uniformly and rapidly, by having two short pieces of in inch ${ }^{\text {a }}$ divide by the number of revolutions per minute. Example india rubber hose attached to the bottom of the can, the other end of the hose terminating in a tin rose, similar to that on watering pots. The liquid should be well stirred at each filling of the can, and it should be frequently and violently shaken during the time of applying it. An active man can apply the poison to four acres of potatoes in a day with ease, and two applications, at proper intervals, will save the crop. The cost is estimated as follows: Hauling water, mixing, and applying the liquid, 30 cents per lb., two applications, 60 cents. 2 gallons molasses, 60 cents; 2 lbs. Paris green $\$ 1.40$; total, $\$ 2.60$

THE POWER OF SMALL ENGINES.

One of the most frequently recurring questions, asked by r cornd fro m an engine of gim pressure and number of revolutions per minute. As we have freq uently explained, questions of this sort can only be de-
term ined definitely by means of tests. 'j he rules, ordinarily foun e^{d} in works on the steam engine, for calculating the hors ${ }^{e}$ power of an engine,give results that rarely accord with thos obtained in practice. Indeed, it is impossible to lay down rules that will apply to all cases, the construction and performance of differentengines being so varied. We feel, readers who want information about the small engines which they are building or using. We have therefore compiled a table, from the best data at our own command, by which the performance of small engines of good design can be approxi mately estimated. We have also added some examples to illustrate the use of the table. It is designed for engine with cylinders up 6 inches in diameter, and for piston speeds up to 400 feet a minute: the connection of the engine with the boiler being supposed to be tolerably direct, the ports and pipes being of sufficient size, and the steam valve closing when the piston has made of the stroke. Even with all these suppositions, which probably represent the average conditions of small engines, the table will give results that are too large in some cases and too small in others, for the very reason that it does represent average conditions. With these explanations, we will proceed to illustrate its use

1. To find the area of a piston, knowing its diameter: Mul tiply the square of the diameter by 0.7854 . Example: The diameter of a piston is 3 inches. What is its area? Th square of 3 is 9 . Multipying 9 by 0.7854 , we obtain 7.0686 as the area of the piston in square inches. It may be well to observe that, whether the piston has either a flat, rounded or raised end, its effective area is to be calculated from th iameter, as explained above.
2. To find the speed of a piston in feet per minute, when the length of stroke and the number of revolutions per minute are known: Multiply twice the length of stroke, in inches,
by the numberof revolutions per minute, and divide by 12. by the numberof revolutions per minute, and divide by 12. Example: An engine has a stroke of 3 inches, and makes 300 revolutions a minute. What is the piston speed? Twice
the length of stroke is 6 inches. Multiplying by 300 , and di the length of stroke is 6 inches. Multiplying by 300, and viding by 12 , we obtain 150, as the piston speed in feet pe minute
3. To find the horse power of an engine, when the diamete f the cylinder, the length of stroke, the number of revolutions per minute, and the pressure of steam in the boiler are known: Find the area of the piston, in square inches, and解 culated piston speed, and multiply it by the area of the piston. Example: An engine has a cylinder 2 inches in diameter and with a length of stroke of 2 inches. It makes 400 revolutions minute, with a boiler pressure of 50 lbs . per square inch. What is the horse power? Square of diameter of piston 4 $\times 0.7854=3 \cdot 1416$, area of piston, in square inches. Twice
the length of stroke $4 \times 400=1600 \div 12=133 \%$, speed of pis on in feet per minute. Nearest piston speed in table is 130 and the number in table corresponding to piston speed of 100 feet per minute and boiler pressure of 50 lbs . is 0.074 ad the number corresponding to piston speed of 30 feet pe minute, 0.022 ; this will give the number corresponding to iston speed of 130 feet per minute, 0 096. Multiplying th
arston, $3 \cdot 1416$, we obtain, horse power, $0 \cdot 3$
The power ment made by the method explained on page 273 of our volume XXXI.
If any of our readers test their engines in this manner, we would be glad to receive the results of their experiments which will be useful in enabling us to correct the table, if ecessary.
4. To find the diameter of cylinder for an engine to develope a given horse power, when the piston speed, in feet per minute, and the pressure of steam in the boiler are known: Find, in the table, the number nearest to the given piston speed and pressure of steam. Divide the require horse power by 0.7854 times this number, and take the square root of the quotient. Example: An engine is to develope 2 horse power, with a piston speed of 150 feet a minute, and a boiler pressure of 100 lus. per square inch. What able, for piston speed of 100 feet, is 0.161 , and for 50 feet is 0.081 , giving a total of 150 feet $=0.242$. Multiply this by 0.7854 , and we have a result of 0.1900668 . Dividethe horse power by the figure $0 \cdot 1900668$, and the quotient is $10.5226+$. The square root of 10.5226 is $3 \cdot 24+$, or about $3 \$$ inches, the equired diameter of cylinder
5. To find the length of stroke, in inches, when the piston speed, in feet per minute, and the number of revolutions per minute, are known. Multiply the piston speed by 6,and
divide by the number of revolutions per minute. Example:
The piston speed of an engine is 200 feet per minute, and the The piston speed of an engine is 200 feet per minute, and the
number of revolutions per minute is 300 . What is the length of stroke? Multiplying 200 by 6 , and dividing the product, 1200 , by 200 , we obtain 4 inches, as the length o stroke.

