C. R. asks: The quality of the mag net is destroyed by fire. Does thismagnetic pro erty of the iron impart itself to the fire? If not what becomes of the magnetic property? A. The pend upon a peculiar arrangement of the mole cules of which it is composed. Bodies capable of becoming magnetic offer more or less resistance
to an arrangement of this kind. We may, thereto an arrangement of this kind. We may, there-
fore, assume that the molecules of a magnetic substance are in a state of strain. Heat reduce the conditions of restraint by imparting motion their formerposition.
(45) C. A. H. asks: How can I make an el ectrical machine capable of giving the same pow-
er as a Bunsen battery? A. The ordinary electrical machine is not capable of producing a current equal to that from a Bunsen battery. A stick of shellac rubbed with llannel, however, will produce
a greater tension, but the current from such a urce is infinitesimal the m hine would cost more than the battery.
(46) W. R. asks: 1 . What are the best width and thickness of single steel horseshoe mag
netsthat will do to form a compound one? A Make the width about $\frac{1}{20}$ of the length, and the single electro-magnets be to form a compound one? A. An electro-magnet, such as used for the sounders or registers in telegraph offices, will be found sufflcient. 3. How shall I temper the magnets? A. For permanent magnets use the best, then draw, by heat, to a violet straw possible, and many feet of wire are required to saturate single
long? A. An electro-magnet, charged by two
Minerals, btc.-Specimens have been re aived from the following correspondents, an examined, with the results stated

L. L.-It is possible that the mineral was eucair

 te, with which it agrees in physical character hemical constitution. Will you send about rains of the mineral, free from the gangue $?-H$. M. W.-Thescale consists chiefiy of carbonate o me and sesquioxide of iron. The color does no dicate anything injurious.-T. C. T.-Send us specimen ofwhat is.

COMMUNICATIONS RECEIVED,

 The Editor of the SCIENTIFIC American ac riginal papers and contributionsupon the follow ing subjects:On a Car Brake. By M. M. S
On Problems in Gunnery, etc. By R. H. On a Cannon Musical Instrument. By H. M. B. On Belting. By E.H.D.
On a Geometrical Problem. By J. D. I
On the Mississippi Improvements. By B. J. B. nd by O. P. S.
On the Moon.
On Employers and Employees. By O. O. T. E. On a Solar Phenomenon. By J. C.
On A nother Explosion. By H. I. F.
On Transplanting Trees. By C. E. H
解
R.-C. D.-S. H.-A. F.-W. C. I.-E. W.

HUNTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appea.
shouldrepeat them. If not then published, they may conclude that, for good reasons, the Edito nes them. T Enquiries rela
Enquiries relating to patents, or to the patenta publis inventions, assignments, etc., will not be onls are sic. Al suchquestions, whenimitia as it would fill half of our paper to print them alls by mail, if the writer's address is given.
Hundreds of inquiries analogous to the followin re sent: "Who sells machines for recuttin hand saws? Who sells pure bred ponltry? Wh makes brass castings? Who makes cider mill that grind and press at one operation? Whose n a tank? Who sells platinum, and what is it cost? Who sells machinery for working smal screw propellers by hand power?" All such personal inquiries are printed, as will be observed in the column of "Business and Personal," Which the charge mentioned at the head of that column Almost any desired information can in this wa be expeditiously obtained.
[OFFICIAL.]
ndex of inventions
Hoterer Patent
February 29, 1876
AND EACH BEARING THAT DATE

Alarm, electric burglar, W. H. Rodgers.
Alarm, electric fire, W. Gates....

Alarm, electric fire, W. Gate Auger, earth, A. W. Morgan

Badge, H. H. Snow...........................
Baking sprinkling attachment, A. Rande
Bale tie, J. A. Bostwick
Bale tie, J. R. and H. A. R. Horton
Bale tie, D. H. Mathlas..............
Barrels, finishing, E. W. Gillman..
Bearing, anti-friction, A. G. White
Bed bottom, E. P. Carter
Bed bottom, P. C. Hard
Bed bottom, P. C. Hard
Bed bottom, spring, J. E. Lord.
Bedstead, folding, F. M. Kibbe
Bell. door, H. A. Dlerlkes
Billard table, J. Peck...
Bird cage, F. J. Meyer
Bleaching extract or hemlock bark, E. Bradley
Boat and trunk, combined life, W. E. Facer.
Boller. culinary, C. M. Garb
Book rack, C. F. Kuhnle...
Boot counter stiffener. etc., J. J. Adgate
Boot heels, polishing, L. Gra
Boot heels, shaping, R. Taylor................
Boot-pegging machine, N. B. Dit Lepine.
Boot shank support, J. S. Neison........
Boot sole plate, etc., E. S. Perry.......
13ottle corking machine, F. J. Berry
Bottle stopper, A. Lut
Box. W. Von Den
Bridge gate, draw, J .
Bridge

