

MUNN \& CO., $\overline{\text { Editors }}$ and Proprietors. published weekly at
NO. 8 I PARK ROW. NEW YORK.

o. D. MUNN.
 A. $\mathbf{\text { . }}$ beach.

TERMS.

One copp, one year, postage included.. 180
One copy, six months, postage 1ncluded...............
Olub Ratos:
Ten coptes, one year, each 8270 , postage included...................... 827008
(18) By the new law, postage is payable in advance
e subscriber then recelves the paper free of caarge.
Notr.-Fersons subscribing will please to give their rull names, and Post Uffice and State address, plannly written, and also otate at which time they
wish their subscriptions to commence, otherwise the paper will be sent from the recelpt of the order. When requested, the numbers can be supplied from January 18 st , when the volume commenced. In case of changlug ressdence, state former vidress, as well as give
be made uniess the former address is given.

VOLUME XXXIII., No. 3. [New Series. 1 Thirtieth Year.
NEW YORE, SATURDAY, JULY 17, 1875.

WORK FOR ARCTIC EXPLORERS.

Thescientific work, laid out for the arctic exploring expedition which Jately sailed frem England, probably excelled in scope and variety that of any preceeding expedition as remarkably as its material outfit did. The instructions for the guidance of the observers were prepared by the most eminent Eng lishmen in the several departments of research, and are minute and comprehensive enough to keep the explorers from idleness, whatever else may befall them.
Popularly the grand object of the expedition is to reach the pole; practically that is one of the least important of the many purposes of the voyage. And a couple of years spent in arctic regions can scarcely fail to be fruitful scientifically, even if the pole still remains unwon. There is much to be learned of the natural history of those frigid regions, and many physical phenomena await solution there. Chief of the latter may be regarded the magnetic condition of that portion of our globe
Accustomed to the near coincidence of compass north with astronomical north in this part of the world, it is all but im possible for us to form any adequate conception of the mag netic confusion that the explorer has to deal with in arctic regions, when compass north is no longer toward the pole but toward an area west of Baffin's Bay, in north latitude 70°, -the magnetic pole. This point will lie to the astronomical southwest of the expedition when it reaches Smith's Sound, where the Alert hopes to go into winter quarters; in other words, astronomical southwest will there be identical with by compass.

As a guide to the expedition, three provisional maps have been constructed, showing, for the whole unexplored area, the magnetic condition which may be expected if the distribution of terrestrial magnetism be such as our present knowledge indicates. The most important of these maps of the magnetic elements shows the assumed lines of compass di rection over the whole circumpolar area, and the region of Greenland, Baffin's Bay, and Davis' Strait, and also, approximately, the lines of equal declination between the north pole of the earth and the northern magnetic pole over the same areas. The importance of such information to the ex plorers is shown by the following example
Suppose the expedition to have arrived at the parallel of
85° in longitude $60^{\circ} \mathrm{W}$. of Greenwich, at which point the pole will be due east by compass. They start in an astropole will be due east by compass. They start in an astronomically easterly direction for a sledge journey along the
parallel of 85°. In longitude $20^{\circ} \mathrm{W}$. of Greenwich the north parallel of 85°. In longitude $20^{\circ} \mathrm{W}$. of Greenwich the north
pole will bear northeast. When longitude $40^{\circ} \mathrm{E}$. of Greenpole will bear northeast. When longitude $40^{\circ} \mathrm{E}$. of Green-
wich is reached, the astronomical and magnetic meridian will correspond; the north pole will lie between the explorers and the magnetic pole, and the compass will therefore point to the true north. In longitude 180° the pole will bear due west and in longitude $112^{\circ} \mathrm{W}$. of Greenwich, the explorers will have arrived between the north pole and the magnetic pole, and consequently the north pole will bear due south.
Should the expedition be so lucky as to reach the pole, all the points of the compass will be south; latitude and longitude will vanish; the north star will lie directly over head, and all the other stars will revolve around it, neither rising nor setting. The moon will remain for days above the horizon, and the sun, in summer time, will make an unthe horizon, and the sun, in summer time, will make an un-
broken circuit of the heavens, yet always in the south. Time in its ordinary sense will cease ; morning, noon, and night will be one; the dial of the heavens will be a blank.
The astronomical instructions prepared by Mr. Hind, superintendent of the " Nautical Almanac," give data for two eclipses of the sun in the polar area in 1876 and 1877 ; also a list of occultations of stars by the moon visible in or near the probable winter quarters of the expedition, $82^{\circ} \mathrm{N}$. latitude and $60^{\circ} \mathrm{W}$. longitude, between September 1875 and March 1877, which will enable the observers to employ the best means of determining their longitude.
Special arrangements have been made for the spectroscopic study of the aurora, the instructions for which were prepared by Professor Stokes.
Professor Tyndall furnishes hints for the observation of glacial phenomena; the rapidity of the conduction of heat through ice; the rate at which the ends of glaciers advance through ice; the rate at which the ends of glaciers advance
into the sea; whether icebergs are formed by the buogancy into the sea; whether icebergs are formed by the buogancy
of the masses of ice thrust under the water, or by the weight of overhanging ice cliffs whose bases have been worn away by the waves; what kinds of matter are brought down from the interior by glaciers and transported by icebergs; the condition of rocks and hills along the sides of glaciers; the color of the ice and its veining at the ends of glaciers; also the color of the sky, the presence or absence of germs in the air the range of sounds, and so on.
The solution of many weather problems will be looked for through continuous meterological observations, especially with regard to storms which pass over the extreme northern part of Europe, many of them being connected with areas of barometrical depression which follow tracts lying within the arctic zircle.
Especial attention will also be given to tidal phenomena particularly of the tidal wave which sets southerly through the northern part of Smith's Sound, and indicates an open passage along the northern coast of reenland. Pendulum
observations will also be made, with a view to obtaining data observations will also be made, with a view to obtaining data
toward the determination of the earth's figure in high north toward the det
ern latitudes.

