THE ANT-EATER FAMIIY.

The ant-eater is a remarkable animal of the old genus myrmecophaga, and of the edentate or toothless order. The hind feet are plantigrade, and armed with large claws bent inward, so that the animal walks on the extreme edge of the foot. This arrangement is a wise provision of Nature for preserving the claws from damage, they being used for tearing down the ant hills and unearthing the insects on which the animal chiefly feeds. The South American variety is a hairy creature, sometimes called the ant bear (myromecophaga jubata); it is about four feet long, and has a bushy tai of two and a half feet more, and its hight at the shoulder is about three feet three inches. The tongue of the ant-eater is re markable; it can be darted from the mouth to a length of eighteen inches, and is thus very effective in picking up its food, re sembling in this respect the tongue of the chameleon.

We publish herewith an engraving of the scaly ant-eater, commonly found in Africa and Asia. This specimen is known as the pangolin, and its scaly covering is formidable, being hard enough to turn a musket ball. When it is alarmed, and can not reach its hole in the ground, it rolls it self up like a ball, throwing up the sharp edges of its scales, and then the animals which usually attack it are glad to let it alone.
Sir Emerson Tennent, while in Ceylon, kept two of these creatures alive at one time, and says: "One was a gentle and af time, and says: "One was a gentle and af-
fectionate creature, which, after wanderfectionate creature, which, after wander-
ing over the house in search of ants, would ing over the house in search of ants, would
altract attention to its wants by climbling a.tract attention to its wants by climbling
up my knee, and laying hold of my leg by up my knee, and laying hold of my leg by
its tail. It seized ants by extending its long, its tail. It seized an
along their track." Still another kind is found in Africa, it is called the phatagin. In the hot countries where all these species have their habitat, the ants are very troublesome, and destroy much property, and animals that are capable of getting rid of them in such numbers are viewed by some eastern races with superstitious awe.

A Human Analysis.

Dr. Lancaster, of London, recently analyzed a man, and presented the results of his investigation in palpable form to his audience during a late chemical lecture. The body operated upon weighed 158.4 lbs . The lecturer exhibited upon the platform $23 \cdot 1 \mathrm{lbs}$. carbon, $2 \cdot 2 \mathrm{lbs}$. lime, $22 \cdot 3 \mathrm{ozs}$. phos phorus, and about 1 oz . each sodium, iron, potassium, mag nesium, and silicon. He apologized for not exhibiting 5,595 cubic feet of oxygen, weighing 121 lbs., 105,900 cubic fee of hydrogen, weighing 15.4 lbs ., and 52 cubic feet of nitrogen, likewise obtained from the body, on account of their great bulk. All of these elements combine into the following: 121 lbs. water, 16.5 lbs. gelatin, 132 lbs. fat, 8.8 lbs . fibrin and albumen, 77 lbs. phosphate of lime and other mineral substances.

Action of Sulphuric Acid on Lead and its Allovs.

Action of Sulphuric Acld on Lead and its Allovs.
Few metals are able to resist the action of hot oil of vitriol, Few metals are able to resist the action of hot oil of vitriol,
lead being, of all the common metals, the least acted upon by this acid. The addition of some metals assists lead to withstand the attacks of sulphuric acid, while others render it a more easy victim. The careful experiments of A. Bauer, which were published recently in the Berichte der Deutscher Chemischen Gesellschaft, cannot fail to be of practical value to manufacturers and others.
Several alloys were prepared by fusing pure lead with other metals, the exact composition being determined by analysis. These alloys were rolled out into plates of equal thickness, and heated in a suitable apparatus with sulphuric acid of $66^{\circ} \mathrm{B}$., the temperature at which a reaction took place being carefully observed. The apparatus consisted of a flask secured in position a little above the bottom of an air bath, the sides of which were formed by a glass cylinder. A thermometer, reaching down to the acid in the flask, showed its temperature. In every experiment an equal weight of alloy and an equal volume of acid were employed. The results were as follows

