Srientifir बAmerican.

MUNN \& CO., Editors and Proprietors. POBLISHED WEEELY AT
NO. B7 PARK ROW, NEW YORK.
o. d. MONS. \quad A. $\begin{aligned} & \text {. BEACE. }\end{aligned}$

a. E. Beach.	
TERMS.	
One copy, one year, portage incladed.......................................	
Over ten coples, mame rate each, postage included.:.................. 9 v0	
Crche the new law, postage is pajable in advance by the pablishers, andthe	
the subscriber then recelv	
Offce and Btate addross so pleinily written, and also state at which time thes	
Wish their subscridtions to commence, otherwise the paper will be sent from the recelpt of the oraer. When requested, the numbers can be sapplited	
dence. ttate former addresa, as well as give the new one. No cnanges	
ence. state former address, as well as give the new one. No char be made unless the former address is given.	

VOLUME XXXIII., No. 5. [New Series. Thirtieth Year.
NEW YORK, SATURDAY, JULY 31, 1875.

The strengti of insects.
It is said that he is a philosopher who can accept the in evitable without repining. There are times in our lives when the most unpleasant things are forced upon our atten tion, and we fail with our best efforts to rid ourselves o them. As warm weather advauces, we need no argument to convince us that the insects which destroy our vegetation, offend us with their presence, and even without permission cause our own blood to course through their veins, are among the inevitables. To accept these without complaint or repin ing would surely give us undisputed title to the name of plilosophers; and if we could find anything of pleasure in stead of annoyance in our involuntary contemplation of them, we would be doubly worthy of the appellation. That they all serve some useful purpose, cannot be denied; and if we knew their whole history we should doubtless be fully con vinced of this. Some of our greatest pests, as flies and mos quitoes, have already been shown quite clearly to be our friends rather than our enemies.
Besides their practical benefit, there is no little interest in noticing the great physical force which they exert. We cal a man, a horse, a lion, or an elephant strong; but it is very easy to see that, proportionally, insects are the strongest animals that live. They manifest their strength in running, leaping, flying, and sometimes in other ways. Some insects have been known to run so rapidly that, if a man of ordinary size should make as good time, proportionally, he would run more than twenty miles per minute, or sixty times the ordin ary rate of a railroad train. A locust with the aid of its wings will leap 200 times its own length; to equal which, a man would need to leap nearly a quarter of a mile. A flea without wings, will leap the same relative distance; and it has been estimated that, if a horse should jump as far in proportion to its weight, it would scale the Rocky Mountains in a single leap. Most insects jump by means of their hind legs and the latter part of the hind body; but one family of beetles-the elateride or spring beetles-leap vertically when on their backs, by use of a spine on the hinder part of the thorax which fits into a cavity behind it, and which, when forcibly closed and acting like a spring, throws the beetle several inches into the air. While in the very act of writing this, one of this family pays mea visit, and shows its powe by making several springs at least six inches in hight, which is about twelve times its own length. Some dragon flies ar among the strongest on the wing. They can be seen flying
about pools of water after smaller insects for hours at a about pools of water after smaller insects for hours at a
time, turning, wheeling, going sideways, and in nearly every conceivable direction, and never seena to think of being tired And, what is very remarkable, they have the power of chang ing at right angles the direction of their flight, and so sud denly that one can hardly ever be quick enough to hit or cap ture them. The Entomological Magamne speaks of one of these that flow on a vessol at sea when the nearest land was
the coast of Africa, 500 miles away. A humble bee has been seen to follow a rail car going twenty miles per hour, against a strong wind, for a considerable distance; and it even wen faster than the car, as it flew to and fro and in various zig. zags around the vehicle. Some beetles have a flight swifter, considering their size, than any bird; and Linnæus mentions a butterfly that sometimes travels more than a hund red mile n the wing at one fight; he also says that an elephan hav tain. All have doubtless seen a beetle move a candlestick or lamp in his efforts to escape from underneath it; and he has been compared to a prisoner in Newgate shaking the build ing with his back. Pliny said, long ago, that, if we compare ing with his back. Pliny said, long ago, that, if we compare
the loads of ants with the size of their bodies, "it must be the loads of ants with the size of their bodies, "it must be
allowed that no other animal is endowed with such strength allowed that n"