ern latitudes.

The natural history of the region explored will be attended to with equal care. The instructions for biological and botanical observations were furnished by Professor Huxley and Dr. Hooker. The latter particularly refers to the deficiency of our knowledge respecting the hybridizing of certain o the species of arctic plants, especially those of draba, saxifra g a, and salix. He suggests also that the pollen of the variou species should be carefully examined, and observations made
as to whether it is carried by wind or by insects, and gives minute directions for observations touching the power of minute directions for observations touching the power of
seeds to resist cold without loss of life. In this connection seeds to resist cold without loss of life. In this connection
it may be remarked that not more than 762 species of flower ing plants have been found in arctic regions, the number be longing exclusively thereto being about fifty. Arctic Green land furnishes 207 species, of which 195 are Scandinavian types, while only 12 are American and Asiatic types. Botanically, therefore, Greenland is much nearer to Burope than to America. Among the four plants collected by Dr. Bessell, of the Polaris, in latitude $82^{\circ} \mathrm{N}$.-the extreme northern limit of phanerogamic vegetation, so far as known-was a near relative of our familiar dandelion.
With microscopic plants and animals the arctic seas are abundantly furnished, and Professor Huxley directs especial attention to them in connection with the composition of the sea bottom for the testing of certain modern palæontologica theories. Instructions for the collection and pren of such low forms of life were furnished by Dr. Allman, who
also directs attention to the phosphorescence of the sea, as also directs attention to the phosp
far as it is due to living organisms.

The explorers are also furnished with descriptive lists of the mammalia which may be seen, with directions for obser vation and the preservation of specimens; also with instruc tions with reference to the collection of geological and mine ralogical specimens, meteorites, meteoric dust, and other matters of interest.

INSTABILITY OF THE EARTH'S SURFACE

We are so accustomed to consider the solid earth to be the type of perfect stability that it requires quite an effort of the mind to elevate itself to the thought that even the rocks, which appear to be the foundation on which everything else rests, are of an unstable nature, subject to upheavals, de pressions, and dislocations. Every observing mind that has seen bold mountain regions, railroad cuttings, or mining shafts must have been struck with the evidences of mighty disturbances, although perhaps a book on geology never
came under his eye. It is the study of these disturbances which has created this science one of the most interesting in the whole field of human knowledge

It was formerly supposed that the only cause of such changes was volcanic action, and that all the metamorphoses which have taken place were sudden and violent. The observations of volcanic action and of the changes which it rapidly produces in the earth's surface necessarily led to such conclusions; but patient investigation, during long periods of time, has led to the knowledge of a mode of change, for merly unsuspected, by slow upheavals and depressions, taking place gradually, at a rate of one or more feet in a century. Such changes have been and are now constantly taking place, and necessarily must, if prolonged for a sufficiently long period of time, essentially change the earth's surface, not only as to the relative hights of continents and islands, but, in connection with the ocean, as to the whole cosmography of our globe.

