§rientifir Chmericatr 2

MUNN \& CO., $\overline{\text { Editors }}$ and Proprietors. POBLISEED WEEELIT AT

NO. PT PARK ROW. NEW YORK

O. D. MUNX. A. E. BEACE.

TERMS
Wee copy, one year, postage included...
O ie copy, six months, postage included .8320
clubrates.
Ten coples, one year, each $\$ 270$, postage included...
有 By the new law, postage is payable in advance
Notr.-Persons subscribing will please to give their full names, and Post
Offce and State address, plainly written, and also state at which time they wish their subscriptions to commence,otherwise the paper will be sent from the receipt of the order. Whan requested, the numbers can be supplied from January 1 st, when the volume commenced. In case of changing ress dence, state formeraddress, as well as give
be made unless the formeraddress is Riven.
volume Xxxiii., No. 19. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, NOVEMBER 6, 1875.

the goal of evolution.

Her 'prentice han' she tried on man,
And then she made the lassies, o!"'
So the gallant Burns sang of mother Nature, intending to compliment the lasses. Had he lived till this more scientific age, he might have stayed his hand, or else have had the lasses fashioned first. The handiwork of
have lost care or cunning toward the last.
In the details of the skeletons of the other animals, says Professor Cleland (in his address as Vice-President of the Department of Anatomy and Physiology at the late meeting of the British Science Association), one sees the greatest precision of form; but there are various exceptions to this neatness of finish in the skeleton of man. Witness the variations of the breast bone, which, especially in its lower portion, is never shapely, as it is in the lower animals; witness the coccygeal vertebra, which are the most irregular structures imaginable; even in the sacrum and the rest of the vertebral column, the amount of variation finds no parallel in othe humanity, the dorsum sellos is a ragged, warty, deformed, and irregular structure, never exhibiting the elegance and finish seen in our poorer relations. The curvature of the skull and the shortening of its base, which have gradually increased in the ascending series of forms, have reached a degree which cannot be exceeded; and the nasal cavity " is so elongated vertically that, in the higher races, Nature seems
scarcely able to bridge the gap from the cribriform plate to scarcely able to bridge the gap from the cribriform plate to the palate, and produces such a set of unsymmetrical and rugged performances as is quite peculiar to man." Other examples of similar conditions, he tells us, will occur to every student of human anatomy.
Thus it would appear that man, the highest product of evolution, is physically the least perfectly finished. His bony framework is more open to variation than that of the indicate a certain newness of character, as though Nature indicate a certain newness of character, as though Nature
had not yet had time to settle down to stereotyped forms of
human detail. To some it might also hint of possibilities of further development, perhaps of the evolution of human or superhuman, yet animal, types which may surpass the preCleland, on the contrary, sees in them curious indications rather of the "formative force nearing the end of its jourrather of the formative force nearing the end of its jour-
ney." Animal life, he thinks, has reached its preordained ney." Animal life, he thinks, has reached its preordained
climax in humanity, and that the future progress of evoluclimax in humanity, and that the future progress of evolu-
tion is to be traced from man, not to other animal forms yet to appear, but through his physical ($q y$. psychical?) natur into the land of the unseen.
The reasons for this sudden spring into ether do not clearly appear, the only hint of a physical basis for it lying in the observation that the variations of structure which have been body are principally to be found in the head, the pant and pression of the mental character.
Just here we may note a singular circumstance in connec tion with the present stage of discussion in regard to the possibilities of human progress, individually and collectively onsidered. Last year, from the standpoint of matter, Pro essor Tyndall traced the line of individual evolution into the infinite azure, where personal identity is lost; and half mankind were set by the ears in consequence. This year, be-
fore a section of the same society, Professor Cleland, from the standpoint of the speculations of the authors of the "Unseen Universe," argues from physical data the continued evolution of humanity in "the land of the unseen," wherein personal identity is said to be eternally preserved: and not
word is said of his transcending the strict domain of scien tific inference!

INSTINCTIVE CALCULATION.

