Corresproudente.

Dividing Circles.

To the Editor of the Scientific American:

From reading the articles by Mr. Joshua Rose, entitled "Practical Mechanism," I know that he is one of the best and most practical mechanics that have seen fit to impart their knowledge to their fellow craftsmen through the medium of any scientific paper; and his articles are the first I turn to upon opening the Scientific American.
In elucidation of a method of dividing a circle into a given number of parts, spoken of by him on page 84 of your current volume, let me remind your readers that a correct way of doing this is to divide 360° by the requisite number of sides in the polygon, find the chord of the quotient, and multiply by the radius. I have calculated the following table by the above rule, which, upon inspection, will be found to give correct results.
Table of Chords and Angles of Figures Described in a Circle,
from Triangles to Polygons with 100 Sides.-Calculated
to 1 Minute of the Arc and to 0.0001 of Radius.-Radius $=1.0000$.

$\begin{gathered} \substack{\text { No.of } \\ \text { sides. }} \end{gathered}$	Angle.	Cnord.	$\left\|\begin{array}{c} \text { No.of } \\ \text { sidese } \end{array}\right\|$	Angle.	Chord.	No.of	Angle.	Chora.
3	$120^{\circ} 00^{\prime}$	1.7321	36	$10^{\circ} 00^{\prime}$	$0 \cdot 1743$	69	$5^{\circ} 13^{\prime}$	0.0910
4	9000	$1 \cdot 4142$	37	944	0-1697	70	509	00898
5	7200	$1 \cdot 1756$	38	928	$0 \cdot 1651$	71	504	00884
6	6000	$1 \cdot 0000$	39	914	$0 \cdot 1610$	72	500	00872
7	5126	08678	40	900	$0 \cdot 1569$	73	456	00861
8	4500	07654	41	847	01531	74	452	00849
9	4000	$0 \cdot 6840$	42	834	$0 \cdot 1495$	75	448	0.0838
10	3600	06180	43	822	$0 \cdot 1460$	76	444	$0 \cdot 0826$
11	3244	$0 \cdot 5636$	44	811	$0 \cdot 1427$	77	441	00816
12	3000	0.5176	45	800	$0 \cdot 1395$	78	437	$0 \cdot 0806$
13	2742	04787	46	750	$0 \cdot 1365$	79	433	$0 \cdot 0795$
14	2543	0.4451	47	740	0.1336	80	430	0.0785
15	2400	0.4158	48	730	$0 \cdot 1308$	81	427	$0 \cdot 0776$
16	2230	0-6902	49	721	$0 \cdot 1282$	82	423	0.0766
17	2111	03676	50	712	$0 \cdot 1256$	83	420	0.0756
18	2000	0.3473	51	704	$0 \cdot 1232$	84	417	$0 \cdot 0747$
19	1857	0-3292	52	655	$0 \cdot 1207$	85	414	0.0739
20	1800	$0 \cdot 3129$	53	648	01185	86	411	$0 \cdot 0730$
21	1709	0'2981	54	640	$0 \cdot 1163$	87	408	00722
22	1622	$0 \cdot 2847$	55	633	$0 \cdot 1142$	88	405	$0 \cdot 0714$
23	1539	$0 \cdot 2723$	56	626	$0 \cdot 1121$	89	403	00706
24	1500	$0 \cdot 2611$	57	619	$0 \cdot 1102$	90	400	0.0698
25	1424	02507	58	612	$0 \cdot 1083$	91	357	$0 \cdot 0690$
26	1351	$0 \cdot 2411$	59	606	01064	92	355	$0 \cdot 0683$
27	1320	$0 \cdot 2322$	60	600	$0 \cdot 1047$	93	352	0.0675
28	1251	$0 \cdot 2239$	61	554	01029	94	350	$0 \cdot 0669$
29	1225	$0 \cdot 2163$	62	548	$0 \cdot 1013$	95	347	$0 \cdot 0661$
30	1200	02091	63	543	$0 \cdot 0997$	96	345	$0 \cdot 0654$
31	1137	$02 \mathrm{C24}$	64	537	$0 \cdot 0981$	97	343	$0 \cdot 0648$
32	1115	$0 \cdot 1960$	65	532	0.0966	98	340	0.0641
33	1055	$0 \cdot 1901$	66	527	$0 \cdot 0952$	99	338	00634
34	1034	$0 \cdot 1843$	67	522	$0 \cdot 0937$	100	336	$0 \cdot 0628$
35	1017	0-1792	68	517	$0 \cdot 0922$			

Helena, Montana Ter. George b. Foote, C. E.