1. Pure lead: A strip of pure lead weighing 3 grains was heated in $3 \frac{1}{2}$ cubic inches sulphuric acid of $66^{\circ} \mathrm{B}$. At about 347° Fah., a considerable evolution of gas took place, which was stronger at 374° Fah. At 446° or 464° Fah., all the lead was at once converted into sulphate of lead, which dissolved in the sulphuric acid. At this sudden decomposition, sulphurous acid and hydrogen appeared, and sulphur separated.
2. Alloys of lead and bismuth: (a) With 10 per cent of bismuth. The action began at 302° Fah., and continued, slowly and quietly, up to $374^{\circ} \mathrm{Fah}$., at which temperature all the metal was destroyed. (b) With 4 per cent of bismuth. The decomposition followed more rapidly than with the 10 per cent alloy, and was finished at 266° to 284° Fah (c) With 0.73 per cent of bismuth. The decomposition fol lowed, suddenly and completely, at $320^{\circ} \mathrm{Fah}$.
3 Alloys of lead and antimony: (a) With 10 per cent of antimony. This alloy decomposed slowly and steadily; a strong action began at 374° Fah., and ended at 446° to 464° Fah. (b) With 5 per cent antimony. This alloy also dissolved slowly. A more violent action began at 356° to 374° Fah., and the end was at 428° to $437^{\circ} \mathrm{Fah}$. (c) With 1 per
ceat antimony. Here too the decomposition is slow, but a
considerable evolution of gas takes place at 482° Fah., and the action is ended at $536^{\circ} \mathrm{Fah}$.
3. Alloy of lead and arsenic: Containing 10 per cent arsenic. This alloy acts very like the 10 per cent antimony alloy. The action is slower, and ends at $464^{\circ} \mathrm{Fah}$.
4. Alloy of lead with 1 per cent copper: This acts very similarly to the 1 per cent antimony alloy; a strong reaction begins at 482° Fah., and all the metal is dissolved at 536° begins
Fah.
5. A
6. Alloys of lead and platinum: (a) With 10 per cen
7. Alloys of lead and platinum: (a) With 10 per cent
platinum. The decomposition is slow and incomplete, and annihilates all c annihilates all
and the eggs from which they spring having been laid in the previous autumn in numbers, near eachother, large families or societies speedily spin a commodious tent, represented in the engraring, in which they are sheltered from sun and rain. At first a number of leaves are inclosed in the web, and on these the young larvæ feed. These are soon con sumed. The tent is then enlarged, and more leaves cuvered in. When all these are consumed, they flit to a new region, where they spin a new web. This, repeated by multitudes nilates all chance of the smallest crop. In the mont ance of the smallest crop. In the month
of July the larva passes into the chrysalis state in its web, the head being down wards. The perfect insect comes out in August. After coupling, the female lays her eggs in numbers in the bifurcation of the branches. The young larvæare hatched in the month of September. They the shelter under a slight envelope of silk, when they pass the winter in a state of tor pidity, out of which they awake in the month of May, to follow the course of lif a bove indicated. This species feeds on th apple, the thorn, and sometimes on the ser vice tree; rarely, if ever, on anything else The larra, when young, at the beginning f May, is yellowish white, covered wit small blackishpoints; the head and plate o the first segment are blackish brown. When it is adult, at the end of June, it is velve gray, with two dorsal rowsof deep black quadrangular spots. The head, the plate f the first segment, and the true legs ar dull black. The perfect insect has the up per wings entirely pure white, without an inge of leaden hue, and with about twen

THE SCALY ANT-EATER

nds at 536° Fah. (b) With 2 per cent of platinum. The decomposition is sudden and complete, between 500° and 536° Fah.
7. Alloy of lead and tin with 10 per cent tin: This alloy acts like p
392° Fah.
These experiments show that the addition of a little anti mony or copper renders the alloy more able to resist sul phuric acid, while bismuth has a decidedly injurious effect.

THE COBWEB APPLE MOTH.

