צitatific Americaio

prats, mackerel, and other common species. A syndicate has lately been established in France to watch exports in the future, and prevent the sale of such fish as are not genuine and of marketable quality. The ordinary yearly production of sardines in France now reaches 500,000 cases.

MUNN \& CO., Editors and Proprietors. pubished weexly at
NO. BT PARK ROW. NEW YORK.
O. D. MUNN. A. B. BEACH.

One copy, one year, postage treluded MS.
One ropy, six months. postage tncluded

Over ten copies, same rate each, poatage included......
By the new law, postage is payable in advance b
the aubscriber then recelves tLe paper free of charge.
Nors.-Persons subscribingwill please to give therir full names, and Post
Neflice and State address, plainly written, and also atate at mhich time they wish their subscriptions to commence, otherwise the paper will be sent from wish their subscription to commence, other wise the paper will be sent from
the recelpt of the order. When requeated, the numbers can be supplited Prom January 18t, when the volume commenced. In case of changing rest-
dence, dence, state former address. as well as give
be made unleas the former addreas ts \&iven.
If any of our readers fall to receive their numbers regularly; if the direetion is not plainly written; if premiums are not received; or if there is
tault of any sort at this offlce, we will thank our friends to send us postal card complaints, and repeat the same, if need be, until the remedy is efrect. ed. Do not hesitate to complain. We desire
ourselves and patrons right and satisfactory.

VOLOME XXXIV., No. 10.[New SEries.] Thirty-first Year.
NEW YORE, SATURDAY, MARCH 41876.

THE SCIENTIFIC AMERICAN SUPPLEMENT
 For the Week ending March 4, 1878. table of contents.

VIII. PROCEEDINGS OF SOCIETIES. -French Academy of Sclences.

 COMBINED RATES.
 ${ }_{\text {M }}^{\text {dres }}$

INDUSTRIAL $\triangle R T$.---sOME THOUGHTS FOR THE

 CENTENNIAL.A corrt spondent, referring to our recent editorial on what working men might contribute to the Centennial, in which we deprecated nickel or silver plating on handmade metal articles, and suggested file, polishing as a more work-
manlike finish, asks whether we are not opposed to ornamanlike finish, asks whether we are not opposed to orna-
mentation of machinery or tools, and whether we donot think that artistic design is superfuous in implements or materials meant for "solid work." To this, we reply emphatically in the negative; and we have a few remarks to offer relating to the subject, which may be timely in their bearing upon the approaching exposition of our industries. It may be laid down as an unfailing rule that, When any person is given the
choice of two articles, identical in every respect save that of choice of two articles, identical in every respect save that of certainly be selected. This appears to be a simple enough proposition ; but when it comes to be applied to great classes of manufactured products, those who make the latter seem oo forget it,or at most to accord to it but very little attention. The majority of mankind even go further in their predilection for the tasteful, and in nine cases out of ten will prefer an inferior article of beautiful design, to a really superior object of homelier appearance, the gain in beauty compensating for the lack of usefulness. Several times a year dry goods dealers heap their counters with fabrics of elegant patterns; out of a variety of styles perhaps half a dozen may be "the rage," simply because of their beauty. As a result the resources of the manufacturer are taxed to the utmost to produce the particular kinds of goods demanded, and both manufacturer and dealer gain large proits on the favored fabrics. And yet these very goods may be identical, in every which but dye or mere pattern, with whole bales of material same is true of carpets, of wall paper, of crockery price. The same is true of carpets, of wall paper, of crockery and glass-
ware, of any of the varied products into which artistic design may enter. People will pay for beauty, pay for it on a sign may enter. People will pay for beauty, pay for it on a
scale which cannot be measured by any standard. They may examine their purchases for other qualities never so closely may gage durability or strength or efficiency or internal com position to hairbreadth accuracy; but artistic finish and tasteful form defy us to judge how much money is commensurable with a given amount of elegance.
Not long ago a very wealthy merchant of this city paid $\$ 60,000$ for a single painting about four feet in length by less than 3 feet in hight. From a purely utilitarian point of view, the picture was a mere bit of painted canvas, useless even as a fire screen : from an msthetic standpoint it repre sented a fortune. The same merchant lately paid $\$ 9,000$ for a block of marble. As a hitching post, that block would as a sculptor's masterpiece, possessing exquisite beauty, its value exceeded even the large sum paid for it. We can pro. ceed a step furtiner, and glance at the amounts which, as a nation, we pay out for mere beauty. During the three months ending September 30, 1875, we imported \$1,749,655 worth of fancy goods, such as Vienna trinkets, Swiss carv-
ings, etc., $\$ 310,429$ worth of paintings, statuary, and photoings, etc., $\$ 310,429$ worth of paintings, statuary, and photo
graphic pictures : and to this perhaps should be added $\$ 181,665$ worth of jewelry and precious metal work. In the year 1875, we imported fancy goods worth $\$ 6,005,940$,figures indi cating nearly threefold the value of the similar imports of 1865. So much for the beauty we buy of other nations.
us now compare these figures with those representing the ar tistic articles that we sell. For the three months above mentioned our domestic exports of fancy goods amounted to \$90,250, of jewelry $\$ 19,307$, and of paintings, including en $\$ 90,250$, of jewelry
gravings, $\$ 46,079$. Fancy articles we do not find quoted at all on the yearly tables; nor have we any such industry as their exclusive manufacture. For the quarter of 1875, how ever, we imported $\$ 2,241,759$ worth of articles valuable prin-
cipally for their beanty, and exported the same to the value of only $\$ 155,636$.
To carry out our examination of this subject still further, we give here a list of the numbers of all persons en gaged in artistic pursuits or callings which have for their end the decoratiou of raw products. There are 775 painters 250 sculptors, and 2,949 general artists, 108 teachers of draw ing and painting, 2,017 architects, 1,169 arincial makers, 208 bone and ivory workers, 79 bronze workers 7,558 photographers, 4,226 engravers, 569 galloon and tassel makers, 1,534 gilders, 18,508 gold and silver workers, 970 makers, 1,534 gilders, 18,508 gold and silver workers, 970