A writer in the Cornhill Magazine, who claims to be some thing of a natural calculator himself, attempts the rather difficult task of advancing a satisfactory explanation of the pecu liar arithmetical feats performed by the well known engineer Zerah Colburn, during his early youth. Mr. Colburn was an American and the founder of the English journal, Engineer ing. In a biography of him which we published at the time of his death, five or six years ago, we mentioned his remarkable mental precocity, some phenomena of which may be re called in the present connection. When eight years of age, it is said that Colburn instantly answered such questions as Find the cube root of $268,335,125$, how many seconds are there in 48 years, raise 8 to the sixteenth power, and other of similar difficulty, which even the most expert of mathe maticians would have been unable to solve by any mere men tal process. In looking for parallel cases of children with
like abilities, we find three others, something regarding each like abilities, we find three others, something regarding each
of which it is well to note before passing to the consideration of which it is well to note before pas.
of the possibility of an explanation.
In 1839, Vito Mangiamele, a Sicilian boy eleven vears of age, was examined by Arago and several other eminent members of the French Academy of Sciences. To him, questions equally knotty with the above were given, and these together with such posers as:" What number complies with the following propositions: that if its cube be added to five times its square, and then forty-two times the number and the number forty be subtracted from the result, the numbe is equal to zero." To this the boy gave the correct answer (five) just as the questioner had repeated the sentence for the
second time. An earlier case is that of Jedediah Buxton, a child almost totally uneducated. Of him it is related that if he heard a sermon or other speech he instinctively counted the words; if a period of time were mentioned in his hearing, he computed the seconds; or if he walked over a piece of ground his mind was busily employed in calculating the number of inches. He solved mentally such a problem as: How many cubical eighths of an inch are there in a quadrangular mass which measures $231,145,789$ yards long, 5,642,732 yards wide, and 54,965 yards thick? And besides, calculations at any point, turn to other subjects for any length of time, and yet resume his mental work at the pro per place. Like Mangiamele,

The last instance is that
The last instance is that of George Parker Bidder, who subsequently became a noted English civil engineer. His gift lay more in a natural taste for figures than through the instinctive calculating power which Colburn, Mangiamele, and Buxton possessed. He accustomed himself to count up to $1,000,000$, and thus became familiar with large numbers. He besides was an inventor, and devised new arithmeticai processes. From all accounts it would seem that, his was an acquired power, aided of course by natural genius, and this view finds further corroboration from the fact that in after life, Bidder retained his abilities, while the other three individuals lost theirs. In 1856 he gave an account of how his operations were worked, which goes still further to show them to be the results of acquired skill, more especially as neither Colburn, Buxton, or Mangiamele were ever able to
give any explanation whatever of their mental processes Bidder, therefore, is hardly to be considered in conjunction with them.
To return now to the Cornhill Magazine writer and his theory, the latter is essentially that the calculator does no regard the numbers set before him as abstractions, but ra ther as definite groups of concrete objects, as, for example dots. The mental process required then to multiply 24 by is to picture 24 as two columns of dots of ten each, and one column of four. To multiply by three, the imperfect col of ten, and two over. The one is added to six columns pictured at the same time, making seven columns of ten, and tured at the same time, making seven columns of ten, and
one of two, that is, 72 . We need not explain the supposed
method of division, as it is essentially similar ; for we believe the objection will at once occur to the reader that this plan cannot answer for dealing with great numbers, as it can in no wise be conceived that any mind can form a perfect picture of millions multiplied or divided by millions. It is very possible for the mind to be trained so as to conceivedetail to an astonishing degree; and imagination, in conjunction with memory, in some people will reproduce scents with every feature intact, of which only the most salient characteristics would remain fixed in the average mind. Robert Houdin, the French conjurer, could walk quickly past a shop window once, and then name every article in it, and the size, color, and position of each. This was purely acquired, though Houdin had the ability to make the acquirement in the beginning. Every artist who produces a design draws upon the same faculties; so do skilled chess players, who are able to play a dozen or more games at once ; so do musicians, who can hear a harmony or melody by looking at the printed core All of these instances but not with Colburn or the other two mentioned.
What Turner was in color and Mozart in music, we believe Colburn and his peers to have been as regards numbers Turner's perception of gradation of color-not mere light und shade, but color-was instinctive, purely inborn. He felt color, not outlines or form ; and no one, before or since, in hat respect has ever approached him. Mozart felt music t the age of six he could compose difficult harmonies; he could distinguish accurately and instantly announce variations in sound equal to one sixty-fourth of a tone. Now no one pretends to explain Turner's coloring or Mozart's music from a mental standpoint, for the simple reason that there is no explanation. Both artists were born with wonderful gifts, gifts as inexplicable to their possessors as they ara to the average man ; and there the matter rests. Colburn, Buxton, and the Sicilian boy had a like sensation of the relations of numbers. They went through a kind of calculating process, probably as instinctively as Turner handled a brush to place his colors, or Mozart moved his fingers to grasp the chords of the harpsichord or organ. This mental operation, we believe, however, was unconscious cerebration; and the same genius or instinct, or whatever term by which we may agree to designate the faculty, which rendered it unnatural for Turner to make inharmonious contrasts, or Mozart to strike discords, prevented Colburn and the others from false calculation, and caused them to feel, as it were, the relations of numbers.