We will not speak of the supposed continent Atlantis, mentioned by the ancient mythologicai writers, which was, they asserted, sunken in the Atlantic ocean; but we will only mention positive facts, recorded as a result of careful obser vation. That the coasts and bottom of the Baltic sea are rising is an old and well established fact, the ancient shores being several thousand feet from the present water's edge; while Great Britain and part of the west coast of Eu rope, Holland, Belgium, and France are in a sinking condition. The evidences in and around the British Channel have long since proved the probability of this, while the Astronomer Royal has announced that minute observations prove stands, has been sinking ever since its establishment
In regard to our continent, it has been proved that the whole Pacific coast, especially California, with all its mountains, is perpetually rising, and that at a comparatively rapid rate. The land containing in its bosom our great American Lakes is slowly sinking; while southern Indiana, Kentucky, and the surrounding States are rising. Geological investigations prove that our great lakes, except Ontario, had for merly a southern outlet; until, by gradual northern depres sions and southern upheavals, a northern outlet was formed from Lake Erie into Ontario, about 40,000 years ago. This outlet, the Niagara river, is still wearing away its channel The division line, of the watershed south of the lakes and the Mississippi valley, has since that time been steadily tra veling southward; and when Chicago recently turned the waters of Lake Michigan, through the Chicago river, into the Mississippi valley, the old state of affairs was artificially reestablished.

New Jersey is sinking, with New York city and Long Island, at the estimated rate of about 16 inches per century The coast of Texas is aseending at a comparatively very rapid rate, some observers stating that it is as much as 30 or 40 feet in the last half century

Combining these observations with the results of the recent deep soundings of the United States steamer Tuscarora in the Pacific Ocean, we find that the bed is evidently a sunken conPacinct, abounding in volcanic mountains some 12,000 feet high, many of them not reaching the surface of the ocean and others which do so forming the numberless islands o the Pacific. The study of the coral rocks proves that this sinking has continually been taking place during several cen taries, and observations of the coast will undoubtedly revea the fact that it has not yet ceased.
The most eminent German geologists and ethnologists now maintain that the locality of man's primitive origin, the sea of the so-called Paradise, was in the Pacific Ocean south o Asia, whence the race slowly diffused itself northward to Asia, westward to Africa, and eastward to Australia. When the great Pacific continent slowly sank, so that the ocean commenced filling the valleys, man retreated to the moun tains, which, by continued sinking, were transformed int islands, and now form the many groups of Polynesia. 'Th insularity of the thus preserved races was not productive of civilization, which requires conflict, in which the superior in the end gain the victory over the inferiors. In thos slands, the inferior races were preserved for want of this conflict, hence their savage condition even at the present day while primitively the greatest advance took place at the spo of the most intense conflict, the continent of Southern Asia Even at the present day, it has been said that gunpowder is the greatest civilizer.

THE COLORADO POTATO BUG.

The farmers in our vicinity are just now having their po tato fields invaded by the celebrated Colorado bug, and the demand for Paris green has become so great throughout the country that, were it not an article obtainable in almost un limited quantities, the price would be greatly enhanced.
Let every user of the article keep constantly in mind that Paris green is a deadly poison, and great care should be ta ken in the handling of it. Hands from which the skin is abraded, or on which any sore exists, should be protected with gloves, and all precautions should be used against inha ling the poison while mixing it.
The following, from the Maryland Farmer, seems to be a practical mode of applying the poison to the vines. W would, however, suggest, that, on small patches, the dip ping of a broom in the liquid and shaking it over the vinos
be used as a substitute for the appliance which our contemporary suggests:

THE COLORADO BEETLE-THE REST EXTERMINATOR.
Sweeten a barrel of water with 1 gallon of cheap molasses then add and well incorporate 1 lb . good Paris green, and ap ply the same in one application to 1 acre of potatoes. The best mode of applying the liquid to the potato vines is in the lashed on the back of a man, who may apply the liquid, very
uniformly and rapidly, by having two short pieces of $\frac{8}{4}$ inch india rubber hose attached to the bottom of the can, the other end of the hose terminating in a tin rose, similar to that on watering pots. The liquid should be well stirred at each filling of the can, and it should be frequently and violently shaken during the time of applying it. An active man can apply the poison to four acres of potatoes in a day with ease, and two applications, at proper intervals, will save the crop. The cost is estimated as follows: Hauling water, mixing, and applying the liquid, 30 cents per lb., two applications, 00 cents; 2 gallons molasses, 60 cents; 2 lbs. Paris green $\$ 1.40$; total, $\$ 2.60$

THE POWER OF SMALL ENGINES.

