the british arctic expedition.

led to many important results which have been duly chron- in this year, he was ordered home to take command of the We have so recently given to our readers full accounts of icled in our columns, to Australia and the Indian and South arctic expedition. the nature and purposes of the arctic expedition which has Pacific oceans; but when his ship reached Hong-Kong, early Our next engraving contains accurate representations of just sailed from England that no recapitulation is necessary in describing the engravings on this and the following page. The first is a portrait of the commander, Captain George Strong Nares, of the Alert, the leading vessel of the expedition. He entered the Royal Navy in 1845, having gained the annual naval cadetship given as a prize of merit to the boys of the Royal Naval School at New Cross. He served in the Canopus, in the Channel squadron, until 1848, when he joined the Havannah, and served three years in her on the Australian station. Having returned with his vessel to England, he was appointed mate of the Resolute, employed in the arctic exof the Resolute, employed in the arctic ex-
pedition of 1852 , under Sir Edward Belpedition of 1852 , under Sir Edward Bel-
cher. With this ship he passed two winters in the ice. Upon the return of that expedition, he became gunnery lieutenant of the Glatton, an ironclad vessel of immense armament. He afterwards held a similar post in the Conqueror, under Admiral Sir Hastings Yelverton. When the present system of training naval cadets was instituted, Lieutenant Nares was placed in charge of those on board the Britannia, charge the late Captain R Harris He held this oppointm Call proted, in 1854 to this appointment till promoted, in 1854, to the rank of commander. With that rank he served in the Boscawen training ship at Southampton, and in the Salamander and the Newport, surveying vessels. In the Newport, Commander Nares made a survey of the Gulf of Suez and of the entrance to the Suez Canal. He had made himself known to the public and to the profession as author of an excellent treatise on' seamanship, including the fitting and rigging of ships, sailing, management of boats, etc. In December, 1869, Commander Nares was promoted to be captain, but retained command, in the Shearwater, of the Meditermand, in the Shearwater, of the Mediterranean survey. This he left in 1873 , when appointed to command the Challenger in her voyage of scientific investigation
round the world. Captain Nares took the round the world. Captain Nares took the
Challenger, whose voyage of discovery has

CAPTAIN G. S. NARES.
the principal apparatus and appliances, the principal apparatus and appliances,
most of which are new inventions, the remost of which are new inventions, the re-
sult of experience gained in previous expesult of experience gained in pre
ditions. The list is as follows:
ditions. The list is as follows:

1. Ice crusher, with leather handle, 5 feet 6 inches long; 2 , ice gouge, 8 feet long; 3 ice chisel ; 4, ice point; 5, ice drag; 6, pick ax, weighing 6 lbs. 14 ozs.: 6A, ice ax, weighing 8 lbs.; 7, snow knife (in case) 8 , blasting tin ; 9 , ice anchor, kept in fou sizes; 10, dispatch tin, in different sizes, fitting one within another; 11, water bottle, with leather mouth and cup; 12, pemmican hatchet ; 13, harpoon; 14, harpoon gun, the harpoon dotted in position; 15 , rum can with drinking cup fitted on top; 16, canva knapsack, to be fitted over the shoulder by a strap; 17, snow shoe; 18, small sledge of four snow shoes lashed together ; 19, whale boat, 25 feet long; a, row lock, b, catch fo main sheet; 20 , ice boat, 20 feet long; 21 , punt, 12 feet long; 22, cooking apparatus, into which fits (23) the stew pan, and inside this fits (24) the kettle; 25, ladle for the same; 26, tent for eight men; 27, front of the tent; 28, back of the tent; 29, duffle sleeping bag. Most of these articles ex plain themselves, but special mention may be made of the ice tent (26), which is shown pitched, ready for use It accommodate picht men, the officer lying furthest in the eigh ling, heads and herls, with the cook mon lying ha for the next day nearest the door, which it is h:s duty to make fast; and he lies here because it devolves on him to get up in the morning and prepare breakfast in advance of the rising of his comrades. It is the privilege of the man who has come off duty as cook to lie next the officer. The sleeping equipment for use in this tent consists of various strata. Next the ice is an india rubber sheet, covered with a thick robe of soft felting; on this the men lie in their sleeping bags of the same material, inside which they get, " all standing," for there is no undressing on sledge journess; and over all ther is a ing utensils (22.23,24,25) pack into very

