(23) C. J. H. asks: Will water always seek its own level? We have in our factory a coil of
pipes; and at about fifty feet from the coil, we have a tank which holds about 40 barrels. The bottom of the tank is about 12 feet above the top of the coil. We cannot induce water to flow
through this coil from the tank. We can readily attach our pump and force it through, but the attach our pump and force of through, but the water will not fiow through of itseif. Can you ex-
plain the trouble? A. It is probably due to the accumulation of air at the high points.
(24) J. M. S. says : I am running a locomotive, and hier slide valves are nearly worn out.
They are 15 inches long and 5 inches wide, and fat on top. Will it reduce the friction caused by the
steam pressure on the valve if I make the new steam pressure on the valve if I make the new
ones in the shape of a half circle instead of flat on ones in the eha
top? A. No.
(25) B. B. pays: We have an engine with cylinder $8 \mathbf{x} 6$ inches, furnished with steam at 60 lis. pressure through a 2 inch pipe 550 feet long,
the pipe being about 8 feet underground. Can we, the pipe being about 8 feet underground. Can we,
at that distance, get the full benefit of the steam? A. The engine is large enough, but it is probable that the steam pressure is greatly reduced in in
passing from the boiler to the engines. If this is the case, it is due to an improper arrangement of the pipe; and you can easily satisfy yourself in
regard to the facts by attaching a gage to the regard to the facts by atta
steam pipe, near the engine.
(26) W. H. M. asks: In building a large form? Would not storms have a better chance to lorm such a stack dorn than if it were circular in
borm? A. One form will answer as well as the other.
(27) C. W. asks: Please decide who is right
in the following question: The subject is the drive wheel of a locomotive engine supposed to be
standing still on the track. I claim that, when the wheel slips, on the starting of engine or when the steam is let on suddenly, any point on the wheel
makes a complete circle; but when it makes a revolution in running, it does not make a complete circle. My friend claims that the point on the wheel forms a complete circle in any case. A.
When the wheel advaces in revolving, each point in the periphery describes a cycloid, a curve
(28) C. B. W. asks: 1. Is not the side of the frebox of a locomotive boiler the place where contraction and expansion is the least? A. Gen-
erally, yes. 2. What shall I put on my engine to well oiled; but you will be obliged to clean it well
often.
(29) J. H. asks: 1. I have a boat 15 feet long by 4 feet beam, a vertical engine, cylinder 3
inches in diameter, 3 ay $2 \nmid 2$ inches stroke, and 3 cyl-
 steel with heads $\frac{3}{8}$ ineh thick, connected by a
steam dome. I mean to throw the exßaust into the smoke stack. What pressure can I carry with safety? The boilers have stood a hydrostatic test of 175 lbs. per sqnare inch. A. About 150 lbs. 2.
Will the boilers be large enough for the engine? The grate surface is very large, being 24×24 ninches. A. Yes. 6. Will the engine be large enough for,
the boat? A. Yes. 4. What size of screw propeller shall I use? . A. Dhateter, of screw pro-
inches; pitch, from 2 to 215 feet, 15 to 18 inches; pitch, from 2 to $21 / 2$ feet.
(30) G. A. S. asks: 1. What is the horse
power of the largest engine in the United States power of the largest engine in the United States,
where is it, and what is it used for? A. We are where is it, and what is it used for? A. We are
not sure that we can answer this question cornot sure that we can answer this question cor-
reotly ; but if any of our readers will send us par-
ticulars, ticulars, the matter can soon be decided. 2. How
is the power of a locomotive estimated? A.Builders generally rate locomotives by the load that
they can draw under (31) W .