Sailing Faster than the Wind.

To the Editor of the Scientific American:
If the ice boat question still debatable? Experienced raftsmen tell us that a log sent adrift outruns the stream tha carries it, that a single log will outrun a raft of logs, which, in turn, outruns a raft of boards. If these are facts, they indicate the possibility of the ice boats outspeeding the wind. All streams of considerable length have points of slow and rapid flow. Assuming the mean rate to be one mile an hour, the rapids may have a four-mile rate and the slack water a half-mile rate. A log passing each rapid par takes of its speed, and the increased momentum causes it to outrun the more slugerish water below, and thus gain upo outrun the thirty mile its thirty-mile gusts, and slack wind to correspond; and a ice boat, by the aid of the former, may gain upon the mean rate. On the other hand, aeronauts in a fifty-mile wind ex perience a perfect calm, that is, they move no faster nor slower than the wind. A balloon, like the ice boat, has mo mentum; but it moves without friction, and it is difficult to understand why it should be distanced by an ice boat if both are driven by the same wind.
Rochester, N. Y
E B. Whitmore.

The Wisconsin Ten Thousand Dollar Reward. To the Editor of the Scientific American:

I would like to answer, through the columns of your val uable paper, the numerous letters I am receiving from al parts of the country concerning the bounty of $\$ 10,000$ of fered by this State for a steam wagon that will fill certain requirements. To fill the bill, the machine must travel 200 miles north and south over very poor roads that are often sunk or worn down-in the wheel and horse tracks-six inches to a foot below the common level, but with a ridge in the center, the ridge being impassable for a horse: more so for the wheel of a steamer, when we take into account the stumps and stones, avoided by a double team and left in the center ridge. Our wagon track is about 4 feet 6 inches outside, and that must be the gage of a steamer, which ma chine should not weigh more than two tuns and must be so arranged that it will climb steep sand hills, cross poor bridges, run easily over bogs, stones, and grubs, and out of ruts, etc., just as a loaded lumber wagon does; and it must travel at the average rate of 5 miles per hour, and, in the
language of the law, " be a cheap substitute for horses and other animals on the highway and farm."
On the subject of amending the law so as to admit citizens of other States to compete for the prize,I can say that the law will never be so amended, neither should it be, of right Rather let the public-spirited men of other States elect to their legislatures one or more mechanics and inventors, who are alive to the importance of the class of inventions and who have the courage and persistance to introduce and to fight a bill similar to ours through, as this was fought. It was the opinion of the originator of the law that no machine has yet been produced that will fill the bill, that inventors have failed to bring out a really practical machine; and it was for the especial purpose of encouraging inventors, to persever until complete success was obtained, that the bounty was of
Wisconsin Legislature, Assembly Chamber, Madison. February, 8, 1876
To Find the Side of a Polygon of any Number of To the Editor of the Scientific American
In the given circle draw a diameter, and produce it a distance equal to the radius, as A B, in each of the following

figures. With the same radius, on A as a center, cut the circle in C and D. Draw C D, and produce it to E , makin $C E$, equal to three times CD. Divide CE into as many equal

parts as the required polygon has sides. Draw B T, cutting CE, in the first point of section and touching the circle in F. Draw C F, which is the side required

Fig. 1 shows the side of a square; Fig. 2 the side of pentagon; Fig. 3 a triangle and a hexagon. It will be noted that, in the triangle, C F coincides with $C D$, and in the hex agon, B F coincides with A B. Fig. 4 shows a heptagon.