small dimensions, the fuel used being stearine, spirits of $\operatorname{petroleum}$ is directed on to the surface of the burning coal wine, or tallow. The harpoon gun $(19,14)$ will be fastened the gases are thus mixed in the nascent state, and, to still on a swivel at the bow of a whale boat. Its length is four feet, and it is made of the finest steel. The gun, though feet, and it is made of the finest steel. The gun, though
single-barreled, has two nipples to the lock, to avoid the single-barreled, has two nip
chance of a cap missing fire.
While traveling with the sledges, each man will be supplied with a water bottle, resembling an ordinary spirit flask in shape, but with the mouth and cup covered with a leather coating for the purpose of protecting the mouth from cold contact with the metal. The bottles will be replenished from the condensers, and the water will be kept in a fluid state from being carried in the bosom. The sledges will also carry a supply of rum of extra quality; but this will only be used in cases of emergency, as it has been ascertained that the best antidote beoinst the polar temperature is not gairit, but poaginous food, of not pirit, but oleagich pemmican is a highly nutritious and
concentrated form. oncentrated form.
Our next illustration (Fig. 3) shows the form of sleigh specially designed for this expedition. It is intended to accommodate two officers and eight men, and to carry provisions for a journey of seven weeks. Above the sleigh are shown (1, 2, 3) a gage, chisel, and hooks for catting through the ice.
Fig. 4 shows (1) the substantial sleigh intended to convey provisions, etc., to the depots to be established along the route. No. 2 is an ice drill, No. 3 a snow knife, No. 4 a grapnel or drag, No. 5 a snow shoe or skate, and No. 6 an ice anchor. In this engraving is also shown an ice saw and the manner of manipulating it.
Our next engraving (Fig. 5) exhibits sailing sleigh, intended for use when the wind is favorable; and the rigging is clearly shown. If these sleighs ever attain any such speed as is common on the Hudson river with ice boats, a very careful lookout will be necessary to prevent officers and men being engulfed in the fissures in the ice.
Each sledge will carry its cooking apparatus, shown in our sixth and last engraving. Where more is required, the apparatus will be of two kinds, one being formed entirely of metal, and the other being of wood, with an inner and outer

Fig. 5.-SAILING sleigh.
sheathing of tin, and having a receptacle on the top for condensing snow, which thus ensures a constant supply of potable water. The cooking stoves are circular, the heat being obtained by burning either spirit or stearine; and by an adjustment of saucepans, one upon the top of another, both pemmican and preserved potato or other condiment can be cooked at the same time. The whole is protected from the weather by an envelope of thick woolen cloth. A New Lighting:and Heating Gas.
It would appear as if a practical sucIt would appear as if a practical suc-
cess has been attained in the process incess has been attained in the process invented by Mr. T. S. C. Lowe, of Nor-
ristown, Pa. His method consists in ristown, Pa . His method consists in
producing, from anthracite and the deproducing, from anthracite and the de-
composition of steam, a gas of very high heating power, and then enriching this by means of crude petroleum when the gas is to be used for illuminating purposes. The anthracite is charged in a small cupola of, say, $3 \frac{1}{2}$ feet in diameter, the bed of coal being kept from 3 to 4 feet deep. When fairly ignited, the base is closed, and superheated stears is admitted through tweers a short distance above the grate bars; the steam in contact with the burning coal is decomposed, and the gas produced is a misture of hydrogen and carbonic oxide. The cost at which this excellent heating gas is pro duced is very small indeed, and its application in metallur gical processes and for domestic use offers many important advantages. Of course it is in this state entirely unsuited ρ illuminating purposes. To enrichit, a small jet of crude