One of the most frequently recurring questions, asked by ur correspondents, relates to the power that can be obtained fro m an engine of given dimensions, with a specified steam pressure and number of revolutions per minute. As we have freq uently explained, questions of this sort can only be determ ined definitely by means of tests. 'j he rules, ordinarily foun d in works on the steam engine, for calculating the hors ${ }^{e}$ power of an engine.give results that rarely accord with thos obtained in practice. Indeed, it is impossible to lay down rules that willapply to all cases, the construction and performance of differentengines being so varied. We feel, however, that we must do something to satisfy the many readers who want information about the small engines which table, from the best data at our own command, by which the performance of small engines of good design can be approzi mately estimated. We have also added some examples to illustrate the use of the table. It is designed for engines with cylinders up 6 inches in diameter, and for piston speeds up to 400 feet a minute: the connection of the engine with the boiler being supposed to be tolerably direct, the ports and pipes being of sufficient size, and the steam valve closing when the piston has made of the stroke. Even with all these suppositions, which probably represent the average conditions of small engines, the table will give results that are too large in some cases and too small in others, for the
very reason that it does represent average conditions. With very reason that it does represent average conditions.
these explanations, we will proceed to illustrate its use.

1. To find the area of a piston, knowing its diameter: Mul tiply the square of the diameter by 0.7854 . Example: The diameter of a piston is 3 inches. What is its area? Th square of 3 is 9 . Multipying 9 by 0.7854 , we obtain 7.0686 as the area of the piston in square inches. It may be well to observe that, whether the piston has either a flat, rounded or raised end, its effective area is to be calculated from th diameter, as explained above.
2. To find the speed of a piston in feet per minute, when the length of stroke and the number of revolutions per minute are known: Multiply twice the length of stroke, in inches, by the number of revolutions per minute, and divide by 12 . Example: An engine has a stroke of 3 inches, and makes 300 revolutions a minute. What is the piston speed? Twice the length of stroke is 6 inches. Multiplying by 300 , and di viding by 12 , we obtain 150 , as the piston speed in feet per minute.
3. To find the horse power of an engine, when the diamete of the cylinder, the length of stroke, the number of revolutions per minute, and the pressure of steam in the boiler are known: Find the area of the piston, in square inches, and he piston speed, in feet per minute. Find the number in the table, the nearest to the given steam pressure and cal culated piston speed,and multiply it by the area of the piston Example: An engine has a cylinder 2 inches in diameter and with a length of stroke of 2 inches. It makes 400 revolutions a minute, with a boiler pressure of 50 lbs . per square inch. What is the horse power? Square of diameter of piston 4 $\times 0.7854=3 \cdot 1416$, area of piston, in square inches. Twice the length of stroke $4 \times 400=1600 \div 12=133 \frac{1}{2}$, speed of pis on in feet per minute. Nearest piston speed in table is 130 and the number in table corresponding to piston speed of 100 feet per minute and boiler pressure of 50 lbs . is 0.074 add the number corresponding to piston speed of 30 feet pe minute, 0.022 ; this will give the number corresponding to piston speed of 130 feet per minute, 0006 . Multiplying th y area of piston, $3 \cdot 1416$, we obtain, horse power, $0 \cdot 3+$
The power so calculated is that available for useful work uch as would be developed on a friction brake, in an experi ment made by the method explained on page 273 of our olume XXXI.
If any of our readers test their engines in this manner, we would be glad to receive the results of their experiments,
which will be useful in enabling us to correct the table, if which will
4. To find the diameter of cylinder for an engine to develope a given horse power, when the piston speed, in feet per minute, and the pressure of steam in the boiler are known: Find, in the table, the number nearest to the given piston speed and pressure of steam. Divide the required horse power by 0.7854 times this number, and take the square root of the quotient. Example: An engine is to develope 2 horse power, with a piston speed of 150 feet a minute, and boiler pressure of 100 lus. per square inch. What should be the diameter of the cylinder? The number in
table, for piston speed of 100 feet, is $0 \cdot 161$, and for 50 feet is 0.081 , giving a total of 150 feet $=0.242$. Multiply this by 0.7854 , and we have a result of 0.1900668 . Dividethe horse power by the figure $0 \cdot 1900668$, and the quotient is $10 \cdot 5226+$. The square root of 10.5226 is $3.24+$, or about $3 \$$ inches, the equired diameter of cylinder
5. To find the length of stroke, in inches, when the pison speed, in feet per minute, and the number of revolutions per minute, are known. Multiply the piston speed by 6 ,and
divide by the number of revolutions per minute. Example: The piston speed of an engine is 200 feet per minute, and the number of revolutions per minute is 300 . What is the length of stroke? Multiplying 200 by 6 , and dividing the product, 1200 , by 200 , we obtain 4 inches, as the length of stroke.
In this article. we have presented the subject as plainly a possible, so that it can be used by all who have queries on power developed by small engines.
ective horse power of an engine with a piston one square inch in area, for different steam pressures and piston speeds.
$\left.{ }_{\substack{\text { Pres-s. } \\ \text { sure. }}}\right|^{\text {Hen }}$