mirror and picture frame makers, 85,123 painters and var| mirror and picture frame makers, |
| :--- |
| nishers, and 223 plaster molders. Total painters and var | gregate is a little larger than that of all the teamsters and dairymen in the country; it is very much less than that of the blacksmiths, and it about equals that of the teachers. In fact,adding together the number of teachers who educate us, and the aggregate of those whose labor involves our artistic

culture and refinement, we have a sum which just about equals the total number of tailors and milliners, and is 40,000 less than the total number of clerks.
Abundant evidence, similar to the above, can easily be ad duced, first, to show that we import a very much larger quantity of artistic productions than we export, and that but a very small portion of our population is devoted to pursuits of an artistic or semi-artistic nature. What is true of indi viduals is equally true of nations. France, pre-eminent as
the designer of beautiful wares, bups of us $\$ 50,000,000$ worth of iron, and machinerg, and provisions, and sends us $\$ 63,000,000$ worth of articles, most of which find their way to the stores of the jewelors, the china dealers, and the picture sellers. Italy sends us $\$ 2,000,000$ worth of
art art work in excess of the $\$ 7,000,000$ in staples which we send to her shores. With the exception of these two countries, which for ages have led the world in tasteful and ar
tistic productions, our exports to every other European na tion are far in excess of our imports.
In face of all this, it is difficult for any one to see how the country can be otherwise than benefited by the fostering of art culture to its full extent among our workmen. The old world is tributary to us for rough and raw products, and for new means of manufacturing them. We are tributary to the old world for the means of gratifying artistic tastes whick cultivate and refine. Let us develope the artistic ability which lies in us, and we are tributary no longer. Let us make our manufactured productions as elegant in shape, as graceful in design, as those of France, and then,and not until then, will we enter in fair competition with that country or any other artistic nation in foreign markets. Nor should we imitate. Copying is but servile work; originality in design the world seeks, praises, and pays for
The above views we commend to the careful consideration of exhibitors at the Centennial. Many people, we have heard, propose showing machines taken straight from stock without further embellishment or ornamentation; others in tend to send samples of their goods irrespective of pattern or design, trusting in the intrinsic excellence of the articles to secure notice and future custom. We think this is a mistake. It costs little to ornament a machine tastefully, and discrimination in selecting the handsomest patterns is easily exercised. The advantage gained will,in a collection of such entries, be twofold: first, we will show the world that we are able to produce tastofui and artistic designs, and, second, we shall have prepared a collection of models of industrial art which will be of the greatest value as an educator and in ux. citing the emulation of our own people.

a railroad across the eastern continent.