Some interesting and ingenious experiments for measuring the strength of insects have lately been made by a Belgian naturalist named Plateau. He first tested their power of raising weights while walking on a level surface. His novel method of doing this was to harness the insect by a horizontal thread running over an eusily-moving pulley, at the othe end of which was attached a scale pan for holding sand. To keep the insect in a straight direction, he fenced it in between two parallel strips of glass; and to keep it from slipping, he forward, it pulled the thread over the pulley and raised the forward, it pulled the thread over the palley and raised the
pan, and the experimenter poured sand into it until the inpan, and the experimenter poured sand and the sand it had
sect could move no longer. The insect and the sect could move no longer. The insect and the sand it had raised were then weighed, and the relation between the
weight of the two was obtained. He found that the insect could raise forty times its own weight; while by a similar nethod a man could raise only five sixths of his weight, and a borse only one half or two thirds of his. By repeating ach experiment three times and employing a vast number of insects of various sizes, and comparing his results, he came to the conclusion that the smaller insects in the same group invariably raise the greator weight in proportion to heir own weight.
He then tried their leaping power, by fastening the wings and elytra, and by suspending under the thorax (by a thread) ths of lead set in was. He increased the weight till th insect could no longer raise it. Then, by his determination asise in this way only about one and a half times their own raise in this way only about one and a half times their own
weight, the smaller ones could raise three or four times heirs
To test the pushing power of insects, he placed some of them in a long cardboard tube blackened on the inside and admitting light only by a transparent glass at one end. To this glass was attached a lever which drew the scale pan over
the pulley, as in the first experiment. The insect, in its en the pulley, as in the first experiment. The insect, in its en deavors to escape, pushed against the glass, moved the lever, and thus raised the weight. As results of these experiments power varied from three or four to eighty or ninety times he insect's weight.
The power of flight possessed by insects was tested by fixing weights to the body in the same way as in leaping. He found that they employ much less force in flying than in her efforts of strength; perhaps this is because, unlike irds, they are not intended to carry weights through the air. Beetles raise in tilght from one sixth to twice their
weight; flies, three times their weight. A drone weighs four imes as much as a bee, and drags less than fifteen times it weight, while the bee drags twenty-three or twenty-four imes her weight. But in flging, the bee raises nearly her own weight, while the drone raises a weight equal to only alf its own.
By these experiments, he found that his law applies equally well, whether the strength is eserted in walking, leaping pushing, or flying. He finds that it also applies, in a mea sure, to the entire class of insects taken together, as well as to the same group of insects taken by themselves. There are some exceptions to this, however, which are probably due to differences of structure. By dividing all the insects into three groups-lightest, medium, and heaviest-he finds that the law holds good. Then the relative force is repre sented by the numbers 26,19 , and 0 respectively. The fact eems to be that the strength of an insect increases with the surface of a section, and not with the volume of its muscles. This would make the weight increase facter than the motive power, and be consistent with the law that the smallest are
strongest. It takes but a moment's reflection to see the wis. om of this arrangement. Of course the hardness of the soil the weight of the grains of sand, and all the resistance to be vercome are equally great to the small as to the large in sects, and it needs greater relative strength to give the small nes a fair chance in the "struggle for existence" with their arger associates.
But these facts and conclusions give rise to other questions which are not so easily answered. Since insects are stronger than other animals, on what food do these small Cæsars feed that they are grown so strong? Is their physical organiza ion formed on different mechanical principles? Have they ower of creating or utilizing greater force from the foo they eat? Their food, being animal and vegetable, does not seem to differ materially from the food of other animals; and they seem to use the same mechanical powers in their motions. They are, in the perfect state (in which state they manifest their great strength), as a rule, very small feeders, and some eat even nathing. As their strength must come from the food they eat, the question as to how so much can come from so little is as interesting as it is difficult. So fa laws of the relations between the amount of food consumed
and the strength which it generates. The difficulties ar perhaps not insurmountable; but one great disturbing ele ment would probably appear in the fact that insects may
store up force in their earlier stages which they use in the store up force in their earlier stages which they use in the perfect state.