今

 of the statements made in behalf of the new motor. Paine in reply to our strictures, reaffirmed all that he had before claimed for his motor, which he now alleged was far below the actual truth; he said that he was then engaged in build ing a great and powerful engine which would be ready in ninety days, which would develop 500 horse power from ingle cup, completely annihilate the figures given by us, and show to the world that people who, like the editor of the Scientific American, undertook to doubt or criticise the performances of a machine they had never seen and were practically unacquainted with, were jackasses, or "a fool," our friend Mr. Collier suggests others might properly say I am familiar," said Paine, "with the experiments of thers, relative to thayer, tion of forces. Therefore, I am no tyro, but the peer of any authority you may quote; and as such I unqualifiedly asser hat, instead of the miserably small result of 67,000 foo pounds from three grains of zinc (as stated in the Scientifi AMERICAN) we should realize $67,000,000$ foot pounds. The orces developed by the action of a single Bunsen quart cell if utilized and converted into power, would drive the larges hip afloat with a velocity only limited by the strength of the ship's frame; and you and I will live to see the day, if
our lives are lengthened to the usual term, when this stateour lives are lengthened to the usual term, when this state
ment will be verified, and that, too, without involving the question of perpetual motion.
This sort of talk prevailed with the capitalists; they swal lowed the bait, paid in theirmoney, took theirsbares-"with out being urged "-and that was the end of the five hundred horse power, no perpetual motion, ine cup,engine, and motor. The Keely motor deception in all its aspects up to this date is but a repetition of the Paine affair. The originator is very honest; all the people who assist at the deception believe in him and in his machine. They know not precisely how the thing is done, or by what laws it is governed, but they know that it is done; and any suggestion to the contrary they seem a consider as a reflection on their personal intelligence an honor.

The Keely performance is as follows

Keely blows from hislungs, for a period of 30 seconds, into nozzle upon the generator. He connects the same nozzle by means of a small rubber tube, with the hydrant, and lets in five gallons of water under a pressure of 264 lbs. to the inch, then shuts off the water. He opens the valve of a pipe of $\frac{1}{10}$ of an inch bore, between the generator and a gage or pressure indicator; and lo! the gage indicates $10,000 \mathrm{lbs}$. to the square inch
Such, in sum and substance, is the Keely motor, as se forth by the learned counsel of the company and corroborated by various mechanical experts, in the statements they have ow freshly prepared for the especial benefit and enlighten ment of the readers of the Scientific American : corrobor ted also by scores of other intelligent persons, so Mr. Collie assures us.
The majority of our readers will doubtless conclude with us that, on the showing of the parties themselves, the whol ang must be classed as a second rate jugglo - a mechanical Katie King arrangement, too contemptible for serious consid oration.
In our article of June 25, we assumed that the chief pur ose of the deception was to wriggle money out of silly peo ple. It appears, from the confession with which Mr. Collie has favored us, that the very first practical use he made of the pretended invention was to obtain money from New York capitalists; that the second use was to procure mone from the same source; the third the same, and so on, until the treasury is consideredfull enough for the time being. W attribute to Mr . Collier no dishonorable motives or method in financinghis company; but we think he confirms our state ment as to the uses of the alleged invention. In connectio with the letters from the various parties, given elsewhere some further comments will be found.

Synthesis of Therpylene.

Some time ago M. Berthelot published investigations in which he showed that the essence of turpentine, represented y the formula $\mathrm{C}_{20} \mathrm{H}_{18}$, resulted from the condensation of special carburet, $\mathrm{C}_{10} \mathrm{H}_{8}$. This last, termed therpylene, n one has ever seen until the present time, when M. Bouchar dat announces that he has produced it by synthesis.
Mondar, the day following July 4 (which this year comes on Sunday), will be, as usual, observed as a holiday in this city. Pressmen, as well as men in other occupations, will suspend work on Monday; therefore if subscribers to the Scientific American fail to get this issue of the paper till a day or two later than usual, they will know the reason.

The body of an American, John Blackford by name, has ecently been found in a large ice block in the vicinity of Mont Blanc, after several days of thaw. The unfortunate tourist had tried three years ago to ascend Mont Blanc without a are perfectly preserved.