The great feat accomplished by the United States in connecting the Atlantic and Pacific Oceans, by a railroad across necting the Atlantic and Pacific Oceans, by a railroad across it is now proposed-indeed the plan is matured-to connect the Atlantic and Yacific Oceans by a railroad through Cen tral Δ sia. At a conference of the geographers recently held, Colonel Bogdanowitz explained some of the details of the road, which, it is expected, will overcome one of the great obstacles to the extension of civilization, namely, the separation of a large part of Asia from Europe by vast deserts, in which no means of transit but a railroad could be of any use. A railroad alone can develop the resources of the wealth of exploration and mining of these regions would be encour aged, and their resources developed.
It is proposed that the road shall start from Nijni. Novgorod, in Russia, where is now the extreme eastern station in the network of European railroads; it will run along the Volga to Kazan, then up the tributary of the Volga, the Kama, to Ekaterinbourg, on the Asiatic side of the Ural Mountains, then enter Asia, proceed in the direction of Troumen and Omsk at the Irtish, cross that river, and proceed by way of Kainsk to Tomsk on the Tom, a branch of the Obi, and cross that river. Tomsk is the principal center of commerce of Western Siberia; and thence the road will run directly to Irkutsh at Lake Baikal. Thence the road is to pass to the frontier of China, and then it is no longer an exclusively Russian, but an international undertaking. And here, also, the only serious engineering difficulties commence, at the mountain range of Kinghan, which, in its northern part, is crossed by the Amoor river. This range is the greatest ob. stacle : and it will be necessary to pass by the Mautchooria, and to lay the road from Baikal to Verhnéoudinsk tbrough the valley of the Selenga. Then the best route by which to reach Pekin, the capital of China, near the Yellow Sea (a bay of the Northern Pacific Ocean) has been found to be that of Tchita and Dolounor. At the southern end, the famous great wall will be crossed; it already lies in ruins in many places. The whole distance from Nijni-Novgorod to Pekin will be 4,500 miles, of which 3,800 run through Russian territory.
When this plan is closely examined, according to known topographical data, the apparent difficulties dwindle down to nothing when compared to those encountered in the west ern section of our Pacific Railroad. The first section, from Nijni-Novgorod to Tomsk, runs on perfectly level land (the so-called steppes), similar to our prairies. In the second section, from Tòmsk to Lake Baikal, the country is rolling, and interspersed with rivers and streams: but the greatest hight is only 3,500 feet, and the largest rivers are but of very moderate width and depth. The only serious difficul ties, as we have said, lie at the Chinese frontier, and they are inferior to those overcome in the Rocky Mountains and the Sierra Nevada by the American engineers.
Russia has raised in 15 years more than $\$ 1,000,000,000$ with which to construct 15,000 miles of railroad, and can easily find $\$ 300,000,000$ or $\$ 400,000,000$ to construct a line of such value to all the civilized world.