Fig. 4.-ARCTIC TOOLS, ETC.

is that, with the powerful glasses with which the observers

 were provided, the disk of Venus appeared clearly defined before the first contact and after the last. Between the first and second contact and also between the third and fourth,while the edges of the sun and planet were apparently overlapped, the black disk of the latter not merely stood out in strong contrast on the white disk of the solar photosphere, but the outer portion of the planet was still plainly visible on the reddish background of the chromosphere. Moreover, when the black disk had entered to at least the distance of its radius on the solar surface, the exterior segment became surrounded with a thin luminous halo, supposed to be due to the refraction of solar light in the atmosphere of Venus. The practical object in which the observation of the phe nomenon may result is the rendering possible of observations of transits of Venus when the planet passes behind, as wel as when it crosses before, the sun. For if the very weak reddish light of the chromosphere, which forms the corona about the sun, contrasts sensibly with the black of the planet in conjunc tion, the brilliancy of the planet in op position and in full phase will affor position and in full phase will affor even a greater contrast. It is true tha ly ap times less in opposition near y six times less in opposition than in conjunction; butit is certainly sufficien to render the planet visible as it crosses the chromosphere, and this even when a purtion of the solar disk comes into the field of the telescope. The accuracy of the data obtained by these obser vations would be about six times less than that of observations similar to those of last December, owing to the greatly increased distance of the plane from the earth in the former case. But for the same reason the passages be hind would be more frequent for the hind would ber mesitions is for the take place for oppositions six times fur M Pbil quency, M. Philippe Breton (to whom the credit of the foregoing suggestions This promising improvement in gas-making has passed the is due) thinks would compensate for the lack of accuracy; and stage of mere experiment, and appears to have entered that he further points out that the comparison of observations of of practical success. Warned by the fate of several naphtha transits before and transits behind might add to the precision and petroleum processes brought out with many promises and small performance, the inventor of this process and his friends determined to thoroughly test this invention on a practical scale before giving it publicity. They erected their first gas works at Phœnixville, Pa., a place of some 10,000 inhabitants, and have since put it in operation at several small towns. It is, we understand, successfully working at each of these places, at Phœnixville having now, for eigh teen months, lighted the town to the general satisfaction. The cold of the past two winters has affected this gas no more than, if as much as, ordinary coal gas, and, consequently, the fixedness of this product appears to be fully established.
To demonstrate the adaptability of the system to the light ing of large cities, works were established by arrangemen with the Utica Gas Light Company, and we are informed that, for the past three months, the city of Utica has been lighted exclusively with gas made by this process; and we understand the Gas Light Company is so well satisfied with the results that it proposes to adopt it permanently. Not the least item of saving effected by this process is in labor. But two men-who are common laborers-are employed at the Utica works, and their time is but partially occupied the addition of one more would suffice for a production of four times the present supply. The cost of the gas in the holder is claimed to be not over one half that by the old method, while the quality of the light is very satisfactory.Engineering and Mining Journal.

Transits of Venus behind the Sun.
The observations of the transit of Venus made in various parts of the world last December have adduced, among other mportant data, one fact both novel and unexpected. This
of the measures which we now possess of the elements o both sun and planet.
The next transit behind the sun will take place in 1878, and will be followed by four others at intervals of eigh years, the last occurring in December, 1910. After tha year, two centuries will elapse before another series of eigh or nine passages will take place, among which series will be included two transits before the sun.
If, therefore, there be anything useful, which seems pro bable, to be gained by observing these back transits, prepa-

