(24) J. A. C. asks : Does the electric current used in sending a message to Europe or elsewhere
return again to the instrument from which it emanated, either by a wire or by the ground? If way of the earth in a direct line, and, having an affinity for the place from which it came, pass by all other attractions in its passage to that? A. Tue current does not return through the earth but is absorbed by it at each end, thus causing movement in the wire the same as if the ends
were joined. It was formerly supposed that the current returned through the wire, but this has
been proved to be incorrect.
(25) M. M. M. asks: By what method and under what conditions can the power of a permaany length of time? A. The most effective way is to place a bar of iron across the poles.
(26) W. M. J. asks: 1. Would good varnish or paraffin make a good insulator for wire intended to be used in the helices of a relay? A. Silk or cotton would be better. 2. In what way does other than to separate one wire from another in the conls? A. Insulation of the wires is only inended to separate them, and prevent any conduc
(27) E C. . sxys: 1. I am about to make an electro-motor. What metal must I use on What kiad and size of wire must I use? A. No. 14 copper wire.
(28) N. W. L. says: You state that grease or yaint applied to the cells of a telegraph battery the creeping of our battery, and acting on the hint, we applied butter to it, that being the only L'ease at hand at the time. Sisce the application great deal weaker. Is the butter the cause?
No. Probably the battery needs fresh water.
(29) W. L. asks: 1. What bright large star A. It is Capella, the principal star in the constellation Auriga. 2. What bright bluish star is high overhead to the westward? A. It is Vega, but more frequently called Lyra. It is the principal
star in the Harp. 3. What large star is near orion on the west side? A. It is Aldebaran, the largest star in the constellation Tauru
(30) W. P. H. says: 1. I have in my possession two glass disks 2 inches in diameter, made by
Chance $\&$ Co., of Birmingham, England. One Chance \& Co., of Birmingham, England. One
consists of hard crown glass and one of dense achromatic objective: what should be the radii of curvature for the surfaces of the disks in order to have a focus of 10 inches? A. If the flint is of medium density, the curves of the crown may be $\cdot 4$ inches radus. The fint glassshould be double concave, one side to nt the crown, the other side curves may be of 3.5 inches radius for each side of the crown, and 26 inches for the long side of the flint. 2 What would be the negative and positive
foci of the disks? A. The focus of the crown will be the radius, that of the flint $; /$ its radius.
(31) C. M. B. says: I have a soapstone griddie which, by accident, was thoroughly greased. How can I extract the grease? A. Wash it carefully with hot potash lye, and rinse with clean cold wa-
(32) R. F. S. asks : 1. What are the diameter, focus, and shape (plano convex or double convex of the eye lens fors a romatic A. He lenses of the eyepiece of a micropieces of glass. The field lens is usually larger and of longer focus than the eye lens. 2. What is the diameter, focus, and shape of the field lens, and is it achromatic, and what is the proper dis-
tance between the eye lens and field lens? A. For medium powers, the field lens may be of 2 inches focus and the eye lens of 1 inch focus, set $11 / 2$ inch As they correct each other, the combination is achromatic. 3. What is the proper shape of an achromatic objective, plano-con vex ordoubleconvex? A. The best objectives for high powers are
made of three separate leoses, each lens of two made of three separate leoses, each lens of two kinds of glass. The best form for a single lens o ouepiece of glas.
are as one to six.
(33) I. J. asks: How shall I clean the lenses of optical instruments? A. Breathe on the glass,
and wipe with chamois skin or the nap side of cotton flannel. Paper of any kind would be very likely to scratch the glass. This also answers A F. 0 .
(34) H. S. asks: What is the magnifying described in home-made compound microscope If the tube or body of the home-made compound microscope be 12 inches in length, the magnifying power would be about 100 diameters. The same give a power of about 200 diameters; then by give a power of about 200 diameters; then by
lengthening the body, the power may be easily increased to 300 or more. A common and convenient way of determining the power of a micros-
cope is to focus an object of known size, and place a rule on the stage outside, then look with one eye at the object in the microscope and with the other at the rule. It will readily be seen how large the
object appears to be on the rule, and this gives the approximate magnifying power
(55) H. M. says: I am getting up a smal will furnish steam to flll a a 3×3 cylinder and boile $n 6$ cylinders each 3×3, cut off each at $\frac{1}{6}$ stroke and use thesteam expansively the rest of the way could you recommend such a course? A. We cannot recommend the plan
(36) R. J. F. asks: Is it possible to improve
(3bject glass of a telescope by change of figure an object glass of a telescope by change of figure,
if the fringes around objects are equally colored with green and purple? Would the thicksess of heglassesmake much difference? A. Telescope
are usually made of a double convex crown and concave flint. In small objectives, of less than nches diameter, the fiitt is usually double con cave, and in large glasses, concavo-convex. The ollowing curves for a ${ }^{614}$ inch objective, or 8 fee
 the back conver side of flint 140 inches. Thi get rid of your trouble.
(37) R. M. asks: How must the lenses be set, and or what size and focus must they be for you? I waut it to magnify from 1,000 to 1,500
times. A. The lenses must be set as described in the article. The focal length of the objectiv should be about $1 / 3$ of an inch, and of the field lens of the eyepiece $11 / 2$ inches, and the eye lens $1 / 2$