PINEAPPLE AND BANANA FIBERS

It is from the fiber of the pineapple that the natives of the Philippines weave the celebrated web nipis de piña, conthe Philippines weave the celebrated web
sidered by experts the finest in the world.
In his travels in that promising but badly managed Span sh colony-all Spanish colonies are badly managed, for that matter-the German traveller Jagor had the good fortune to witness the process by which the fiber is prepared.
When plants are intended for the growth of fiber, the fruit is not allowed to ripen, the leaves thereby taking on a larger development. The fiber is separated by hand. A leaf is placed on a board on the ground, with hollow side upwards. Sitting at one end of the board, a woman holds the leaf firml with her toes and scrapes its outer surface with a potsherd, using the rounded edge of the rim.
The scraping reduces the leaf to rags, disclosing a layer of coarse fiber running lengthwise of the leaf. This is dextrously lifted up and drawn away in a compact strip: after which the operator scrapes again until a second fine layer is aid bare. Then turning the leaf round,she scrapes its back down to the layer of fine fiber, which she quickly draws to its full length away from the back of the leaf. The fiber is then washed, dried in the sun, combed, and sorted. It is from material thus crudely prepared that the nipis de pina is woven,of such exquisite fineness that robes of it are valued as high as $\$ 1,500$, at Manilla.
The pineapple fiber is also exceedingly strong: a cable $2 \frac{1}{2}$ nches in circumference has been known to endure a test strain of over 6,000 pounds.

Another noted fiber, Manilla hemp, takes its name from the chief city of the Philippines. It is not hemp, however, but the fiber of a species of banana, which does not differ greatly from the edible banana, and is probably a variety of he same species. Thus far, according to Jagor, the servicea le fiber has been exclusively obtained from the southern portion of the Philippines,all attempts to make its culvation profitable in the western and northern provinces having failed A species of banana grows in great luxuriance in Western ava, but it has not been utilized as a fiber plant to any grea xtent. Great efforts have been made in the Celebes to culti rate this fiber, but Bickmore repeats that it has been abandoned in favor of coffee, which is found to be far more pro fitable. For domestic purposes, the banana fiber-known to commerce also as abaci-is made use of in many tropical countries, and in time will doubtless be largely supplied; bu for the present the supply comes, as already stated from the Philippines.
The plant thrives best on the shaded forest-covered slopes of volcanic mountains, such as abound in Albay and Cama rines: on level ground not so well, and on marshy land no at all. The plant requires, on an average, three years to produce its fiber in a proper condition. For the first crop only one stalk is cut from each bunch: later on, the new branches grow so quickly that they can be cut every two months. In full growth the yield is 30 cwt. to the acre, whereas from an acre of fiax not more than 4 cwt . is obtained. After the plantation is once established, the plants fourish without any care or attention, the only trouble being to collect the fiber. One plant may yield as much
as two pounds of fiber, but the average is not more than a pound: on indifferent soil much less.
Several grades of fiber are derived from different parts of the leaf stalk, the edges yielding the finest. The fiber, which lies next the surface, is stripped off by hand in broad bands and then softened by being drawa backwards and forwards be tween a broad bladed knife and a block of wood. One worker cuts up the stalks, strips off the leaves, and attends to the supply: the second, frequently a boy, spreads out the strips of fiber; the third draws them under the knife. The coars fiber is called bandala; the finer, lupis. The former is chiefly used for ships' rigging; the latter is employed in weaving. The three finer grades of lupis are further softened before weaving by being pounded in a rice mortar. Generally the first or finest sort is worked as woof with the second as warp, and the third as warp with the second as woof. The fabrics so woven are nearly as fine as the nipis de piña. For purity, flexibility, and color, the finest of these banaua stuffs are said to compare with cambric as cardboard does to tissue paper. According to Jagor the finest stuffs require so great an amount of dexterity, patience, and time in their preparation, and are consequently so expensive, that they cannot compete with the cheap machine-made goods of Europe. Their fine warm yellowish color also is objected to by European women accustomed to linen and muslin strongly blued in the washing. By the rich half castes, however, who understand the real goodness of their qualities, they are highly appreciated. In the regions where abaca is cultivated, the entire dress of both sexes is made of coarse banana cloth called guinára. For foreign markets,still coarser and stronger
fabrics are prepared, such as crinoline and stiff muslin, used fabrics are prepa
by dress makers
It is as an article for exportation, however, that the fiber is of the most importance commercially. In 1871 over 600,000 cwt. were exported, nearly three fourths coming to this courtry. It is very largels used in the manufacture of paper.