RAPID TRANBIT IN NEW YORE

A commission, appointed by virtue of a recent law of the State legislature, is now holding sessions in this city to de ermine upon the best plans for city steam railways. For merly it was considered that the underground method wa by far the best for a narrow and crowded city like New York as it occupies no portion of the street surface, is out of sight, ccasions no disturbance by its operation, and furnisbes the most abundant accommodations for speed and the largest traf fic. In those davs the proud New Yorker had determined to have the best and most substantial railway works that could be bilt. But that was prior to the Tweed and other robberies efore the debt of the city had been swelled to over a hun dred millions of dollars. Cheaper structures, it is now sup posed, will answer, and on this account the elevated plan has posed, will answer, and on this account the
come to be looked upon with special favor
At a recent sitting of the Commissioners, no less than thirty diferent plans for rapid transit were presented, all of which were for elevated tracks except one, the latter being for canal railway between the buildings, with bridges or tunnels or the street crossings.
All of these elevated plans involve the placing of bridge tructures of some sort, in several of the principal streets and there appears to be a peculiar unanimity among the citi zens on the subject. Nearly every person is in favor of such oads, but no one wants it to run in his street or in front of his store or dwelling. The Sixth avenue people think that an elevated railway is greatly needed, and will do their share toward its construction, provided it is erected on Seventh venue. The Seventh avenue people are equally in favor of the bridge, but are ready to rise in arms if their magnificent horoughfare is disfigured with it; they are clearly of opin thoroughfare is distigured with it; they are clearly of opin
ion, however, that Eighth avenue is the proper place for it. on, however, that Eighth avenue is the proper place for it.
The road must also cross the town somewhere, and those The road must also cross the town somewhere, and those
who reside on 42d, a fine broad street, are in its favor, prowho reside on 42d, a fine broad street, are in its favor, pro-
vided it is erected on their neighbors' premises, a quarter of vided it is erected on their neighbors' premises, a quarter of
a mile distant, say, on 37th street; and they are of opinion hat the constant passing of cars and locomotives in front o he second story windows of their friends down there wil mpruve their prospects and bealths, which now suffer by eason of too much quietude and seclusion.
To satisfy the public will be an apparently difficult task for the new Commissioners; but we wish them success. Tiney will doubtless find out, before their labors are finished, that the building and equipping a first class substantial railway or rapid transit, capucitios being equal, is just as espensive n the elevated as on the underground plan.
In the neighboring city of Brooklyn, the projected elevated treet railway is also accepted with pleasure by the people. ' But when the route of the proposed road is mentioned ther is,' says the New York Herald, "at once a persistent and screeching dissent Property bolders on Myrtle avenue come orward and scream against building the road on that ave nue.'

A CITY ONE HUNDRED AND EIGHTY THOUSAND YEARS OLD.

In the current number of the Overland, a Californian gecloist reviews the geological evidence of the antiquity of a human settlement near the present town of Cherokee in that State, and estimates the age of that most ancient of discov ored towns to be not less than 180,000 years!
The data for all such calculations are necessarily uncer tain, as they are derived from the present motions of the continents and present rates of erosion: still, from the changes that have taken place since the pioneers of prehis oric California left their traces on its ancient sea shore there can be no doubt that thousands of centuries must have come and gone
The traces in question are numerous stone mortars, found in undisturbed white and yellow gravel of a subaqueous formation, not fluviatile, underlying the vast sheets of volcunic ock of which Table Mountain is a part. In one instance mortar was found standing upright, with the pestle in it, ap arently just as it had been left by its owner. In some cases the mortars have been found at the depth of forty fee from the surface of the gravel underlying Table Mountain The distribution of the mortars is such as to indicate with great positiveness the former existence of a human settle ment on that ancient beach when the water stood near the level at which they occur: a time anterior to the volcanic outpouring which Table Mountain records, and anterior to the glacial epoci.
The recent geological history of that region may be brief summed as foilows:
Previous to the placing of the mortars in the position in which they have been found, the early and middle tertiary sea level had receded to the position of the coal beds under ying Table Mountain, fully one thousand feet below the evel of Cherokee. Subsequently, in the pliocene period here was a further subsidence of about fifteen hundred feet omething like six hundred feet occurring after the mortars had been abandoned. All this, as has been noticed, took place before the volcanic outlows which covered up all the ancient detritus of the region, including that of the ancien ivers (whose gravels have furnished so much of the gold of California). The geological age of the river period was de rmined by Lesquereux from specimens of vegetation, now xtinct, collected in thesurvey of the ancient rivers: speci mens indicating a flora of the pliocene age, retaining some characteristic miocene forms