inch. Then, by lengthening or shortening the
(38) J. B. says: I am building a machine ation of 2910 the ming on hs axis at an incli earth, and all around the sun. Is there such appaatus in existence? A. There are very per fectinstruments for showing the movements the solar system. They are called planetaria. Would it be best tomake it vertical or horizontal A. For the sake of convenience they are mad vertical. They cannot be made correct, but only
approximately so. 3 . Do the planets return to the same places in a year? Will they be seen next same the same place on the same day at the same time A. The planets never retur.
same place on the same day of the year.
(39) W. H. D. L. says: If milk is not properly cooled, or is confined in a tight can before the animal heat has passed off, it soon becomes taint-
ed. Would bacteria or some similar organisms b presentinsucha case? A. Yes. 2. What must be the magnifying power ol shows the animalculæ in stagnant water; and no doubt it would be all you would require. A less power, even, might answer your purpose.
(40) S. D. T.-You could not see anything tant movement of the mirror and the highly magnified condition of the light coming from the mirror to the observer.
(41) E. R. asks: Does any one manufacsteel can be tempered.
(42) T. asks: It is asserted that water, in running out of a basin through a hole in the lettem, takes a rotary motion, and, when unmo namely, the circular motion is always one way, its back. Is this true? A. We think not
(43) F.R. B. asks: Can I arrange a small compound microscope so as to throw an enlarged
image on a scrven, as a stereopticon does? You cannot do it, on account of the high magnifying power,
lumination.
(44) C. T. P. says: Please inform me which the flesh side next to the pulley. A. The grar
(45) W. H. P. says: I am running a 50 horse power tubular boiler, but have not got draft in diameter, and The main flue is of iron, 2 eet building about 4 feet, and then on a level 17 feet to the chmmey. Will a jet of steam help the should it enter the flue? A. A jet of steam in the iron flue will help your draft without damaging the chimney. The size of your jet must be determined by experiment.
(46) T. W. C. says: I have a boat, 50 fee long by 18 feet beam by $33 / 2$ feet depth. What sould be the dimensions of engine, boiler, and
feep pump respectively? She is to have a stern wheel, and her engine is to work at high pressure 12. incheses, and a vertical boiler 5 feet in diamete and 8 feet high. Feed pump should be $21 / 6$ inches in diameter and of 12 inches stroke.
(47) J. M. says: Please give us the best it the nearest resemblance of gold. A. Mix 10
parts copper and 1 part tin. Add 2 lbs. spelter to every 100 lbs. of the brass.
(48) S. M. C. says: Bloxam's "Chemistry" iron ore, a large sized bays: In the reduction daily 50 unns of ore, 30 tuns of coal, 6 tuns of lime stone, and 100 tuns or air. Is not the amount os air exaggerated? The working of a blast furnace
is familiar tome; is familiar to me; and considering the size of the
blowers and number of strokes per minute, Icannowers and number of strokes per minute, 1can the tweers in the time given A. The statement is correct. It falls under, rather than over, the truth.
(49) S. H says: In regard to your article on "FlatSurfaces" (October 23, 1875) I would lile
to ask how the constant used in the formuto ask how the constants used in the formuused is 8 , but that seems to me to be indefnite unless we know what modulus of strength is used,
and how it comes in. If you could pive the formale in such a way as to bring in the ultimate ter acity or some other modulus easily determined $f(r$ different qualities of metal, you would, it seems to me, make them much more useful to engineers. Perhaps you will inform us what different quanti-
ties are included in the constants of the given
formule, that is to say, what modulu etc. A. The constants are those for tensict
trength. It is assumed in the article thatic trength. It is assumed in the article that the itimate strenzth is as follows: Cast iron, 20,000
bs. per square inch. Wrought iron, 48,000 los. pe square inch. Steel, $80,000 \mathrm{lbs}$. per square inch.
(50) A. J. M. says:I have an eltctromagnet 16 copper wire on it. What amount of horse power will I require to make an electro-magnetic marhine to cause that magnet to lift 100 lbs .
An eighth of a horse power would be ample.
(51) S. W. says: Salt of steel is the sal mar
is of the old chemists. It is common copperas, o
Minerals, atc.-Specimens have been
ceived from the following correspondents,an examined, with the results stated
A.G. S.-It consists of manganese, with iron ai:umina, and silex.-J. M.-It is made of burn sugar and chicory.-W. A. W.-The paper was
covered mostly with a pigment havicg clay und lime for its basis, and no poisonous matters we istected in the small scrap forwarded.-O.P.-1 is bituminous shale rock--J. E. B.-It is sulphuret
of iron.-W. L. W.-It is iron pyrites, and is worth working if the quantity is very large and the cost of miaing small.- C. P. C.-It is carbonate of mag-nesia.-J. M. R.-Itis yellow hydrated sesquioxide of iron on micaschist.-E.S.B.-lt is galena, with trace of silver.-A. M. C.-It is gold.-H. J. R.If the specimen refed "Fio was inclosed J a box unlabeled) marked "Fine Steel Cutlery," it detected). No. 2 is an inferiorkaohn. Use Dana "Mineralogy."-J. F.F.-They are fragments of quartz and amethyst, with magnetic iron sand.-.J.M.-We were unable to detect any foreiga spar and hornblende.-A.J. H. - Both are oxide o iron.-J. H. P.-Nos. 1 and 2 are quartz rock with E. P. McL. - No. 1 is iron filings. No. 2 is red A. C. S. asks: Can you give me a recipe for removing black smoke marks ofl a brick wall We do not want to paint the wall.-W. A. K. asks:
Can any one inform me of a good way of heating Can any one inform
street railway cars.
On page No. 396 of this paper will be found an ished, which will be found a useful compan f eference by every one.