THE ORIGIN OF MOUNTAINS.

Mountains have been explained by two widely different suppositions. One is that they are due to sediments deposited under water from the erosion of a wasting continent, which by upheaval have become mountains. The other is that they are due to uplifts, as the result of lateral pressure caused by shrinkage of the earth's interior. For the last fifteen years or more, these conflicting views have each been held by geologists of undisputed authority; and " when doctors disagree, who shall decide?" is the old question which remains still unanswered. This uncertainty in all moral reasoning, when we have to balance probabilities, is a great source of discomfort to the youthful student; and in perhaps no department of human inquiry is this more true than in the field of Science, for what is highly probable today may be shown in the light of advancing Science to be highly improbable tomorrow. And in reply to the oft-repeated question of the young student: "What is the use of learning as truth today what may be rejected as error tomorrow?" it may be said that all the successive theories of advancing Science are stepping stones which may eventually lead to the undoubted truth. We see use in taking the first faltering and illadvised steps in any avocation, though we soon reject these for others more conducive to the end desired.
Without attempting a decision, we propose in this article only to state some of the main points in the arguments pro only to state some of the main points in the arguments pro
and con, and leave all to decide for themselves as to which and con, and leave all to
We would naturally conclude that, if mountains are due to lateral pressure, they would be formed by the uplifts or ele vations of the earth's crust. But this is seldom the fact, for several reasons. According to Professor Dana, many if not all mountains have their origin in the bending down of the crust. As the crust subsided, the trough was kept full of
water, which continually deposited sediment. This deposition about kept pace with the rate of subsidence. In this manner, many of our mountain ranges were, in the earlier ages, taking the initiatory steps in the process of mountain making. As the crust subsided and was covered to a great depth with an accumulation of eroded material, it would be weakened by the earth's internal heat. An addition of several thousand feet of sediment to the surface wonld bring a given degree of heat so many thousand feet nearer the sur face. This would often be sufficient to soften or melt the sustaining crust, which would then yield before the lateral and vertical pressure combined, and cause the crusts on the sides of the trough to fold over and approach each other above it, thus crushing the sedimentary beds into a narrower
space, with the necessary result of elevating the crushed and space, with the necessary res.

folded strata in the middle.

The Appalachian chain illustrates the fact that one moun tain system may be formed by several successive depressions accompanied with the deposition of eroded material. Pro fessor Hall attributes the cause of mountain making to sedi mentary accumulations, which, by their weight, are suffi cient to cause a depression in the crust. Thus, by the addi-
tion of 40,000 feet of sediment, the crust would sink the same number of feet. Then, by a subsequent elevation of the crust, the accumulated strata would be raised into a mountain, independent of lateral pressnre. He just reverses
the idea of Dana, by making the subsidence a consequence the idea of Dana, by making the subsidence a consequence
of sedimentary accumulations, instead of the accumulations a consequence of subsidence. To this Dana objects, because "the earth's crust would have to yield like a film of rubber to hàve sunk a foot for every added foot of accumulation place."

