the AQUEDUCT OF la vanne.

An aqueduct, one hundred and thirty-five miles long, which is nearly, throughout its whole length, one solid mess of stone, a colossal monolith, may well be considered one of the engineering marvels of the century. Such is the great aqueduct which, toward the close of the late French Empire, was constructed to bring into Paris, from the Departments de l'Aube and de l ' Yonne, th
River. The greatest diff culties met with in building the structure were found in crossing the forest of Fontainebleau fistance fonto ty-seven miles, entirely destitute of good building material, and cut up by immense hills of almost impalpable quicksand. To this section the béton Coignet construction, afterward continued through nearly the whole work, was begun. As shown in the engraving, the Fontainebleau sectionis composed of a series of arches, some of them as much as fiftyfeetin hight. Eight or ten bridges of large span from 75 to 00 large span from 7 to 90 feet) are also ncluded, all made of solid masses of beton Coignet. The was: For foundation and gravel walls, sand and gravel equal parts, 5; hydraulic lime 1, Portland cement $\frac{4}{6}$, parts. For pillars, abutments, etc., sand, and in some cases gravel, 4, and hydraulic lime 1, parts. The other portions were made from sand 4, hydraulic lime 1, Portland cement from $\frac{1}{2}$ to $\frac{1}{d}$ parts. This concrete, properly dampened, was combined in a mill of especial construction, and agglomerated at once in molds at the spots needed.

IMPROVED WATCHMAKER'S LATHE

In the improved watchmaker's lathe, illustrated in the ac. companying engraving, the novel features consist of an adjustable bed, the hight of which, in relation to the centers, may be varied to suit different kinds of work, an adjusting tail stock, and an attachment for cutting gear wheels and pinions. Figs. 1 and 3 are side elevations of the lathe ad. justed for turning; in Figs. 2 and 4 an end and a side elevation are shown, exhibiting the adjustment for gear cutting.
The stationary part, \mathbf{A}, of the lathe carries the live spindle, B, and supports the bed, C, which is clamped to it by T-headed bolts, D , so as to be raised and lowered by the adjusting screw, E. The tail stock, F, is pivoted to the end of the bed by the clamp bolt, G, so that it may be turned down out of the way, as in Fig. 2, when not required for use. When said stock is in working position, a block, H , is screwed on the bed in order to adjust the center, J , in line with the live center, through the screw, K, on said block acting against the stud, L. The screw, I, also secures the tool rest, M, and the bed, N, for the slide, P, which carries the gearcutting center, R, to be worked backward and forward to feed the blank to the cutter. Said slide is operated by the hand lever, Q. The template, S, is fastened by a lever latch, T, working into notches in the edge. There is a pointer, U, to gage the gear-holding centers to the rotary cutter in setting the bed, N, and slide, P .
The cap, V, for holding the live spindle in the bearing of the head stock, is hinged to the stock and fastened with a single screw, W, to facilitate the changing of the mandrels, two or more of the latterwith different centers or attachments being employed for different kinds of work.
Patent pending through the Scientific American Patent Agency. For further information can Patent Agency. For further information Calverc, Robertson county, Tex.

Comparative cost of Gas and Candle Light.
Eight star candles give as great a quantity of light as a gas burner consuming 5 to 6 feet per hour. Thecost of 5 feet of gas, at prices charged In Louisville, Ky., is 1.35 cents. That of the candles is $3 \cdot 2$. Therefore, to produce the same quantity of light in a parlor, the gas is cheaper than candles. But counting in another way, candle light is greatly cheaper than gas. Thus a candle placed on a table, one foot from a book, gives twice as much light to the reader as a gas light placed four feet above the book. By this comparison it will be seen that the candle
costs only four tenths of a cent per hour, while the gas costs 135 cents. The rale in calculating the strength of light is that it decreases as the square of the distance.
A pound of star candles costs $16 \frac{1}{2}$ cents and burns 42 hours, giving a soft, pleasant light, and, at 17 inches from an object, gives a light equal to a gas burner 4 feet from the object, consuming 5 feet per hour. The calculations are as follows: The square of 17 inches is two feet. The square of 4 feet is

AQUEDUCT OF LA VANNE, FRANCE
16 feet. That is to say, the quantity of light from gas must be in the proportion of 16 to 2 , or of 8 to 1 , to make the gas and candle light equal at the distances given above. From which it appears that, for reading and many other uses, can-
dle light of the same power costs only one third as much as gas.