COMMUNICATJONS RECEIVED.

The Editor of the SCiEntific American ac
knowledges, with much pleasure, the receipt of riginal papers and contributionsupon the follo origipal pape
On a New Method of Ventilation. By L. B. G On Instinct. By C. T.
On Formation of Planets. By H. L On the Formation of Planets. By H. L.
On Bankers' Safes. By S. M. L. On the Wagner Free Institute. By W. H. W nd R. G.
On Explosive Oils. By J. \boldsymbol{R}
On Spectral Lines and Atomic Welghts. By H. McK
A. K.-J.R.T.-J. B. O.-S. W.-N. F. F.-R.M

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear should repeat them. If not then published, the declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be orly are siven, are thrown into the waste basket as it would flll half of our paper to print them all; but we generally takepleasure in answering briefly by maild if the writer's address is given.
Hundreds of inquiries analogous to the following are sent: "Who makes rubber tires for traction engines? Who sells machines for bending cold makes screw-cutting dies, made to the Whitworth thread? Whose is the best engine governor?" Allsuch personal inquires are printed, as will be observed. in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired information can in
this way be expeditiously obtained.

[OFFicial.]

INDEX OF INVENTIONS

Letters Patent of the United States were

 Granted in the Week Ending
November 16, 1875

and each bearing that date

... 170,068, 1
Album, photograph. H. T. Anchony.... 170,040, 170 Apple silicer, I. C Richards............... Bale band tightening device, c. . H. Chase Bale tie, J. P. Radley..................
Bar for landside blanks, J. Sandage Bearings, anti-friction, Lathrop and Weber...... Eed bottom,
Bed bottom, spring, w. Goforth.