THE EDUCATION OF CROWS

In the battle of wits between the gamekeepers and the rows of Germany, the latter are said to have acquired the bility to count as high as six-rather more than some tribes of human savages, if travelers' tales are to be trusted.
To protect the young broods of pheasants, the gamekeep ors wage unsparing war against the crows, which have con equently become exceedingly wary and good judges of the range of ordinary guns. Various stratagems are resorted to
by the keepers, one of them being to erect shelters near the gathering places of the crows, from which to shoot them when they unwittingly approach. The crows suspiciously keep aloof except when they are sure of safety; but the
noment the keeper departs, they Hock to their posts of obser vation with provoking assurance. It is found that the keepers must go to the cover in parties of six or more, then de part one by one until six have left, leaving one or more behind to take vengeance on the crows. Should a less number than six visit the shelter, and all but one leave it, the crows perform the subtraction correctly, and know that there is yet no safety for them. Beyond six, their mathematical faculty fails-or did some years ago: perhaps they have learned to count more by this time.
It seems that the crows of Maine are only half as highly educated. A farmer in that State, exasperated by the depre dation of crows among his sprouting corn, lay in wait fo them often and long, but without success. Then he tried the German stratagem. He took his son with him to a shanty in the field, and shortly after sent him away; the hungry birds patiently waited until the farmer also departed, then they helped themselves. The next day he took two persons with him with the same result : first one person left the field, then another, the crows cawing their approval, but remaining in their safe position; and not until the third per son had been seen to depart irom the field would the cunning creatures trust themselves within gunshot of the little building. The next day, half a dozen entered it. Presently one of them went back across the field. The crows mentioned the fact among thomselves, but kept their distance, among the trees. Another person went away, with the same result. Directly a third emerged from the building and disappeared, the unhappy crows, having reached the end of their mathematical rope, came down in platoons to their deferred breakfast, unaware of the three armed enemies still remaining in the building, who at once opened fire upon the poor birds, whose great misf
A gentleman writing to the Portland Advertiser says that this experiment was tried repeatedly, but the crows invariably lost their reckoning when the number exceeded three.

Evidently the education of the crows of Maine has been neglected. It would be an interesting experiment to repeat
the process of deception to see how long it would take them the process of deceptio

THE CENTENNIAL BILL PASSED.

The bill appropriating $\$ 1,500,000$ for the purposes of the Centennial Exposition has become a law. It passed the
Senate by a vote of 40 to 15 , and was soon after signed by the President with the plume of an American eagle, which some patriotic individual provided for the occasion. The accession to the Centennial funds prevents, it is said, the accumulation of any debts for the completion of the buildings and grounds. The act which grants the money is coupled with a stipulation that the sum shall be repaid into the United States Treasury, without interest, out of any profits which may remain after the subscribers to the capital stock shall have been reimbursed. This is of course a contingency which may or may not happen; but in any event the stipulation is a favorable one, and will tend greatly to appease the large number of people who have been opposed to Congress extending any pecuniary aid to the enterprise.
The financial prosperity of the Exposition now being secured, it remains for exhibitors to lend their best endeavors to assist the Centernial commission in having the entire American part of the show in readiness by the opening day. Our correspondents at Philadelphia state that goods are arriving very slowly, and that presentindications point to a grand rush during the month of April. This only untails extra labor upon the Exposition officials, and tends to produce troublesome confusion and dissatisfaction among the exhibitors. It is very much to be hoped that exhibitors will not follow their usual practice, at the annual fairs throughout the country, of thus waiting until the last minute before sending their entries. They will find early arrival on the field to be very much to their own and to the general advantage.

THE COLLAPSE OF THE SHEFFIELD AMERICAN 8TEEL RAIL TRADE.

In referring to the progress of the steel rail manufacture in this country, nearly a year ago, we took occasion to point out the rapid falling off in the importation of steel rails from England, and expressed the opinion that a still further decrease would follow. We have, moreover, long adhered to the belief that, with our vast stores of mineral wealth supplying the material, all that our people have needed is experience and knowledge in utilizing it; and as that experience and knowledge augmented, so would our reliance upon the labor of other countrits decline. As matters stand now, to quote from the English Ironmonger, "in the management of the Bessemer plant, the Americans must be gielded the palm; and this palm was yielded even by the English steel masters themselves at their great Barrow meeting. The real truth is that the Americans have learned how to make steel rails as well, if not better, than Englishmen, and there is no good to be obtained by hiding the fact."
The reason of this candid admission by a leading English metal trade organ is found in the recent report of Dr. Webster, the American Consul at Sheffield. Steel makers in that great manufacturing town had felt severely the effects of a falling off in their American sales; but none, it appears, were prepared for the alarming announcement that the American market for their rails had practically closed against them. In 1873, Steffield exported steel goods of all kinds to the United States of an aggregated value of $\$ 8,298,865$; in 1874, this had fallen to $\$ 6,315,240$; and the declared value of
reduction of $\$ 5.000,000$ in two years. Out of this aggregate
of $\$ 3,456,160$ for 1875 , the value of the rails imported is but $\$ 11,505$, and those rails were brought over here during the quarter ending March 31, 1875 . Since that date, not a single tun of Sheffield rails has entered the country. For the last nine months of 1873 and 1874 respectively, the vaue of the rails imported hither was $\$ 1,311,890$ and 1,136,610.
There are just four reasons for this loss of trade, which has stopped the machinery in several large Sheffield establishments. Two, namely, our high tariff and financial stress, might be urged with equal force as regards any other dutia ble class of exports, and these, therefore, affect not a single branch of the latter, but our entire commerce with any foreign nation. The other two must be admitted as the more immediate causes ; and these are, first, our progress, as already noted; and second, the blind conservatism, to use a mild term, of the Sheffield working men. So long as these men, through their combinations, persist in doing almost oxactly as their grandfathers and fathers did to accomplish specific manufacturing results, so will they be distanced by more progressive people, irrespective of the nation to which
the latter belong. Manufacturers, who employ a class of men who, again to quote an English contemporary, "display inveterate opposition to the use of modern mechanical appliances," must expect to find their productions unsought and their capital wasted; nor can they hope to compete with their American brethren, in whose more prosperous establishments the introduction of new machinery one year, and its abandonment for still further improved appliances before the twelve month has passed, are common occurrences.