Stanns inside of wine decanters can be removed by putwater, and shaking briskly.

Novel Use of Apomorphia
Ed. T. Robinson, M. D., says: The report of the follow ing case may be interesting to your readers, so far, at least as it suggests the value of the comparatively new remedy apomorphia, in a class of cases in which I have not heard of its having been used. On the 30 th of November, 1875, was called to see a little boy, thr ee years old, who had, two hours previously, accidentall y swallowed a biconvex lens shaped tin whistle. I found it lodged near the cardiac ter minus of the esophagus. The little fellow was suffer ing considerable pain, writh ing his body when he at tempted the act of degluti tion, which act seemed irre sistible every few seconds A small quantity of bread and water was given him to ascertain whether the ceso phagus might be completely occluded. He rejected it al most immediately, with no admixture of the stomach contents. I then administered hypodermically in his arm of a grain of apomorphia. In three minutes, by the watch the emeticquality of the dru was manifested by pallor H was then placed on a bed fia wh his belly, when after thre on his lo whe alter or four violent attempts. h in one heave emptied entire ly the stomach, the whist taking the lead, and ringing as it fell in the basin, produ cing a most agreeable sound to the ears of theanxious mo ther, who before had but lit tle faith in my expedient The whistle measured $1 \frac{3}{16}$ inches in diameter. The child, when seen an hour later, was bright and run redical Record.

The Total Solar Eclipse of September 17-18, 1876

 The track of totality in this eclipse is wholly upon the Pa cific Ocean, and in such course that only two or three small islands or reefs appear to be situated near the central line Using the Nautical Almanac tlements, which are almos identical with those of the American Ephemeris, wherein the moon's place is derived from Peirce's Tables, St. Matthias Island, west of Admiralty Islands off tbe northeast coast of New Guinea, is traversed by the central track of the shadow, with the sun at an altitude of 5° at 6 h .16 m . A.M on the 18 th, local time. Thence, skirting Ellice Islands, it passes between the Fijis and the Samoan or Navigator group to Savage Island, in 170° west of Greenwich, lati tude 90° south, which is apparently the only spot where totality may be witnessed under any thing like favorable conditions, and even here the duration of totality is less than one minute. The after course of the central line does not encounter any land.In the northern of the two large islands of the Fiji group (Vanua Levu) 169° east, a partial eclipse will occur, commencing at 7 h .47 m . A. M. 44° from the sun's north point towards the west, for directimage, and ending at 10 h 16 m . mapnitude 0.86 . In the larger island of the Navigator group Savai of the Admiralt Chart the will also be partial eclipse Chart, there will also be a partial eclipse hough nearly approaching totality; eclipse be ins 8 h . 23 m . A.M. at 53 from the sun's north oint towards the west, and ends at 11 h .2 m . magnitude 0.97 .
Assuming the north point of Savage Island to be in $169^{\circ} 48^{\prime} \mathrm{W}$., with $18^{\circ} 55^{\prime}$ south lati tude, a direct calculation gives a total eclipse commencing at 10 h .8 m . 6 s . A.M. local mean time, and continuing 57 seconds with the sun at an altitude of 58°; the first contact of the moon with the sun's limb at 8 h .48 m . A. M, 49 from his north point towards west for direct im age; and the end of the eclipse at 11b. 29 m .
In New Zealand the eclipse attains a magnitude of about 0.5 at Auckland, greatest phase at 9 h .18 m. A.M. ; towards the extremity of the southern island about Otago, one third of the sun's diameter will be obscured about 9 h .12 m . local time. A partial eclipse between similar limits will be visible on the east coast of Aus tralia and in Van Diemen's Land.-Nature.

According to experiments by M. Rudorff, on cold produced by solution of 20 different salts, the two which give the greatest lowering of temperature were sulphuretted cyanide of am monium and sulphuretted cyanide of potas sium : 105 parts of the former dissolved in 100 parts water, produce a lowering of temperatur of $31 \cdot 2^{\circ}$; and 180 parts of the latter, in 100 parts of water, as much as 34.5°