Another reason why the elevations due te lateral pressure
do not produce the high mountains appears in the fact that, when a series of strata is sharply bent upwards-forming an anticlinal-the outer strata are fractured and strained apart while the strata which are bent downwards-forming a syn clinal-present to the surface a firm and compact mass.
This can be clearly shown by making a sudden bend in This can be clearly shown by making a sudden bend in
a walking stick. The fibers of the outer curve will be torn a walking stick. The fibers of the outer curve will be torn
asunder, leaving a splintered and ragged surface, while on the inner curve they will become unusually dense and firm. The fractured edges of the anticlinal curve are in a favora ble condition to be worn away by water, while the cumpact surface of the synclinals, though forming the valleys, where the greatest amount of running water would act upon it, suffers but little erosion. The consequence is that the elevated strata are worn away even below the level of the original valleys, and the latter become the elevations. This can be proved by noticing that the strata visible on the sides of most valleys and hills are not parallel to the sides, but are nearly at right angles to them.
The mountains formed by depressions of the crust were far more common in the early history of sedimentary deposit, for the crust was then comparatively thin, and hence more yielding to lateral pressure. But after the crust became hickened beneath by the cooling of the earth, and more rigid by the accumulation of strata above and by previous plication and solidification, the mountains formed were largedy due to uplifts of very wide extent carrying the stratified deposits with them. Our Rocky Mountain system was formed by these uplifts in the tertiary age, and it is probable that coral island subsidences in the Pacific Ocean accompanied the continental elevations.
The adherents to the accumulation theory-among whom are Hall and Hunt on this continent, and Scrope and Lyell in Europe-have noticed that, in mountainous districts, the elevations are less than the aggregate thickness of the strata, while in non-mountainous sections the hights correspond to the thickness of the strata. If the latter were equally true in mountainous districts, the Appalachian Mountains would attain a hight of forty thousand feet. Mr. Hall holds that these barriers are due to original deposition of materials, and not to any subsequent forces breaking up or disturbing the strata of which it is composed; and that upheavals and contortions of strata are only accidental and local. In this view he is sustained by Montlosier and Jukes. He also claims that the direction of mountain elevations is determined by accumulations along the sides of oceanic cur rents or shore lines. Dana, on the other hand, considers the northeast and northwest trends of most of the mountain
and shore lines on the globe to be the result of cleavage in the earth's crust, and to indicate lines of weakest cohesion, like cleavage planes in crystals.
The accumulation theory supposes that, after a vast amount of material has been deposited in successive strata
under water, a great continental upheaval brings the whole under water, a great continental upheaval brings the whole mountains are the stratified deposits which have escaped denudation ly the action of frosts and floods. We have good illustrations of this process of erosion in the Missouri River valley, where the elevated land is being constantly washed away, forming deep ravines and abrupt ridges, and is carried into the muddy Missouri, and deposited in the del tas at the mouth of the Mississippi, thus rdding constantly to the territory of Louisiana. As Egypt is said to be a gift of the Nile, so Louisiana is a gift of the Missouri. The effects of erosion, on a small scale, can be seen on the sides
of deep railroad cuts, where miniature mountains and vallejs are formed by the washing of water as it runs down their slopes.
Professor Le Conte opines that these opposing theories result from the loose use of the word mountain. He treats the whole subject under the two heads of mountain forma tion and mountain sculpture, and claims that the true mountain chain, or the convex plateau which constitutes it, is due only to foldings of the crust, and that those elevations which are left by the erosive action of water are not mountains, but simply sculptured continental elevations.
The effect of shrinkage and of erosion can be fairly seen on a small scale by the following artificial contrivance
Take a well filled bladder or toy rubber balloon, and cover Take a well filled bladder or toy rubber balloon, and cover
it completely with several successive coatings of tallow, glue, plaster of Paris, or other substances that will harden after they have been put on in a plastic state. These will represent the stratified crust. Then by withdrawing some
of the air from the bladder, which will answer to contracof the air from the bladder, which will answer to contrac and fractured by lateral pressure, like the crust of the earth. Now by allowing a well regulated stream of water to flow over the surface of this, we can see many of the phenomen of erosion, like those apparent on the earth's surface.

sir Charles Wheatstone.