the invention of the telephone.

by f. h. $\overline{\text { vander weyde, }} \mathbf{y}$. d.
In connection with Mr. Gray's application of the telephone o the simultaneous transmission of several different telegraphic messages over one wire at the same time, and his paper read before the American Electrical Society (published on page 92, Scientific American Supplement for February

hat the sounding board of a pianoforte strengthens the vibrations of the air caused
If a flute be played before the opening, T, or if a voice be singing there, the vibration of the air inside the box. K , causes the membrane, m, to vibrate synchronically, and this causes the platinum disk, o, to move up and down with corresponding frequency. At every downward motion the contact of this disk with the platinum point, under b, is broken; and therefore the current is interiupted as rapidly as the vibrations occur. Let, for instance, the note C be sounded; this note makes 64 full vibrations in a second, and we have, therefore, 64 interruptions of the electric current, which interruption will at once be transmitted through the telegraph ine to the receiving instrument, and put the bar, $d d$, into exactly similar vibrations, making the very same tone, C , audible; and so on for all other rates of vibration. It is clear hat, in this way, not only the rhythm of music can be transmitted (and this can be done by the ordinary telegraph), but the very tones, as well as the relative durations and the rests between them. can thus be sent, making a full and complete melody. The switch, $t \&$, Fig. I, is intended, in connection with a similar one in Fig. II, to communicate between the
stations, with the help of the electro-magnet, E E, to ascerstations, with the help of the electro-magnet, E E, to ascertain if station, Fig. II, is ready to receive the melodies; then it gives the signal, by manipulating the switch, which is received by the attraction of the armature, A , the latter arrangement being a simple Morse apparatus, attached to the telephone.
Professor Heisler, in his "Lehrbuch der technischen Phy sik" (3d edition, Vienna, 1866), says, in regard to this instrument: "The telephone is still in its infancy; however, by the use of batteries of proper strength, it already transmits not only single musical tones, but even the most intricate melodies, sung at one end of the line, to the other, situated at a great distance, and makes them perceptible there with all the desirable distinctness." After reading this account in 1868, I had two such telephones constructed, and exhibited them at the meeting of the Polytechnic Club of the Américan Institute. The original sounds were produced at the further extremity of the large building (the Cooper Institute), totally out of hearing of the Association, and standing on the table in the lecture room, produced (with a peculiar and rather nasal a peculiar and rather nasal twang) the ding tunes sung into the box, K, at the other end of the line; not powerfully it is true, but very distinctly and correctly. In the succeeding summer I improved the form of the box, K , so as to produce a more powerful vibration of the membrane, by means of the membrane, by means
of refiections effected by cur-
5), it may be interesting for the readers of this paper to obain some information in regard to the invention of the teephone, by Reuss. As mentioned in the article above referred to, Page and Henry observed that, by rapid magnetization and demagnetization, iron could be put into vibrations isochronic with the interruptions of the current; and later, Marian experimented extensively in this direction, while Wertheim made a thorough investigation of the subject, which induced Reuss, of Friedrichsdorf, near Homburg, Germany, to apply this principle to the transmission of musical tones and melodies by telegraph; and he contrived an apparatus which we represent in the engravings.