Demonstration:-When the side, C F, is found, place othe ines equal to it in the circle with their ends in cortact, unt the polygon is complete; then, if it has an even number of sides, a diameter which bisects a side or an angle on one side of the center does the same on the opposite side. If it

as an odd number of sides, a diameter which bisects a side on one side of the center bisects an angle on the opposite side; thus proving that the sides are regular, and cons
quently equal.
albert Bondeli. Philadelphia, Mo

The Azoic Period and the Glacial Epoch.
To the Editor of the Scientific American:

* In one of his lectures on glaciers, Agassiz said: "If it can be demonstrated that such was the condition of our earth (covered with glaciers), it will follow that the doctrine of transmutation of species and of the descent of animals that live now from those of past days is cut at the root by this winter, which put an end to all living beings on the surface of the globe." Now as glacial action is everywhere visible on the surface of the globe as it now is, it is evident that the glacial period was after the earth had assumed its presen form. But if the glacial epoch was before the appearance of animal life upon the earth, then it must have been during the azoic age or before it; and there can be no evidence of a universal glacial epoch in these formations succeeding the azoic, since they would all be covered up by the subsequent formations.
There seems to be a slight confusion here; can any one hrow any light on this subject?
Franklin, N. Y.

[For the Scientific American.] THE CHROMOSTROBOSCOPE.

by professor a. ricco, of modena, italy
The following simple device, which I have invented, is productive of very brilliant results. Thetwo pulleys, $a a$, are made to turn togather by means of the crank, and communicate their mo tion by means of endless cords to the wheels, b to which are attached two disks of cardboard A B In tisk of carior disk a, B. the anterior disk are eight holes, containing little glass windows of different
colors. The disk, B, has a white design on black ground. The best way to make the design is to cut it out of the black cardboard and to place oiled white tracing paper behind the latter. On keeping the eye at a point which the apertures successively
 pass, and looking at the design in duced by each one as it passes, and this image will remain on the retina, by persistence of vision, long enough to make the design appear multiplied symmetrically about the center with great brilliancy of colors. Ifnow the figures, of which the design consists, are made to change successively in form and position, as in Plateau's phenakistoscope, the surprising effects of the graceful motions of the images in that apparatus will be combined with a splendid coloration.
Even by simply putting colored glasses in the apertures of the phenakistoscope, and using white designs on a black ground, similar results are obtained; they are less brilliant, however, because, as is well known, the design in that instrument is placed on the perforated disk itself, and we look through the latter at the reflection of the design in a mirror in front of the apparatus. Of course light is lost by the reflection.
If it is desired to project the images of the chromostrobo scope on a screen, the arrangement represented in Fig. 2 may be employed.
By turning the wheel, A, we set in rotation the disk, B, which contains sec tors of colored glass Together with this disk, the wheel, C, turns,on the circum ference of which rests a disk, D which may be whichorated or paint ed black on color ed black on color-
less glass. The wheel, C, and the
 isk, D, turn to gether by friction gearing. The pulley, E, which, together with twc others, keeps the disk in place, is movable so that the disk can be taken out and replaced by avother, like the slides of a magic lantern, while the other parts of the ap paratus may remain in undisturbed connection with the lan. tern.
Modena, January, 1876.
[Evidently this apparatus has a certain analogy to the new chromatrope of Professor Morton, described on page 344, volume XXXIII, of the Scientific American.-Eds.]

SINGULAR ELECTRICAL EXPERIMENTS.

In studying the effects of electricity, it is interesting to note the curves or trajectories passed over by particles of electrified powders. In order to observe them conveniently, they may be illuminated by a ray of sunlight, On putting a lit tle lycopodium or other powder on an insulated conductor, A (Fig. 1), and charging the latter, a jet will be produced which will diffuse a little of the powder in the air; after some time, when the jet has ceased and a non-insulated conductor, B (Fig. 2), is brought near, the jet is reproduced, and

