as if we had witnessed the wonderful performances of the mpossible furniture of the average pantomime. At one in stant, we observed an individual stretched upon a bed; we looked again, and the bed had vanished and its occupant was calmly sitting by a table. Another person launched himself at an inoffensive couch and dragged fiercely on handles and pulled on strings, and behold, a bookcase developed itself. Then there are pieces of furniture which are riddles in themselves; one never knows when he is through finding things in them. For instance, there is an affair which looks like an overgrown book case. On each side you discover a swing ing rack of paper files; then you lift up a flap and pull out some legs, and there is a writing desk with a pivoted inkstand swung in it. You pull aside the flaps, and a series of closets and drawers appear. At the ends you discover mor writing desks, with sunken inkstands and receptacles for pen cils, more doors and pigeon holes, more cupboards under neath, until you depart, lost in admiration at ingenuity which leaves such simple affairs as Chinese puzzles far in the shade.
a puffing machine
is something new for the ladies. There is a corrugated bed piece, and a kind of band irnn having a bottom similarly corrugated to fit into the indentations of the bed. The bot tom of the iron is,however, V-shaped in section, the apex o the V being in line parallel with the direction of the handle which resembles that of the common flat iron. Both be piece and iron are heated, and the gathered material is damp ened and pressed between the two until dry. The work is very neatly accomplished. The same machine may also be used, for fluting, in which case a corrugated comb not heated is substituted for the iron.

NEW FIRE EsCape
is exhibited, which seems to us one of the best of the many similar inventions which have appeared. It consists of a swing ladder, with hickory rounds and wrought iron links. Between each pair of rounds is a light frame of iron which keeps the ladder out from the building. A hook on the upper end sustains the whole,whenin use. It can be folded into a very small parcel, and weighs about one pound to the foot.

We defer reference to the

machinery department
for a time, until further novelties a ppear; as the present ion tents, though numerous, are almost entirely composed of machines already well known to our readers.

SCIENTIFIC AND PRACTICAL IN FORMATION.

ROGRESS O HE MILLION DOLLAR TELESCOPE.
Mr. Lick has fixed on Mount Hamilton, in Santa Clara county, Cal., as the most eligible site for the establishment of the observatory in which the great telescope is to be located, and he has notified the county supervisors that he will begin the erection at once, if they will construct a road to the summit of the mountain. As Mr. Lick offers to advance the necessary money to begin work on the road, and accept its bonds in payment, it is probable that his proposals wil be adopted, and hence there is an excellent prospect of the much-talked-of telescope becoming ere long an accomplished fact.
Mount Hamilton is 4,448 feet high. The summit is higher than any land within 50 miles, and consequently below the level of the plane of the observatory, which, in an astronomical point of view, is the desideratum sought. The beautiful valley of San José, the snowy ridge of the Sierra Nevada, and a boundless area of mountain scenery are in the scope of vision, and the elevation is so high as to be above the fogs of summer, and is not so high as to be much dis turbed by the storms of winter
about bitters.
The Board of Health of the city of Boston, Mass., not long ago appointed Professor W. R. Nichols, a celebrated chemist of that city, to examine into the various concoctions enormously advertised and sold to an unsuspecting public under the mild name of " bitters." Mr. Nichols is continuing his investiga tions, and up the present time has elicited enough to warran a wholesale condernation, certainly, of the most popular o these disguised drinks. He says that, out of twenty samples, only one did not contain alcohol, and that had the least sale. improved sugar machinery
Messrs. Morris, Tasker \& Co., of Philadelphia, are now ship ping a large amount of machinery to be used in Louisiana in a new prucess of manufacturing cane sugar. The method is what is known as the diffusion process, as distinguished from the maceration process, which is that of all previously constructed sugar machinery. The cane is passed between rollers by the old method and the juice squeezed out In the new, the cane is sliced and the saccharine matter is dissolved out of it.

Parlor magic

The following beautiful experiment in instantaneous crys tallization is given by Péligot in La Nature: Dissolve 150 parts, by weight, of byposulphite of soda in 15 parts boiling water, and gently pour it into a tall test glass so as to half fill it, keeping the solution warm by placing the glass in hot water. Dissolve 100 parts by weight sodic acetate in 15 parts hot water, and carefully pour it into the same glass; the lat ter will form an overlying layer on the surface of the former and will not mix with it. When cool there will be two su persaturated solutions. If a crystal of sodic $h \bullet$ posulphit be attached to a thread and carefully passed into the glass, it will traverse the acetate solution without disturbing it, it will traverse the acetate solution without disturbing it,
but, on reaching the hyposulphite solution, will cause the latbut, on reaching the hyposulphite solution, will cause the lat-
ter to crystallize instantaneously in large rhomboidal prisms
with oblique terminal faces. When the lower solution is completely crystallized, a crystal of sodic acetate, similarly lowered into the upper solution, will cause it to crystallize in oblique rhombic prisms. The appearance of the two different kinds of crystals will not fail to astonish those not ac quainted with this class of experiments.