Fig. 6.-COOKING UTENSILS.
rations for the next one should not long be delayed. Four of the present series, those of $1846,1854,1862$, and 1870 , have already passed. They might have been utilized for perfecting the observations for the transit before the sun of 1874, just indeed as the one of 1878 may yet be with refer once to the transit of 1882.
$\longrightarrow-\quad-\quad$ Salleylic Acta.
In our paper for August 14, page 96, we gave an account of the chemical formation and nature of this excellent disinfectant. The following information concerning its uses is furnished by Dr. E, R. Squibb, of Brooklyn, N. Y.
'" It is used for medical and surgical purposes, either dry or in solution. When used dry, it is sprinkled on to wounds, ulcers, or dressings in the form of very fine powder, in very small quantities, either simply powdered, or mixed in various proportions with some diluent, such as starch. When used in simple solution, either for apraving surfacesor for wash er or or washes or gargles, solution of about 1 part to 300 parts of water. Where stronger solutions are required, for washes, gargles, or to moisten dressings, 1 part of the acid and 3 parts of phosphate of sodium to 50 parts of water have been used. When applied to wounds it appears immediately in the urine.
Its alleged advantages over all other antiseptics are: First, that it is far more powerful and effective in smaller quantities; and secondly, that it is, in all quantities necessary for complete effectiveness, entirely devoid of irritant action upon the living tissues. It is not caustic nor corrosive in any quantity, and never produces in-
flammation. In large quantities it may be irritant and pain ful, but yet rarely surpasses a stimulant effect, while it ap pears to be quite neutral in the very small quantities which are yet thoroughly effective; thirdly, it is said to reach and prevent processes of decomposition which are beyond the reach of all other antiseptics or anti-ferments. These processes are of two kinds, namely, vital, or those in which liviog organisms have an important part, such as that pro liviog organisms have an important part, succh as that pro
duced by yeast and many of those which occur in putrefacduced by yeast and many of those which occur in putrefac-
tion ; and chemical, or those which occur independent of vition; and chemical, or those which occur independent of vi-
tality, as the production of the volatile oils in mustard and tality, as the production of the volatile oils in mustard and
bitter almonds, the effect of diastase, etc. Now, while carbolic acid and other anti-ferments are azymotic, or complete ly arrest or prevent fermentations of the first kind, they are powerless with the chemical processes. Salicylic acid is said to be more effective with the vital ferments, and equally of fective with the chemical.
Fourthly, in quantities said to be thoroughly effective, it is no poisonous effect in any reasonable quantity.
no poisonous effect in ant reasonable quantity.
it prevents or arrests the souring of worts, washes, and beers of the brewers, and prevents or arrests the putrefactive beers of the brewers, and prevents or arrests the putrefactive
agencies which are so troublesome and destructive to the agencies which are so troublesome and destructive to the
glue manufacturers; and these and similar trades have thus glue manufacturers; and these and similar trades have thus
far seemed to be its principal consumers. Separate portions far seemed to be its principal consumers. Separste portions
of fresh milk were set aside to become sour ; one to which 0.04 per cent of salicylic acid was added soured thirty-six hours later than the other. Urine thus protected was on the third day still clear, and free from ammoniacal odor.
Professor Thiersch, of Leipsic, used it upon contused and incised wounds, and in operations, with excellent general results, destroying the fetid odor of cancerous surfaces and pyemic ulcerations. To such uses this writer would add the suggestion that, for washing out the cavities of the abdomen and chest after those operations which tend so strongly to septicemia, solutions of salicylic acid would seem to offer very great advantages, should it prove to be as bland and unirritating as it is stated to be, and yet so effective.
Most of these statements are summed up from the periodical literature of continental Europe during the past six months, little having appeared upon the subject in Great
Britain, or in this country, and nothing having been done Britain, or in this country, and nothing having been done
with it so far as known in either country. with it so far as known in either country.
If the medical art is to keep pace with the progress of the physical sciences, physicians cannot afford to pass by such articles as salicylic and benzoic acids when offered by chemistry, without investigating their effects upon disease, even though not one out of ten should repay the labor of investigation; for it is certainly in this direction of research that medicine must look with greatest hope of success to contro those abnormal
but not stopped.
The phenols, especially the so called carbolic and cresylic acids (phenol and cresol), were, and must always remain to be, most important additions to this class of agents, surpass ing in power all that had been previously tried. And if now
galicylic acid shall prove more potent than the phenols, the salicylic acid shall prove more potent than the phenols, the
further gain will be very great, and the research will again further gain will be very great, and the research will ag
lead up toward future discoreries of still greater power.'