The telephone of Reuss consists of two parts, the transmitting and the receiving instrument. Fig. I represents the former, and is placed at the locality where the music is pro duced; Fig. II, the latter, is placed at the station where the music is to be heard, which may be at a distance of 100,200 , or more miles, in fact, as far as the battery used can carry the current: while the two instruments are connected with the battery and the telegraph wire in the usual manner. One pole of the battery is connected with the ground plate, the other with the screw, marked 2 in our Fig. I, and thence over a thin copper strip, n, with the platinum disk, o, attached to the center of the membrane stretched in the large top opening of the hollow and empty box, K, intended to receive and strengthen the vibrations of the air, produced by singing before the funnel-shaped short tube attached to the opening in T. Over the platinum disk, c, attached to the elastic membrane, is a platinum point attached to the arms, $b c$ and $b \mathrm{~K}$, while a set screw brings this point in slight contact with the platinum disk mentioned. A part of the box is represented as broken and removed, in order to show the internal construction. The strip, $a b c$, is connected with the end, s, of the switch, $t s$, and the screw connection, 1 , at the lower right hand corner, and also, through the telegraph wire, to the instrument, Fig. II, at the receiving station, which may be situated at the distance of many miles. Here the current enters by the screw connection, 3, and passes through the spiral, g, surrounding the soft iron wire, $d d$, of the thickness of a knitting needle, and leaves the apparatus at the screw connection, 4, whence it obtains access to the ground plate, and so passes, through the earth, back to the battery. The spiral and iron wire, $d d$, is supported on a hollow box, B, of thin board; while a cover, D, of the same material is placed on top, all intended to strengthen the sound produced in the iron wire, $d d$, so as to make these vibrations more arr lible by giving a large vibratory surface, in the same way
ving the sides; I also improved the receiving instrument by introducing several iron wires in the coil, so as to produce a stronger vibration. I submitted these, with some other improvements, to the meeting of the American Association for the Advancement of Science, and on that occasion (now seven years ago) expressed the opinion that the instrument con tained the germ of a new method of working the electrictelegraph, and would undoubtedly lead to further improvements in this branch of Science, needing only that a compe tent person give it his undivided attention, so as to develope out of it, all that it is evidently capable of producing.
Before leaving thi w subject, I wish to draw special attention to the fact that the merits of this invention consist chiefly in the absence of musical instruments, tuning forks, or their equivalents, for producing the tones: any instrument will do, flute, violin, human voice, etc. If the aerial vibrations are only conducted into the box, Fig. I, the apparatus will send the pitch as well as the duration of the different tones, with the rests between, therefore not only transmitting perfect rhythm, but a complete melody, with its long and short notes. The two parts of the apparatus may even be connected each to a separate pianoforte; and if this were done in a proper manner, a melody played on the pianoforte connected with the transmitting instrument, Fig. I, would be heard in the pianoforte, at a great distance, connected with the receiving instrument, Fig. II.

Fighting Rams.

Says a correspondent of the Ohio Farm
' At certain seasons of the year, rams are apt to develop their combative propensities, and those who keep several of them together often have trouble on account of their injuring each other. It is well known that they always ' back-up' to get a start to butt. Stop their backing-up and you disconcert them en tirely. To do this, take a light stick (a piece of broom han dle will do), about 2 or $2 \frac{1}{2}$ feet long. Sharpen one end and dle will do), about 2 or $2 \frac{1}{2}$ feet long. Sharpen one end and
lash the other end securely to his tail : the sharpened end lash the other end securely to his tail : the sharpened end
will then draw harmlessly on the ground behind as long as will then draw harmlessly on the ground behind as long as
his majesty goes straight abead about his business; but on his majesty goes straight abead about his business; but on
the attempt to 'back-up' he is astonished to find an effectual brake in the rear. Don't laugh and call this 'all gammon: but if you have a butting ram, try it, and the time to laugh will be when you ste him jump out sideways, and whir round and round, trying to inspect the machine, which will keep behind him.

Dr. Haugiton has proved that the strength of the lion is only two thirds that of the tiger.