The little moth represented in the accompanying engra ing is very injurious to our apple trees. As is of ten the case its size bears no proportion to its destructive powers. Th iparis chrysorrhea, for example, which is a moderately large

bombyx, is generally thought a very bad inmate in an or chard, and on the continent its hurtful propensities are so well known, and the means of counteracting them so simple that municipalities and powers have given it renown, by en acting decrees for its extermination and putting a price upon the heads of its members : and yet, destructive as it is, it is oothing to this tiny yponomeuta. The liparis strips the branch on which the brood has been established-nay, many banches may be wholly defoliated, but the whole tree is rarely entirely stripped, whereas the yponomeuta spares no-
thing; it invades the whole tree, and leaves it as bare as if thing; it invades the whole tree, and leaves it as bare as if
fire or the locust had passed over it. One thingonly it leaves fire or the locust had passed over it. One thing only it leaves eil wrapped round the tree, as if to conceal its nakedness. It looks like a forgotten skeleton enveloped in spiders' webs.
This is the work of the caterpillars. Hatched in the pre
ious winter, theyrevive in the months of May and June,
ty-four small black spots. The lowe wings are blackish. The figures are slightly enlarged. N satisfactory remedy has been found for this scourge. Scorch ing the nests with blazing torches and sweeping them away with stiff brooms have been suggested; but the suggestions are neither very practical nor efficient.-The Garden.

The Magnetization of Gas Spectra.

Some very curious experiments have recently been laid before the French Academy of Sciences by M. Chautard, re lative to the influence of a powerful magnet upon the spectra of gases containedin Geissler tubes and illuminated by means of the electric current. In all simple bodies of the chlorin family, and in the gaseous or volatile compounds derived herefrom which thus far have been examined, the action of the magnet is immediate, and manifests itself, not merely by a change of color in the tube, but by an increased brillianc of the spectral lines, which become doubled. The bodie thus far submitted to investigation, besides chlorine, which behave similarly include bromine, iodine, the chloride, bro mide and fluoride of silicium, the fluoride of boron, hydro chloric acid, chloride of antimony and of bismuth, bichloride of mercury, and the protochloride and bichloride of tin
The lights of sulphur and of selenium become extinguished the instant the magnet is excited, and the same is the case with that of the tubes containing chlorine, bromine, and iodin when the tension of the coil is suitable. The feeble bril liancy of the oxygen illiumination is not sensibly modified nor is that of carbon compounds, such as carbonic acid, car bonic oxide,etc. The fine bands of the nitrogen spectrum are not changed,except in the red and yellow portion. These colors become almost completely extinguished,or at least ar replaced by a flat uniform tint, in which all traces of line disappear. The lines in the more refrangible region re main intact.
The hydrogen lines keep sensibly their normal appearance but by employing a sufficiently powerful magnet, at the moment of excitation a very brilliant yellow line appears which isdue to sodium, doubtless obtained from the sur rounding glass. This line vanishes as if by magic when the current is interrupted, to reappear again, however, for some time, as often as the electric flow is established. Eventually it loses intensity, and it becomes necessary to allow the tube several minutes of repose before the line can again be caused to appear. It shows itself also in nitrogen tubes, and in those containing carbonic and hydrochloric acid.
The protochloride of tin, crystallized and dry, but bihy drated, offers remarkable phenomena of dissociation unde the magnetic influence. Normally the spectrum is pale,and shows a few of the green chlorine lines; but as soon as the magnet is excited, two characteristic bands of hydrogen,the ed and the blue, appear, which remain as long as the mag netization exists, and return with the same indefinitely. M Chautard attributes this to the momentary separation of the elements of the water of the salt, due to the considerable resistance opposed to the passage of the induced current durng the magnetization.
M. Chautard's investigations are still in progress,and doubt less further novel and interesting results remain to be ad duced. The phenomena noted are remarkable, and will at tract the close attention of chemists and physicists generally

At Columbia, Tenn., recently, the boller of a steam hresher suddenly exploded, killing three and wounding seven persons who were working the machine. It is stated that one piece of the boiler fell at a distance of three miles from the scene of the disaster; but this requires confirma tion. The cause of the explosion was the usual one-care lessness.