Cortespunflemfe.

On a Mechanical Theory of Cosmical Motion.
To the Editor of the Bcientific American:
As all attempts hitherto made to frame a satisfactory mechanical theory of the motion of cosmical bodies have resulted in total failure, and as the constancy of motive energy, as well as the aberration of light, show that both the ether and dense bodies are relatively unaffected by the movements of the latter, a reconsideration of the condition of both is demanded. The problem, it is plain, is to find a non-resisting physical cause of balanced motion, the idea of action at a distance being dispensed with. It is fully conceded, from
the every fact of our previous inability to explain such mothe very fact of our previous inability to explain such mosary; and this has not only been acknowledged, but acted sary;
upon.
as a matter of fact, we observe in Nature the resolution of all cosmical bodies into systems of couples, in which each one of the couple moves in the inverse ratio of mass and distance round the axis of revolution, the force of motion being
as the sum of the masses, and inversely as the distance of as the sum of the masses, and inversely as the distance of
each from the axis. Such axis may form one of another couple, as in that of planet and satellite revolving round the sun. We are thus furnished by Nature with whatever fixed units we choose to agree upon as giving the relation of masses, distances, and force of motion, such designated units
being physical constants. The whole Universe being combeing physical constants. The whole Universe being composed of cosmical couples also argues physical connection.
Now the history of Science has shown that the test of a physical theory should be its power to consistently explain all the phenomena which it can ever be expected to cover,
the greatness of the assumption not detracting from its value, the greatness of the assumption not detracting from its value,
providing that its rejection leads to inconsistencies and inproviding that its rejection leads to inconsistencies and in-
compatibility with known facts and principles. In this case, also, it should, upon strict dynamical principles, be impossible to result in any other mode of motion than that observed in Nature. The following, I undertake to show, answers these requirements:
All ponderable matter is the condensation of an elastic ether, the mutual conversion into each other being conOf course, this transmutation is identified with a physical energy unalterable in amount, the actual and potential ener gies being equivalent in alternate change. Indeed, the opin
ion now generally entertained by the highest authorities in Science is that dense matter is, in some way, "a knot or coagulation of the ether." The amount of gross matter is, so far as we know, persistent. This, however, does not pretion is analogy in physiological action, in which matter, assimilated, takes on the constituted quality of the body of which it forms a part, having received it from the matter emitted. We know from the laws of light that the ether permeates all dense matter, and that it is denser in dense bodies than in the fiuids. Also that force does not exist apart from matter; and still that all forces (except gravity) are convertible, their
activity constantly equable, and exhibitine throuthout activity constantly equable, and exhibiting, throughout their most rapid transformations, a mechanical equivalence. The minimum limit of time occupied by molecular movement may parallel the time occupied in molecular transmutation for we can set no possible limits to either. The mutual conversion of ponderable and imponderable matter thus violates
no known law of Nature, and the totality of transmutation may be practically infinitesimal as regards time, the ether supposed to bein a condition of indifferent equilibrium towards the constitutive forces of matter, and the constant changes in Nature being due to such transmutation.
in Nature being due to such transmutation.
I look upon the ether as continuous, as shown by its nonretention of heat, but principally because I am unwilling to consider the isolation and repulsion of every atom as constituting the dynamic bond of the Universe. As a matter of fact, no part of the Universe can be isolated from the rest, and we are therefore more than justified in affirming that the all-permeating ether resists all breach of continuity; besides, we have the advantage of only applying mathematical quan tities to substance. Now, it is evident that we can have per fectly unconstrained motion and absolute material continuity, if we assume translatory motion to be a progressive mutual conversion of ether and dense matter, analogous to the transmutation of forces, and in no other way. The only resist ance thus offered by the ether is towards a break in its con tinuity, and therefore its condensation into gross matter pro duces a tension within itself, the stress being directed towards the center of the condensed mass. The same ten sion is constantly becoming loosened, however, by the con-
densed matter becoming rarified in the return transmutation densed matter becoming rarified in the return transmutation
into ether. A moving body of constant mass is thus substan tially a moving equable strain in the ether.
All motion of translation will necessarily be as enforced by a stress in the ether, bodies being non-resistent in free space. It follows that, in an equally stressed ether, there ble motionless equilibrium, if but one mass would move for the motion of all would be towards the balance of stresses. The ethereal strains will thus necessarily be, by theory as by fact, tomards each particle taken by itself, and the centers of dense masses taken as wholes, giving any body in which the particles are free to move a tendency to assume the spherical form; but if supposed alone in space, without
any tendency to move as a whole. With two bodies the case is different. The mutual tensions produced in the ether by the respective masses cause a compression towards each other, the force of which is greater as the distance is less. But if at any time lateral impulsion, sufficient to overcome the tension, be admitted, the strain being constant and the impulse temporary, they ultimately become equilibrated and form a constant couple, revolving round the center where both bodies balance according to the simple principle of leverage. As tension or pressure, when meeting with insuffi cient resistance, acts dynamically, and statically when re sistance is equal and opposite, the condensing pressure of he ether, which is physically the centripetal force, enforce approach in bodies free to move; but an angular motion,