Indicator, station, E. Peteler...
Ironing apparatus, G. W. Cottin
rronlng apparatus, G. W. Cotting
Journal box, w. H. Robinson...
Kettle, steam, S. W. Chamberli
Kettle, steam, s. W. Chamberlin................
Knife and spoon, combined table, J. Higgins
Knife, pocket and draw,J. w. Peirce.........
Knife-scouring box, S. M. Button..........
Lamps, gas lighter for street, J, Chapman
Lamps, sign for street, P. A. La France. Letter box, F. D. Bennetc...
Lfe preserver, F. M. Englis
Lock, combliation, H. Clark Lock, combination, J. Mclarke (r).............
Lock, combination seai, H. Clarke (r)......
 Locomotive, W. S. Hudson (r)...........
Locomotive frebox, G. W. Tilton......
Meat chopper, J. D. Adt............
Meats, etc., preserving, H. Gaullieur.. Mechanical movement, T. Mill, quartz, S. H. Cowles Millstone pick, J. B Endrin
Moccasin, S. T. Hutchins. Mortising and tenoning machin,
Mowing machine, J. B. Tinker. Nail plate feeder, B. F. Ric
Nut cracker, C. B. Martin Nut cracker, C. B. Mar
Nut lock, J. J. Adgate Nut lock, R. P. Thomas...........
Organ bellows, reed, A. Dayton
Organ bellows, seed, L. K. Fulle Packing, cylinder piston, C. H.
Packing piston, w, w. st. John. Pan, baking, B. P. Foster Paper box, G. M. White.............
Paper cutting machine, Coffin and Pegging machine, W. G. Budiong (r) Plano has support, J. B. Shaw
Planos, trussed standard for, E. Oakle Pianos, trussed standar
Pick, w. L. Cousland.
Picks, mannfacture of, J. C. K............
Plane for making excelsior, A. F . Hal. Planter. cora, C. A. Anderss
Planter, corn, J. T . Reams.
Planter, seed, Hilyar
Plow, F. Chevaller.
Carbureter. J. R. Allen.

 Carpet fastener, F. O. Clark 174,271 Carriage spring, T. F. Moore.................................144,2/88
Censer, J. J. Dunn
 Cigar mold, N. Du Brul (r).......................
Cigarettes, machine for rimming, A. Montes. Cloth, finishing, c. E. Sc.
Clothes Inne, L. Swett..
Clutch, friction,
Clutch, friction, E. Reynolds
Clutch, friction, J. Turner

coafse potte, J. C. McConith Comb, B. F. Britton.

Comb, C. H. Noyes.........
Cork, composite. W. King
Corpses, cooling board for, N. T. Shaw.
Corset, M. Cohn.
Corset spring, J. Day...............
Cracker machine, D. M. Holmes.
Cultivatar,
Cultivator, M. S. Tarkington.....
Cultivator, rotary, G. E. Hopkin
Curry comb, C. B. Bristol
Curry comb, T. J. Walsh.

Door, check, E. W. Chamberlai
Door closer, J. Stevens........
Dredging bucket. T. Smith
Eaves trough, W. F. Moulton
Electrical switch and put-out, Sidder.........
Elevator, M. L. Wyman-...........
Elevator, hydraulic, M. . Wyman.
Embalming apparatus, G. T. Parker
Embroidery frame, E. W. Karker... Engine regulator, electric, s. D. Field xarelsior, plane for making,
Fare register, W. H. Hornum
Feed cutter, . R. Rall...............
Fence post, E. R. and O. L. Pinney
Fence p st, E Powell
File-cutting machine, F. H. B
Filtering apparatus, L. Prange
Filtering apparatus, L. Prange
Flooring, E. M. Kuhn
Fruit jar stopper, w. Vom Hofe
Furnace for portable boilers, W. J. F. Liddell
Furnace front, c. B. Marthens.
Furnaces, pushing tubes into, etc...................
Frasiture, etc, joint for, T. L. Luders... .
Gage, T. S. Disston.
Game apparatus, F.
Gate, G. Gllbert
Gate, D. H. Kime.......
Gate, Miller and Hillon
Gold from quartz, obtaining, T. H. Cobley.
Grain binder, J. Garrard.
Grain binder, J. Garrar
Grain blnder, J. A. Kay
Graincleaner, E. W. J.
Graincleaner, E. W.
Grain n rill, T. A. Hill.
Grain drills, teeth for,
Grappling device and fruit picker, J. F. Adams Graver holder, c. M. Howard..
Gun, machine. W. Gardner....
Hame fastener, J. E. Newcomb.
 Harrow, convertible rotary, T. Wo
Harvester, Converse and Smith.....
Harvester, J. Werner, Jr..... Harvester, cotton. Hill and Fayne
Harvester, rake, P. s. Burditt..... Harvester, rake, P. S. Burditt.
Hay loader, H. L. Shields
Heater, feed water, c. R. sheple Hog cholera, remedy for, E. Royalty. Hoist, sarety, s. S. Stoke Hoist, safety, S. E. Stokes
Hydrant, G. C. Bailey.....
\qquad 174,115