(31) A. W. says: In your issue of May 15
you say: "When you find that the water is below you say: When you ind that the water is below
the bottom gagetap, and the steam is rising rapidlye you should haul the fire at once." If you are
gaining steam and then start and haul the fire, gaining steam, and then start and haul the fire,
you will gain from 10 to 15 los. more, as I have ex-perienced in licomotives. I would recommend
this: Fill the furnace with coal so as to chomet this: Fill the furnace with coal so as to choke the
fre, keeping the engine and pumps on until you fire, keeping the engine and pumps on until you
get water in gage glass or steam gets haul the fire if require. How would that do? A In this case it might not be advisable to start the
feed; and if you could stop forming steam more feed; and if you could stop forming steam more
quickly by throwing coal on the fire than by haulquickly by throwing coal on the fire than by haul-
ing it, you would find the quickest
best way to be the best way. We believe that, in general, hauling the
fire will be most efficient. 2 . We have a direct acting locomove engine with cylinders 16 inches in diameter by 24 inches stroke. Steam pressure is
150 lbs., and driving wheels 5 feet, four coupled. She weighs, when coaled and ready for running, abont 47 tuns. What is her horse power?
A. We conld not A. We conld not answer this question without
having some idea of the mean pressure in her cylhaving
inders.
(32) C. E. R. asks: Will a brass spring $\frac{1}{2}$ moh wide, $\frac{1}{16}$ inch thick, and 2 inches long, lose 1 te
elasticty under $1 / 6$ inch depression in the mide A. Not for a long time, and the elasticity can be
restored restored by hammering.
(33) C. R. P. says: We have a brick smoke
stack, 70 feet high, and burn wood shavings: when stack, io feet high, and burn wood shavings: when
we have not suffient shavings we burn antbracite coal; the draft is strong enough to carry out large
sparks, and we put a seren of $N o .10$. sparks, and we put a screen of No. 10 galvanized
wire over the top, which was used up in 6 months so that we could d prk it to pieces; and the copper
wire (No. 10) with wire (No. 10), with which it was fastened on, was
also eaten up. Is there angthing that will do for also eaten up. Is there anything that
such a screen? A. Use heavier wire.
(34) C. T. S. asks: What fractional part of used for mining cables, is allowed for a permanent
(35) W. F. S. says: I have been using wa
ter for a steam boiler from a tank into which the drip from the engine cylinder goes, and the water
is consequently quite oily. The tank also takes the drip from the heater. Do you think the wate is injurious to the boiler? Thave thought that the vent the water coming in contact with it, and so turn the iron. A. You will find it better to use
clean feed water; although if the oit is of quality, and is not excessive in quantity, it will not do any serious harm.
(36) M. A. R. asks: How long would either native or vulcanized rubber endure as a packing
for kerosene oill? A. Possibly for a few days.
(37) A. B. says: 1. We have a pump with a steam cylinder 15inches in diameter, and a water
cylinder of 10 inches diameter. The ram is of 10 cylinder of 10 inches diameter. . The ram is of 10
inches diameter, and discharge opening 8 inches, inches diameter, and discharge opening 8 nches, cally 200 feet. It requires 60 lbs. steam to run the pump. Would it require less power, or more, to would require less power, if the pipe were enlarged, but not much, unless the pump is run very fast. 2. Would the entire weight of the water in
the 10 inch pipe rest on the pump ram? A. The pressure on the pump ram, due to the hight of the
column of water, is independent of the size of the pipe ; but as this pressure is increased by the re sistance of the water in the passages and pipe, it is
greater for a large pipe than or a small one, if a similar quantity of water is discharged through each.
(38) A. M. P. C. asks : 1. I have a double
engine, cylinders $11 / 2$ inches bore by 3 inches strole engine, cylinder $11 / 2$ inches bore by 3 inches stroke.
Will a plain cylinder boiler Will a plain cylinder boiler, 1 foot in diameter and
f feet long, set in brickwork, be large enought to berathertoo small. 2. If the boiler aforesaid be constructed of $\frac{3}{6}$ iron, how great a pressure could
be carried with safety? A. If well made, it would be safe to carry a pressure of 150 lbs . to the square inch. 3. How much grate surface should be allowed? A. Make the grate 1 foot square. 4. What
should be the dimensions of the smoke stack? 5 to 6 inches in drameter.