when the stains are equilibrated, offers a constant resistance without expenditure in work, by the loosening tensions being equal in amount to those formed, and they become merely a ine of connection, along which each body acts reciprocally as driver and follower. Any number of bodies, then, each o which creates a tension in the medium connecting them, and ybt offers no resistance to the constant ethereal pressure, will all move until the tensions are equilibrated; if towards each other, with accelerated motion; and if resolved into couples, will continue in such coupled motions-a conservative sys em of parallel forces.
Although there is nothing positively known respecting the origin of cosmic systems, it appears most likely that they develope from vast vortices produced in a nebulous mass: elec rical action giving the first mechanical impulse, from which hey ultimately settle down into static systems of moving bodies: as the dust in the whirlwind, produced by electrica force, settles at length in the place where gravity gives it
position. The observed variations from the general plane of position. The observed variations from the general plane of balanced motion, and retrograde movements within the solar system, would seem to show that mechanical action has no evolved the nebule from the ether, impressing the conditions of motion and position. That the molecular condition of bodies, as altered by a transmutation in the correlated forces, will modify the conditions of mass motion, while the gravitation tensions which are towards the center of bodies remain constant, conficts with neither theory nor observa
tion. The disintegration, direction, or eccentric orbit of a comet is no more inconsistent with the balanced mass motion of dense bodies, in the system of which it forms a part than a gunpowder explosion, so long as it moves to or from a center of force. The mechanical conditions of a conserva-
tive system, as a final result from theory, is that it forms one tive system, as a final result from theory, is that it forms one Vast couple, unchangeable by any local interaction of its com-
potent parts the greater masses, by their greater moment
f inertia, deviating, in general, least from the plane and circular curve of coupled motion.
All bodies, by thus stressing the ether, enforce motion in all others; and as all move unresistingly, it follows that the enforcement to motion of all at a like distance, by the same stress, will be the same whatever the masses enforced: the power, however, being always directly as the masses enforcng. The energy of tension is therefore invariable, whatver diversity there may be in the number of bodies enforced o move, or additional motion produced by the disintegration of a body itself. Nor can intervening bodies cut off the effect, being themselves unresistingly enforced, and adding their own nforcement. Theory and observation thus coincide.
The intensity of stress in the ether necessarily bears a defnite relation to the cube of the distance, being greater as he condensed mass is greater, and manifesting itself inde pendently of time. The motive force thereby induced is herefore as the joint mass of a couple. And as the force of motion is as the time of moving squared, so the time squared will diminish as the cube of any assignable distance, render ing the amount of motive force during one revolution for any equal couple invariable, however far apart. Thus every mass of matter in the Universe, equal to one cubic mile of the verage density of the earth, enforces a motion in all others and would enforce a motion of its own particles, if disintegrat d, sufficient to produce revolution round a sphere of ether o ne mile radius in about 173 minutes : the space being divided among the disintegrated fragments, and multiplied by the dditional bodies.
It will be evident that, with this mode of conceiving of the other and ponderable matter, there is nothing that conflicts with the mode of action of the radiant forces. The etherea medium by resisting equably all breach of continuity, is substantially an isotropic solid, and all particles of gross mat ter, centers of spheres of tension. Waves of vibration will thus naturally run transversal to the direction of propagation to all distances. All possible loss of radiant kinetic energy, by friction in interstellar space, may become potential in the transmutation of ether into dense matter. For the struct ural qualities of the various elements will, in the return ransmutation into ether, impress upon it their characteristic motions, which will travel onwards until their energy is ab sorbed by ethereal friction, or taken up by the similar ele ments of other ponderablematter. The radiantforces poss essing a well defined amount of mechanical energy would seem to necessitate the constitutive qualities of every portion to be constantly modifying the constitutive qualities of each ther ;although only material atoms in indifferent equilibrium as to motion, as on a photographic plate, or bodies of similar constitution, may palpably manifestit. Optical phenomenashow the ether to be in a condition of indifferent equilibrium as to form of motion; and it is not unreasonable to look upon it as being so in regard to constitutive charge. Electro-mag etic induction and polarity appear more intelligible in the ight of the stressed connection of every particle of matter with the equal and opposite fiow within the stress of tight ning and loosening tensions. As there can bs no translatory motion in the ether save in those portions condensing, constant of aberration necessarily follows. But as the
modes of change into ether are as various as the constitution modes of change into ether are as various as the constitution
nd conditions of ponderable matter, we may have an inf and conditions of ponderable matter, we may have an inf
nite diversity in the lengths, directions, and velocities of nite diversity in
Should the above theory meet with general acceptance, not only will the dispute between the advocates of action at a distance and those of action by contact have become ended but a necessary Creative Power, in constant activity, will be seen to be consistent with laws of evolution through a per sistent physical force: views hitherto deemed irreconcileable Philadelphia, Pa.