FLAT SURFACES.

The following rules, for determining the thickness of boil or heads, cylinder covers, and other flat surfaces, are take from Des Ingenieur's Taschenbuch, being adapted to English measures, and the constants being chosen so that the work ing pressure is one eighth as much as the breaking strain These rules have never before been published in English, so far as we know, and we judge that they will be of interes the engineering profession. They were deduce 3 by Grashof and the reasoning on which they are based will . Grash, in Die Festigkit wr lin, 1866. Being purely theoretical deductions, which have not. we believe, been verified by experiment, it is possible not. we believe, been verified by experiment, it is possible
that they may be somewhat incomplete; but we are confident that they may be somewhat incomplete; but we are confident
that, with the constants we have chosen, they will give pro portions that are at least as safe as those determined by th empirical methods in common use. It is worthy of notice, in this connection, that so high an authority as Professor De Volson Wood remarks in a recent publication (as we under stand him) that, in the present state of our knowledge of the strength of materials, it is impossible to solve the problems under consideration without additional experimental data We believe, however, that the results of Dr. Grashof's in vestigations are generally accepted by German engineerscertainly they are by the distinguished editors of Des Ingen ieur's Taschenbuch.
A. To find the necessary thickness for a flat plate exposed o a given pressure in lbs. per square inch (all dimensions in nches) :

1. A circular plate, supported at the edges: Multiply the product of the square root of the pressure, and radius of the plate, by 0.018257 , for a cast iron plate; by 0.11785 , for wrought iron plate ; and by C.0091287, for a steel plate.
2. A circular plate, secured at the edges, such as a boiler head, or cylinder cover: Multiply the product of the square root of the pressure, and radius of the plate, by 0.01633 , for a cast iron plate ; by 0.010541 , for a wrought iron plate ; and by 0.0081649 , for a steel plate
3. A flat plate, supported by stays, at a given distance from center to center: Multiply the product of the square root of the pressure, and distance between stays, by 0.0094281 , for a cast iron plate: by 0.0060858 , for a wrought iron plate and by 00047141 , for a steel plate.
4. A rectangular plate, secured at the edges:
(1) Divide the pressure by the sum of the fourth power f the two adjacent sides of the rectangle.
(2) Take the square root of the quantity obtained by (1)
(3) Multiply the product of the square of the long side of he rectangle, the short side, and the quantity obtained by (2), by 0.014142 , for a cast iron plate; by 0.009128 ', for a wrought iron plate ; and by 00070711 , for a steel plate.
5. A square plate, secured at the edges: Multiply the pro duct of the square root of the pressure, and the side of the quare, by 0.01 , for a cast iron plate; by 0006455 , for rought iron plate; and by 0.005 . for a steel plate.
B. To find the working pressure, in lbs. per square inch or a flat plate of given thickness (all dimensions in inches) 1. A circular plate, supported at the edges: Divide the square of the thickness by the square of the radius of the plate, and multiply the quotient by 3,000 for a cast iron plate; by 7,200 , for a wrought iron plate ; and by 12,000 , for a steel plate.
6. A circular plate, secured at the edges: Divide the square of the thickness by the square of the radius of the plate, and multiply the quotient by 3,750 , for a cast iron plate ; by 9,000 , for a wrought iron plate; and by 15,000 , for a steel plate.
7. A flat plate, supported by stays: Divide the square of the thickness of the plate by the square of the distance be ween centers of stays, and multiply the quotient by 11,250 for a cast iron plate; by 27,000 , for a wrought iron plate nd by 45,000 , for a steel plate.
8. A rectangular plate, secured at the edges
(1) Take the sum of the fourth powers of the adjacent sides of the rectangle.
(2) Multiply the quantity obtained by (1) by the square of he thickness of the plate.
(3) Multiply the fourth power of the long side of the rec tangle by the square of the short side.
(4) Divide the quantity obtained by (2) by the quantity ob ained by (3), and multiply the quotient by 5,000 . for a cas ron plate ; by 12,000 , for a wrought iron plate ; and by 20,000 for a steel plate.
9. A square plate, secured at the edges: Divide the squar of the thickness of the plate by the square of the side of the plate, and multiply the quotient by 10,000 , for a cast iron plate; by 24,000 , for a wrought iron plate ; and by 40,000 for a steel plate
A fewexamples are added, to illustrate the foregoing rules
10. What is the proper thickness for a steel boiler head, the pressure of the steam being 60 lbs . per square inch, and he diameter of the boiler 24 inches?
The product of $7 \cdot 746$ (the square root of 60), 12 , and 0081649 is 0.78 , or $\frac{2}{3} \frac{5}{2}$ of an inch, nearly, the thickness re quired.
11. Required the thickness for the sides of a cast iron bo 20 inches long, 15 inches high, exposed to a pressure of 20 bs. per square inch
Dividing 20 by 210,625 (the sum of the fourth power of 20 and 15), and extracting the square root of the quotient, w obtain 0.0097445 . The product of 400,15 , and 0.0097445 is $0 \cdot 83$, or about $\frac{5}{6}$ of an inch.
12. What is the safe pressure for a flat plate, supported by stays, 10 inches from center to center, the plate being of wrought iron, $\frac{8}{8}$ of an inch in thickness?
Dividing $0 \cdot 140625$ (the square of $\frac{f}{8}$) by 100 , and multiply ing the quotient by 27,000 , we obtain the pressure, about 38 lbs. per square inch.
13. The side of a rectangular box, 25 inches long, 20 inches high, is of steel, 4 of an inch thick. What is the working pressure?
The sum of the fourth powers of 25 and 20 is 550,625 The product of 550,625 and 0.0625 (the square of 4) is 6882 , 812,700. The product of 390,625 (the fourth power of 25) and 400 is $156,250,000$. Dividing $6,882,812,700$ by 156,250 , 000 , we obtain the working pressure, 44 lbs . per square inch. Below will be found the analytical expressions for the rules given in this article.