(39) L. L. H. asks: Will Babbitt metal do to make a. x 11/2 inches cylinder for a steam en-
gine e A. hard Babitt metal will wear very
(40) L. C. \& Co. say: Your reply to E. A. (No. 14, January 30,1885) regarding draft of street
car interested us, but we are quite unable to asre upon the meannug of your reply. We admit and beliive that, if the end of the axle of a wagon
standsequally high with the point of draft on a standsequally high with the point of draft on a
horse's shoulder, it makes no difference how far horss's shoulder, it makes no difference how rax
the horse is from the wagon; but suppose the axle
to be 2 feet high, and the to be 2 feet high, and the point of draft on the
horse's shoulder be 3 feet high, will the horse draw a load as easily 10 feet from the axle as he will 2 feet from the axle? Is it not easier for a horse,
under ordinary circumstances, to be harnessed under ordinary circumstances, to be harnessed
close to his load, so that the act of drawing lifts a certain amount upon the load? A. It is better to harness the horse so that his whole for
pended on traction, and none onlifting
(41) N. O. P. asks: What is the
(41) N. O. P. asks: What is the rule for measuring the inside of a furnace stack? I wish to
know the number of bricks $t \mathrm{t}$ will take to line it. A. Find the solidities of two frusta of cones, each having for its altitude the hight of the chimney, one haviog for its diameter that of the interior
of the lining, the other of the exterior. The difference between these two volumes will be th volume of the lining.
(42) F. S. Jr. says: Bourne, in his "Cate-
ehism of the Steam Engine," states that "if we enism of the Steam Engine," states that "if we
take the tensile strength of cast iron at 15,0001 bes. take the tensile strength of cast ir on at 15,000 1bs.
per square inch, a a fy
wheel rim or 1 square inch
sectional elucidate the above for me by stating what is meant by a rim of 1 square inch sectional area.
A. It means that, if the rim is cut in the direction meant ay a rim o f square in set the direction
A. It means that, if the rim is in in
of $\dot{\varepsilon}$ line passing through the center of the wheel, of $\mathfrak{\varepsilon}$ line passing through the center of the wheel,
the area of the out end of the rim will be 1 square inch.
(43) W. asks: 1. Is it possible to drive a
vehicle, large enough to carry a man by spring vehicle, large enough to carry a man, by spring
power? A. Yes. 2. How large or strong a spring would be necessary? A. You can readily calcuproposed arrangement of a vehicle of given weight, assuming that the tractive force required, on a good road, will be from 80 to 100 lbs. for a vehicle ,
(44) R. H. A. says: I have an engine with a less. The fiy wheel (of 50 lbs.) is mounted on a pilar about 30 inches high, tapering from 3 to 2
inches diameter,wIth a strong pedestal of 12 inches spread, bolted to a 3 inch oak platform. There is positively no spring in the standard. When this
wheel runs 500 in a minute it is pretty steady: but Whee runs 500 in a minute it is is pretty steady; but
as the speed increases, agitation beging, until at or about 860 the thing, is fearful, and bystanders leave. It seems as if the thing must fiy from its
fastenings. There are two ways of che fastenings. There are two ways of checking it,
one by turning on steam, and the other bs turning one by turning on steam, and the other by turning
it off. At about 1,100 revolutions a minute, which it off. At about 1,100 revolutions a minute, which
is by no means its maximum, it runs so quietly that hardly any vibration happens. Can you give
the rationale of these movements? A.The trouble seems to be caused by a lack of balance. It may possibly be remedied by making the fly wheel run perfectly true.
(45) J. B. C. says: I have seen statements
that decarbonized steel, for gun barrels, would withstand the strains of firing better than plain twist, laminated steel, or Damascus twist. I would like to have your opinion on the relative merits of
each of the above barrels, considered in regard to strength and durability. A. The plain twist, we
believe, is the best.
(46) A. C. says: We have a mill with an engine 14 inches bore x 30 inches stroke. Our
boiler is 24 feet long by 52 inches diameter, with 12 seven inch flues. The engine makes 65 revolu tions per minute, and is geared to an upright shaft withbevel wheels. We lack power, and it take
hard fling to make steam. What would be the re sult if we ran the engine at 100 revolutions per minute, and geared the bevel wheels to run th uprightshaft as now? We would gain power, but
would the boilermake steam any more easily tha now? A. If the engine exhausts into the smok stack, rumning it faster may increase the draft.
Otherwise we do not see that you will gain much from the change.