Printing Photographs by Machinery.
The name of M. Despaquis has for several months past been associated with earnest efforts made, not unsuccessful ly, to hasten the advent of the time when the production of
photographs at the printing press may be effected with a degree of celerity rivaling the production of typographic works at the platen printing machine.
Like, we believe, all typographic machines in which rapidity is a desideratum, the printing surface in this process is curved; but unlike the typographic processes, the "sur face" in this case is that of a flexible endless band, which passes over two rollers.
Before describing the press and its mode of action, we shall explain the construction of the flexible printing band. A web of flax or hemp (not of cotton or wool) is faced with bichromated gelatin, on the surface of which the light has been allowed to act through the negative, and this it is been allowed to act through the negative, and this it is
which becomes the printing band. But a certain method of procedure is requisite in the preparation of this gelatined procedure is requisite in the preparation of this gelatined
linen. A single pellicle of gelatin is treated by itself under the negative, and when exposed to light it is sponged on the surface with cold water containing a little glycerin, which retains the surface in a state of moisture, and thus
prevents it from becoming insoluble during the operation prevents it from becoming insoluble during the operation
which follows. This latter consists in laying down the cloth which follows. This latter consists in laying down the cloth
referred to upon the back of the pellicle thus treated, and saturating it thoroughly with bichromated albumen, in conse quence of which, after it has been exposed to light, no water can penetrate the film or, at any rate, act upon the linen in such a way as to cause it to swell or become altered. The albumen is applied by means of pouring it over the surface of the linen, by which the albumen, linen, and original pellicle of gelatin, which bears the impression on its opposite side are incorporated and form a strong flexible web. By expo sing the back to the light, the entire body of the band is ren dered insoluble, except on the extreme surface already ex posed under the negative, and upon which the light has now no more action, owing to its being still moist with the glyce rin.
This forms the flexible printing surface, and it is, impossible not to admire the ingenuity displayed in its production. We now arrive at the press in which this endless printing band is to be utilized. The following is a view of the pres in elevation:

In the above, b and c represent two r)llers or drums, to one of which is attached a handle, d, for the purpose of rotating it. Over these rollers passes a cloth either of ordinary material or of metallic gauze, to which is attached the flexible printing pellicle just described. Three rollers, at $h h$, serve to moisten the printing surface in the same way as a lithographic printer moistens the surface of his stone by a wet sponge, while a series of other rollers, shown at $i i$, serve to ink the surface wherever the moisture absorbed admits of the ink adhering. At e is an adjusting screw, by which the
large rollers are separated to such an extent as to insure the large rollers are separated to such an extent a
printing band being retained in a tight state.
A third roller, f, is placed so as to act against c, and produce the pressure of the paper, g, against the printing cloth. On this roller turns an endless cloth, k, in flax or zinc, which passes over a second movable roller, l, which serves to stretch it pore or less. Connected with the roller, m, is the paper, in a band, which unrolls by the action of the two large rollers. f and c.
It is, of course, necessary that the ends of the printing eloth should be united by sewing-not forming a thick seam, but so as to pass smoothly between the two cylinders.-Bri tish Journal of Plotograply.