In this article. we have presented the subject as plainly a possible, so that it can be used by all who have queries on power developed by small engines.
fective horse power of an engine with a piston one square inch in area, for different stean pressures and piston speeds.

)
of the statements made in behalf of the new motor. Paine reply to our strictures, reaffirmed all that he had pefore claimed for his motor, which he now alleged was far below the actual truth; he said that he was then engaged in build ing a great and powerful engine which would be ready in ninety days, which would develop 500 horse power from ingle cup, completely annihilate the figures given by us, an show to the world that people who, like the editor of the
Scientific American, undertouk to doubt or criticise the Scientific American, undertook to doubt or criticise the performances of a machine they had never seen and were practically unacquainted with, were jackasses, or a with the experiments of Grove, Carpenter, Mayer, Faraday, Liebig, and a host of thers, relative to the doctrines of correlation and conserva tion of forces. Therefore, I am no tyro, but the peer of any athority you may quote; and as such I unqua hat, instead of the miserably small result of 67,000 foo ounds from three grains of zinc (as stated in the ScIENTIFI AMERICAN) we should realize $67,000,000$ foot pounds. Th orces developed by the action of a single Bunsen quart cell, utilized and converted into power, would drive the larges hip afloat with a velocity only limited by the strength of the ship's frame; and you and I will live to see the day, if
our lives are lengthened to the usual term, when this statement will be verified, and that, too, without involving th question of perpetual motion.
This sort of talk prevailed with the capitalists; they swal wed the bait, paid in theirmoney, took teir sbares- with out being urged"-and that was the end of the five hundre horse power, no perpetual motion, ine cup,engine, and motor. The Keely motor deception in all its aspects up to this dat is but a repetition of the Paine affair. The originator is very honest; all the people who assist at the deception believe in him and in his machine. They know not precisely how the thing is done, or by what laws it is governed, but they know hat it is done; and any suggestion to the contrary they seem tonsider as a reflection on their personal intelligence an or

The Keely performance is as follows

Keely blows from hislungs, for a period of 30 seconds, into nozzle upon the generator. He connects the same nozzle by means of a small rubber tube, with the hydrant, and lets in five gallons of water under a pressure of 264 lbs . to the nch, then shuts off the water. He opens the valve of a pipe of $\frac{1}{10}$ of an inch bore, between the generator and a gage or pressure indicator; and lo! the gage indicates $10,000 \mathrm{lbs}$. to the square inch
Such, in sum and substance, is the Keely motor, as se forth by the learned counsel of the company and corroborated by various mechanical experts, in the statements they hav now freshly prepared for the especial benefit and enlighten ment of the readers of the Scientific American : corrobo ated also by scores of other intelligent persons, so Mr. Collie assures us.
The majority of our readers will doubtless conclude with us that, on the showing of the parties themsel ves, the whole hing must be classed as a second rate jugglo-a mechanical Katie King arrangement, too contemptible for serious consid eration
In our article of June 25, we assumed that the chief pur pose of the deception was to wriggle money out of silly peo ple. It appears, from the confession with which Mr. Collier has favored us, that the very first practical use he made of the pretended invention was to obtain money from New York capitalists; that the second use was to procure mone from the same source; the third the same, and so on, until the treasury is considered full enough for the time being. W attribute to Mr. Collier no dishonorable motives or method in financinghis company ; but we think he confirms our state ment as to the uses of the alleged invention. In connectio with the letters from the various parties, given elsewhere some further comments will be found.

Synthesis of Therpylene,

Some time ago M. Berthelot published investigations in hich he showed that the essence of turpentine, represented y the formula $\mathrm{C}_{20} \mathrm{H}_{18}$, resulted from the condensation of a special carburet, $\mathrm{C}_{10} \mathrm{H}_{8}$. This last, termed therpylene, no one has ever seen until the present time, when M. Bouchar dat announces that he has produced it by synthesis.
Mondar, the day following July 4 (which this year comes on Sunday), will be, as usual, observed as a holiday in this city. Pressmen, as well as men in other occupations, will suspend work on Monday; therefore if subscribers to the Scientific American fail to get this issue of the paper till a day or two later than usual, they will know the reason.

The body of an American, John Blackford by name, has recently been found in a large ice block in the vicinity of Mont Blanc, after several days of thaw. The unfortunate tourist miod three years ago to ascend Mont Blanc without a are perfectly preserved.