(47) W. B. D. says : I am running a 56 inch fivegang saw, direct from waterwheelshaftpulley 6 ing in a direct line down stream 50 or 60 feet. I do not use the saw all the time. Can I get as much power on the saw if I run my belt to a line shaft, and then up to my saw, as I now have? A. Some
power will be taken to drive the belt and shaftpowe
ing.
(48) C. F. says: H. S. S. asks: "What, if any, is the difference in power required to trans-
mit a given amount to the samesized pulley, if the mit a given amount to the same sized pulley, if the ping, or be a short belt with a tightener, or be inort belt stretched very tight?" After many years' experience with belts of all kinds, I have learned that it will require the most power with the short, tight belt, especially if the pulley re-
ceiving the power be much smaller than the one giving it. With the tightener there is a greater length of belt brought in contact with the pulley thereby lessen the friction upon the bearings. The tightener should be only heavy enough to
take up the slack of the belt, which should quite loose when relieved of the weight of the tightener, which should always be close to the pulley receiving the power. If the power is carried
horizontally, the long and loose belt will have a similar effect, as the slack of the belt will always be found on the side of the belt going from the the top side, sag so as to bring a much greater
length of belt in contact with the pulley than in the case of the short tight belt. A. We would have been glad to receive some facts. as the result of experiment, in corroboration of your views. mere reasoning, because there is a question of fact involved which can only be determined by experi-
ment. Your views, however, strikeus very favor ment. Your views, however, strikeus very favor-
ably, and we shall be glad to hear from you again if you will send us some particulars of your expe-
(49) C. S. W. asks: Am I right in claiming that light travels faster than galvanic electricity . Yes, as a general rule.
(50) T. C. S. asks: What is the amount of
heat generated by passing a current of electricity over a long, thin platinum wire, and the amount over a long, thin platinum wire, and the amount
of zinc required to generate the necessary quantity of electricity? A. The amount of heat generconsumed.
(51) E. E. M. says: I have a book on elecwhich says that, if a current is sent through a hollow coil of wire, and an iron bar brought to
the mouth, that it will be drawn in. I have tried this but have failed. How can I construct such a coil? A. Use 100 feet of No. 14 copper wire, cov-
ered with cotton and wound into a helix, and ered with cotton and wound into a helia, and
charge with Bunsen's cells whose zincs are connected
other.
(52) I. A. says: I have a Bunsen battery. The porous cup is 2 inches in diameter and as high as the cell, and about $9 / 8$ inch thick. I cannot
get a current through. I think the porous cup is too thick. How can I remedy it? A. Soak the
(53) G. H. A. asks: 1. In what respect do a
relay and sounder duffer? A. A sounder is relay and sounder differ? A. A sounder is
wound with coarser wire. 2. How can I coat copper wire with gutta percha for use in batteries A. Melt the gutta percha and press it on. 3. In
what respect is silk-covered copper wire bette than cotton for making the magnets of a sounder? A. It is a better insulator. 4. Which is the most economical, as far as battery is concerned, to keep the circuit closed or open when not in use? A.
Open. 5. For aline of telegraph a mile or less in Open. 5. For aline of telegraph a mile or lessin
length, what number and how much insulated length, what number and how much insulated
wire will I need for the magnets to the sounder? A. Use 270 feet of No. 24 copper wire. 6. In batteries, should the surface of the zinc and copper be similar? A. Approximately. 7. How can I con-
struct a battery using zinc and lead,so that theblue vitriol will cut the lead instead of the zinc, as is
generally the case? A. By first turning your lead generally the case? A. By first turning your lead into zinc. 8. How can I nickel plate with a bat-
tery, using nickel 5 cent pieces? A. Rivet the 5 tery, using nickel 5 cent pieces.
cent pieces on to a nickel plate.
(54) J. H. asks: Will a Leclanché battery answer for electroplating such articles as watches,
chains, rings, etc.? A. It can be used, but Smee's or Daniell's is better.
(55) D. L. G. asks: 1. Is a lightning rod of any benefit whatever asa conductor of an electric charge? A. Yes. 2. Which is the best rod inuse?
A. Copper. 3. How much space will arod protect? A. A space equal toits projection above the building. 4. What are the merits of a platinum point? A. It does not rust.