	Thickness (T) in Inches for a plate	rm	
Form of the (Dimensions in (Dimensions in inches.)	Cast iron.		$\text { steel. } \quad-\quad-\cdots$
Circular plate, of radius R, supported at the edges.	$0.018257 \mathrm{R} \times \boldsymbol{\vee} p$	$0 \cdot 011785 \mathrm{R} \times 1 / \mathrm{p}$	$00091287 \mathrm{R} \times \sqrt{p}$
Circular plate, of radius R, secured at the edges.	$0.01633 \mathrm{R} \times \boldsymbol{V}_{\boldsymbol{p}}^{-}$	$0.010541 \mathrm{R} \times \boldsymbol{V}_{p}^{-}$	$0 \cdot 0081649 \mathrm{R} \times \boldsymbol{V}_{p}^{\bar{p}}$
Plate strengthened by stays, a inches from center to center.	$0 \cdot 0094881 a \times \boldsymbol{V}_{p}$	$0 \cdot 0060858 a \times \overline{\sqrt{p}}$	$0.0047141 a \times v p$
Rectangular plate, sides a and b, ($a^{-}-b$), secured at the edges	$0.014142 a^{2} \times b \times \quad{ }^{7} \quad \begin{array}{r}1 \\ \vee a^{+}+\cdot b^{4}\end{array}$	$0.0091287 a^{3} \times b \times\left.\right\|_{\sqrt{a^{4}+b^{2}}} ^{-}$	$0.0070711 a^{2} \times b \times \underset{\sqrt{a^{4}+b^{4}}}{\frac{p}{}}$
Square plate, side a secured at the edges.	$0 \cdot 01 a \times \boldsymbol{V} p$	$0 \cdot 006455 a \times \downarrow p$	$0005 a \times \vee p$

Safe pressure (p) in pounds per square inch for a plate of given thickness (T) in inches.
Form of the

- (Dimensions in inches).

Circular plate of radius R, supported Cast iron. $\frac{\text { Safe pressure (} p \text {) in } p}{\text { Wrought iron }}$
$3,000 \times \frac{\mathrm{T}^{2}}{\mathrm{R}^{2}}$
$7,200 \times{ }_{\mathrm{R}^{2}}^{\mathrm{T}^{2}}$
Steel.
${ }^{7}, 200 \times{ }_{\mathrm{R}^{2}} \quad 12,000 \times{ }_{\mathrm{R}^{2}}^{\mathrm{T}}$
Circular plate, of
$9,000 \times \underset{\mathrm{R}^{2}}{\stackrel{\mathrm{~T}^{2}}{ }} \quad 15,000 \times \frac{\mathrm{T}^{2}}{\mathrm{R}^{2}}$
at the edges
$3,750 \times \underset{\mathrm{R}^{2}}{\mathrm{~T}^{2}} \quad 9,000 \times \underset{\mathrm{R}^{2}}{\mathrm{~T}^{2}}$.
Plate strengthened
by stays, a inches
$11,250 \times \frac{\mathrm{T}^{2}}{a^{2}}$
$27,000 \times \frac{\mathrm{T}^{2}}{\boldsymbol{a}^{2}}$
$45,000 \times{ }_{i s^{*}}^{\mathrm{T}^{2}}$
Rectan-a and $b(a>b)$, secured at the edges. $5,000 \times \mathrm{T}^{\frac{1}{4}} \times\left(a^{4}+b^{4}\right)$
$12,000 \times \cdots\left(a^{T^{4}}+b^{4}\right) \quad 20,000 \times x^{a^{2}} \times\left(a^{4}+b^{4}\right)$

Square plate, side a, secured at the edges.
$10,000 \times \frac{\mathbf{T}^{2}}{a^{2}}$
$24,000 \times \frac{\mathrm{T}^{2}}{a^{2}}$
$0,000 \times \frac{\mathrm{T}^{2}}{a^{2}}$