William Denotan.
To the Editor of the Grasshopper Plague.
In your issue of July 7 there is a paragraph in relation t the late invasion of grasshoppers; it contains a suggestion hat said invasion may prove a blessing instead of a curse. The phenomenon of a new variety of grass springing up in the localities lately infested with these insects is not as surprising as one may be led to suppose. A fact not generally known, but nevertheless quite worthy of attention, is that about three quarters of the newly born grasshoppers die while changing their skin, from the effects of cool rains, heavy winds, or otherwise; these, together with the excre ments or detritus of the grasshoppers, are the very best reinvigorator of withered or exhausted grass roots; conse quently the extraordinary growth of luxuriant grass can be tributed to the nourishing deposits made by these insects I cannot positively assert that the grass spoken of in your article is the same variety as that which came under my observation in Southern Russia, under the same circumstances, but I should be very much surprised if it were not. That which I examined grew in spots where no grass suitable for pasture had been previously known to grow; it was tender and very sweet, so much sothat 6 per cent saccharin matter was extracted from it. It was of a bright emerald green, and cattle ate it with avidity; it was called by the inhabitants solodycia or sweet grass. It continued to grow for 3 or 4 jears, decreasing in richness each season, until it became coarse, insipid, and dry, and totally unfit for grazing. And more wonderful still, it was the facsimile of the grass which formerly grew in these places. I therefore conclude that oth grasses, the rich and the poor, come from the same oots, and not from seeds of another country brought by grasshoppers. The grass losing its richness is explained by the exhaustion of the soil, which is replenished by th
Grasshopper manure. Prespre ZaLEeki.
G. New York eity.