(56) A. O. B. asks: 1. Is there danger of lightning striking telegraph wires and entering the
buildings to do damage, if we can cut the offices buildings to do damage, if we can cut the offices
out and leave the circuit closed? A. Not much. 2. How much No. 11 iron wire (in length) will give
(57) A. E. C. asks: How is shellac prepared cessive layers of the secondary wire in an induc tion coil? A. Put 1 oz. of shellac into a wide mouthed 8 oz. phial containing 5 ozs. of well recti it stand in a warm place until perfa cork, and le Shake the mixture frequently and pass the fluid through a paper filter; add rectifled naphtha to the solution from time to time in such quantities as will enable it to percolate freely through the
(58) I. R. says: I would like to find the cheapest and simplest way of producing the.eleetric light, and how to construct a battery for that
purpose. A. You will require 50 cells of Grove' or Bunsen's, or 100 cells of Daniell's battery, to he battery to two light. Attach tho poles of cils together and then separate them,and the light will appear.
(59) G. C. B. says: 1. I have an electrica gaslighter which occasionally gives me a great duses to work altogether. What is the trouble? A. Soak the carbons for a few days in hot water. Thoroughly amalgamate the zincs, and put new
solutions in your battery.
2. Is the Tom Thumb or miniature electric battery strong enough to work a wire from Newark to New York? A. Yes. 3. Is it difficult to telegraph ? A. It is as easy to anywhere else. There is no difficulty in the matter. It requires practice to become a good oper tor on any line.
(60) H. P. M. says: I have just built a privy, the vault of which is $51 / 2$ feet deep, being 24
feet from my neighbor's well of drinking water. The well is 33 feet deep in a gravelly soil. Will the use of the privy foul the water of the well? A.
The probability is that it will, in the kind of soil that y
(61) W. F. S. asks: 1 How should one proceed who wishes to study practical chemistry? Is tend lectures on chemistry? A. Yes. 2. Can one derstanding pbarmacy? A.The study of pharmacy is never included in a chemical course, except by those working for the degree of M. D., etc., as
it pertains wholly to the preparation of medicines. (62) P S usks: What is considered the best and safest way to make gas for the oxyhydro gen light? A. You will find a full description of obtaining these gases, etc., on p. 218, vol. 32, in an densing cylinder. Are they safe for a new hand pracriced hands. 3 I also want to know which is the most portable kind, for using with th magic lantern? A. In the larger cities gas may
be obtained under pressure in small cylinders suitable for transportation. But as obtained in this form it is necessarily somewhat more expenical to manufacture the gases when required, and to use them in the bags manufactured for this purpose.
(63) A. K. says: 1. We have a brick cistern ter has a very bad ar scum on it that is hard, like lime. What will remove the smell, and what causes the scum, as the
water ought to be perfectly soft, being rain water? A. Try adding a small quantity of alum to the water
time.
(64) O. R. asks: How can I calculate the and 20 feet lina trou great rapidity, and [do not know any certain method of ascertaining the velocity, and consequent plan will be to ascertain the velocity by means of fioats, on the surface as well as submerged at of fioats, on the
different depths.

COMMUNICATIONS RECEIVED.

The Editor of the SCIENTIFIC AMRRICAN acnowledges, with much pleasure, the receipt of
original papers and contributions upon the following subjects :
On Patent Politics in Ohio. By A. K. S.
On the Iron Horse. By F.
On Hydrogen. By T. G. B.
On a Universal Language. By J. C.
R. L. N.-J. C.Y.-R. J. F.-J. M.-S. C.-J. K.-
A. C. J.-N. T. W.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should repeat them. If not then published, they
may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be
published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fll half of our paper to print them all; by mail, if the writer'saddress is given.
Hundreds of inquiries analogous to the following
are sent: " Who sells the best silk-covered wire are sent: " Who sells the best silk-covered wire
for magnets? Whose is the best line wire ineulafor magnets? Whose is the best line wire insula-
tor? Whose is themost economical turbine water wheel? Who builds the fastest steam launches? Why do not makers of drawing instruments ad-
vertise in the Scientific American?" All such personal inquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose, subject to
the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