This distinguished inventor died in Paris, France, on the 20th of October last. He was born at Gloucester, En gland, in 1802, and in early youth was engaged in the manu facture of musical instruments. With the object of im-
proving upon these, he was led to study the laws of sound; and thus imbibing a strong taste for physical science, he pro ceeded to the investigation of the phenomena of optics and subsequently of electricity, on the velocity of which he published papers in 1834, detailing many very striking and new experiments. In the same year he was appointed Pro
fessor of Experimental Philosophy at King's College, Lon fessor.
Pre
Previous to this time William Fothergill Conke, in Heidel Lerg, Germany, had completed his first telegraphic invention,
chanical telegraphs, and soon after came to England to introduce the telegraph system on railroads. His efforts at first pointing towards success were, however, nullified by a pneumatic signal apparatus, to which the railway people gave preference; but instead of being disheartened by his failure, the inventor began new experiments, regarding which he sought the advice of Faraday. The latter referred him to Wheatstone, and then, in 1837, began that partnership which has sent the names of the two inventors to posterity, indissolubly linked. It was Wheatstone's great learning, com bined with Cooke's inveutive genius, that evolved the succeeding discoveries in the telegraph. "Mr. Cooke," says Brunel, "is entitled to stand alone, as the gentleman to whom this country is indebted for having practically introduced and carried out the electric telegraph as a useful undertaking, promising to be a work of national importance; and Professor Wheatstone is acknowledged as the scientific man, whose profound and successful researches have al. ready prepared the public to receive it as a project capable of practical application."
Invention now rapidly followed invention: the first was a discharger and secondary circuit to be applied to Cooke's original alarm ; then combinations of all the various improvements; then a new mechanical telegraph, Wheatstone's work; then another telegraph, having a revolving index hand on a fixed dial, a new device of Cooke's; besides others, all devices of remarkable ingenuity, and the subjects of several patents in England. On the 12th of June, 1837, the inventors received their first English patents, and on the same date obtained an American patent on the electro-magnetic telegraph. This, however, was of no benefit to them, as the apparatus was never practically employed in this country, Professor Morse's instrument, as is well known, being the chief one in use from 1844 to 1846.
Wheatstone was a Fellow of the Royal Society, and twice received the medal of that association for his discoveries. Both himself and his co-laborer Cooke received the bonor of knighthood in recognition of their public services.

SCIENTIFIC AND PRACTICAL INFORMATION

POPPY RED FOR ARTIFICIAL FLOWERS.
Thin cotton tissues are brushed over with a mixture of corallin lake ground up with water and thickened with gum, 75 grains of calcined magnesia per quart being added before use.

The local committee in Tahiti have sent to Paris the odor ferous bark of a yet undetermined plant, known over the Society and Pamotonsislands by the name of marie. It can b advantageously employed in the preparation of the perfume known as new-mown hay.
sOLIDIFIED MILK.
A sample of condensed milk, weighing about 1 cwt ., has been exhibited at the rooms of the Society of Arts, London, and an interesting experiment made thereon. This mammoth piece of solidified fluid was prepared by Hooker's process. It had been exposed to the action of the air for four years and three months, yet its quality was still so excellent that in a few minutes it was resolved, by churning, into good fresh butter The trial was only one of a series made at the International Exhibition, South Kensington, and elsewhere. In each case the same satisfactory results were obtained.

QUADRUPLEX TELEGRAPHY IN INDIA.
It will interest our readers, says the Indian Daily News, to learn that quadruplex telegraphy-that is, the art of send ing four messages, two in each direction, simultaneously, by means of one wire-has this week been accomplished on th Madras Railway Telegraph. The system which Mr. Win perfectly successful on eighty miles of line, and its exten perfectly successful on eighty miles of line, and its exten-
sion to lines of greater length is simply a question of addision to lines of greater length is simply a question of addi
tional condensers and battery power. The principle of send ing two messages simultaneously in the same direction, on which this quadruple system depends, was successfully worked between Salem and Madras on April 16, but unfortunately other duties prevented Mr. Winter's carrying out the duplexing of this principle until the last few days.

THE WERTON LOCOMOTIVE

A new engine, built by the Baldwin Locomotive Works of Philadelphia, has been puton the Boston and Albany Railroad for trial. A saving of fuel of generally over 30 per cent is claimed. This is effected by means of a peculiar firebox. In most locomotives, the long flues or pipes connecting the furnace with the smoke stack are directly opposite the door and much of the fine coal is caught by the draft as soon as thr'mon into the furnace, and comes out of the smoke stack in the form of dust and sparks. With this boiler, however, the invention of a man named Weston, a firebrick arch over most of the furnace keeps down much of the fine stuff, and what does escape has to pursue a zigzag course through a consuming box-where the particles are stopped, and even the smoke is consumed-in front of which are the flues, only six feet long instead of a dozen, as in an ordinary engine. This much for economy of fuel ; and to provide still more for comfort, the smoke stack contains an arrangement by which what few sparks do get that far are carried off to the ground by pipes running beneath the engine. The locomotive is higher than most, and is extremely well pro, portioned. This is rather a small one, having a cylinder 16 inches in diameter, with a stroke of 22 inches, and driving wheels five feet in diameter. H. B. Klinger, who has it in charge, has been running it on the western end of the road, with an ayerage saving of 46 per cent in fuel.