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

The regular annual meeting of the above named associa tion conventd at Detroit. Mich., on the 11 th of August. Hon. C. J. Walker, of Detroit, delivered an address of welcome, to which Professor Hilgard, as President of the Association, made a suitable response. $U p$ to the time of writing the members have been engaged in organizing details, so that, with the exception of the speech made by the retiring President, Dr. Le Conte, a brief resumé of which is given below, we defer publication, of our usual abstracts of papers of interest read, until our next issue.
Dr. Le Conte's address dealt with the evidences of evolution, and he endeavored to show that, while change of species may be admitted in creation, there still is reconcilable evidence of intelligence and design. He discussed the strict relation of natural history or biology to that great mass of learning and influence which is commonly called theology and tothat smallermass of belief and action which is called religion; and in reference thereto stated that it will be neces sary to separate the essential truths of religion from the accessories of tradition, usage, and, most of all, organizations and interpretations, which have in the lapse of time gathered around the primitive or revealed truth. In conclusion, the speaker considered that the influence of Science upon religion has been beneficial Scholastic interpretations founded
upon imperfect knowledge, or no knowledge but mere gues have been replaced by sound criticism of the texts and their
exegesis, in accordance with the times and circumstances for exegesis, in accordance wit
which they were written.

The Most Powerful War vessel in the World. The British ironclad Inflexible is now about one fourth completed, work having been begun upon her in February, 1874. Unless the progress of invention results in the projecting of a still more formidable engine of marine warfare before the Inflexible is launched, she will possess the thick est armor, the heaviest guns, the largest displacement in tuns, the most machinery in the world, and probably prove more expensive than any other war vessel hitherto construc d. She will have engines for steering, for loading guns, or hoisting shot and shell, for ventilation, for moving tur rets, for lowering boats, and for turning the capstan as wel as for propulsion. The vessel is little more than a floating astle, rectangular above water, 100 feet long, by 75 feet in idtb, and protected by 24 inches total thickness of iron The two turrets which are placed within the citadel ar formed of iron of a single thickness of 18 inches, and withi each of them are two 80 -tun guns, which can be trained to y point of the compass.
The main engines work up to 8,000 indicated horse power he vessel is placed at $2,605,000$ dollars.

Centennial Notes.

Egypt is to make an exceptionally fine display at the cen ennial. The Viceroy's Commissioner has arrived in this country, and is pushing preparations vigorously. Egypt acts n conjunction with Germany.
The General Transatlantic Steamship Company offer re duced rates to freight and passengers coming from France to the Centennial.
Application has been made by the Royal Academy to the English Government for the latter to defray the cost of transporting works of art for exhibition in the Centennial The request was favorably received, and is now under conideration.
Mr. John Jay recently gave his views regarding the Centennial in an extended letter to the Tribune. He advocates the division of space into national and State plots. Such a plan, he thinks, would do much to develope that international rivalry to which the Vienna Exposition chiefly owed its success, while it would be less expensive to the Centennial Commission. He also advocates international scientific discussion upon a list of subjects to be selected by the Smithsonian Institute, congresses of scientific men being summoned from all parts of the world for the purpose, and national vessels being sent to transport them. Mr. Jay also suggests a congress whichshall decide upon an international patent system which will give to an inventor in one country protection throughout the world.

A Brilliant Light.

Fill a small vessel of earthenware or metal with perfectly dry saltpeter or niter, press down a cavity into its surface, and in this cavity place a piece of phosphorus; ignite this, and the heat given off melts a sufficient quantity of the niter to evoive oxygen enough to combine with the phosphorus, and the effect is to produce the most magnificent white light which chemistry can afford.-Photographic News.

 ence between these two modes of operation in the withinolding from engaze-
ment, of far as regrris the real invention of the plaintir and the sope of the
claim of bis patent.
Decree for complainant for injunction and account, as prayed for in the

Supreme Court of the United States.

 og ily it efrect,
by his patent.
United States Circuit Court---Southern District of New York.
patent qas machine.-ailbert and barier manupacturing compant

This was a sult under letters patent granted to C. N. Gllbert and J. F.

 which he has sustained therefrom, it is at easto ee pre sumed that such re
Covery empraces all the pront which the paente wont wond have recelved had
he made and sold the machine with the incldental and consequentlal right

United States Circuit Court---Southern District of New Yorts.
Frederic A. IURBEEEDT v. Robert werner.
In equity. - Before Blatchford, J. ; June, 1875.
The case camie up on motion for prelliminary in junction.]
$\mathrm{Bras}^{\text {TOHFORD, }} \mathrm{J}$:

