Srientifir ${ }^{\text {gmmerical. }}$

MUNN \& CO., Editors and Proprietors PUBLISHED WEEILT AT
NO. 3 ' P PARK ROW, NEW YORK

o. D. MUNN.
A. е. веach.

TERMS

- ne copy, one year, postage included.
one copy, six monthe postanentinctided

C1ubRates.
e rate each, postage inclu
er ten copies, same rate each, postage included................. 28 \% 8 Be the new law, postage is payable in advance
Note. - Persons subscribing will please to give their fyll Note.-Persons subscribing will please to give their full names, and Post
Office and State address, plainly written, and also state at which time they w'sl their subscriptions to commence, otherwise the paper will be sent from the recelpt of the order. When requested, the numbers can be supplied
from January 1 st, when the volume commence. In case of changing resifrom January 1 st , when the volume commenced. In case of changing residence, state former address. as well as give
be made unless the formeraddress is kiven

VOLUME XXXIII., No. 17. [New Series. 1 Thirtieth Year NEW YORK, SATURDAY, OCTOBER 23, 1875.

THE GEOLOGICAL IMPORTANCE OF OUR WESTERN EXPLORATIONS
In no period of the world's history has there been a greate activity displayed in enterprises to increase the knowledge of our globe and its history than at the present day: as in stances of which may be cited the explorations in Centra Africa, those of the ruins of the cities of antiquity, such as Nineveh, the expeditions to the north pole, intended for set tling the mystery of an open polar sea, the deep sea sound ings in the Pacific Ocean, proving the existence of a sunke continent, and, last but not least, American explorations in the Great West, now in progress, which have already contributed to our knowledge of geology facts of greater importance than any obtained during the previous half century. It is especially in the region of the Yellowstone River, abounding as it does with hot springs and geysers, and in the valley of the Colorado, that the mostinstructive features have been discovered. While, in the last few decades, the importance and universality of slow upheavals have been demonstrated, the explorations have shown that a second agent, namely, erosion, is of the utmost importance, and re. sults in a variety of features, varying with the nature of the soil, the climate (wet, dry, or rainless), presence or absence of winter frosts, etc
In Colorado, the erosion by the rivers produces cañons in the comparatively easily worn-out rock of thousands of feet in depth; while the aridity of the climate prevents the ran from destroying the results of the erosion, as is the case in coun tries where rainfall is of ordinary occurrence. If is evident, therefore, that the arid regions around the Colorado river give specially favorable opportunitics for studying the effects of erosion, and the recent researches in that country have resulted in classification of these effects, as 1 , the erosion of water gaps, 2, the cliff erosion of cañons, 3 , hogback erosion, and 4, hill and mountain erosion. The second and third classes are due to the undermining action of water in arid climates; while in the first and last, this action is modified by surface washings in rainy or moist climates.
When another topographical feature is added, namely, the eruption and outpouring of molten matter from below, its verflow covering the eroded lands, and its subsequentero sion in its turn, a new field of investigation is opened, especially instructive in arid climates, where surface washings
do not destroy the prominent points of interest. This makes the region of the Colorado particularly rich in peculiar features, such as cañons and cañon valleys, volcanic caves and volcanic mountains, cliffs and hogbacks, buttes and plateaux, naked rocks and drifting sand, bluffs, valleys, etc. All the mountain forms of this region are due to erosion, being
carved out by the running waters; but notwithstanding the aridity of the climate in many localities, beds lundreds of feet in thickness and hundreds of thousands of square miles in extent, beds of schist, granite, limestone, sandstone, scale, and lava, have slowly yielded to the unseen powers of the air, crumbled away into dust, and been washed away by the rivers. It is an illustration on a gigantic scale of the return of the lands to the ocean depths from which they once arose.
It appears, however, that the climate there has not alway been so arid as it is now ; so the hasin of the Great Salt Lake, which is now so depressed that its waters have no outlet to the sea and are entirely disposed of by evaporation, leaving all dissolved matter behind, had once a moist climate and so much rain that the valley was filled with water to its brim, forming a large and deep fresh water lake, which had its studied the features of this outlet, considers its epech iden tical with the glacial period; and from a further study of the deposited soils, he has proved that, before the glacial epoch, an arid climate prevailed there of many times longer dura tion than the present epoch of 100,000 years, which fol lowed it.
The period of time required to form successive deposits of thousands of feet in thickness, which the erosion of the Col orado River has brought to light, in its deep cañons, ar enormous, and we cannot suppose that here the erosion was less than that of other rivers, although in moist climates the evidences of this erosion have been destroyed; while in the arid climates of our West, they were preserved.
The evidences are that that region was lifted up from the cean's bosom three times; that three times the rocks wer asses, and that three times the lava poured out of the crev their course seawards. The first of these periods was after the formation of the granite rocks: the second succeeded the red sandstone formation; the third period is the present The remnants of the first and second periods are buried; but we know that, unnumbered centuries ago in the past, the granites and schists, now on the bottom of the grand cañon, were formed as a sedimentary bed beneath the sea, that then an upheaval took place, after which thousands of feet of beds were washed away in the sea by rains; then a depres sion took place, sinking the whole region some 20,000 feet beneath the ocean's surface, and allowing the formation of sandstone, at least 10,000 feet in thickness, as a sediment then a second upheaval came, changing it again into dry land feet the rains washed away channels in the sandstone 10,00 energy. Again the sea rolled over the land, which became its bottom, and received a new deposit of more than 10,000 feet of rocky bed; and lastly, this ocean bed was again up heaved, and for 100,000 years the atmospheric influences an the running streams, gathered from the clouds in the high est mountain tops, have been making gorges, cañons, and
valleys, and carrying the débris back to the sea, from whose valleys, and carrying the déb
bottom the materialall came
We ask: Will the sea, at some future period, invade that land, by the sinking down of the latter, and will cora reefs be formed, and serve perhaps for the burial of the bones of the beings which shall then exist? Will the sur rounding continents or islands be washed into that sea and form new beds of rock, which, when again upheaved, will orm a new land, and cañons again be formed, and reveal in heir walls, to another race of intelligent beings,

ARNIVOROUS PLANTS

Mr. Darwin has recently added to the literature of modern otanical discovery a valuable work on "Insectivorous Plants." Without reciting the history of the researches int Fig. 1.

this interesting subject, which has already been fully treated in our columns, we will simply state the author's broad proposition, which, coming from such an undoubted authority, must be considered as a final settlement of theo ies which were, till recently, still undergoing investigation This proposition is that certain plants, chiefly the drosera-
cece or sundews, devour insects in the ordinary acceptation

of the term, that is, they kill, swallow, digest them, and ab sorb and assimilate their juices. Some (such as the droso phylla) secrete and exude a viscid fluid, to which insects adhere as they do to the buds of the horse chestnut and the
corollas of the Capg heaths; but these are not in sec tivorous.

But the drosera rotundifolia shows a higher organization, being endowed with sensitive tentacles. of which we give a representation in Fig. 1 Each of these tentacles terminates in a knob, from which issues a glittering secretion, on account of which the plant has been called the sundew; and each tentacle can bend over towardsits prey, either independently of or conjointly with the adjacent tentacles. Fig. 2 shows one half of the tentacles bent over and the other half erect. Almost any kind of interference with the tentacles, such as lightly touching them, placing inorganic substances upon them, or especially putting organic matters (particularly such s are nitrogenous) on them, will set the sundew in motion; nd the more soluble the matter enfolded by the tentacles, the longer do they remain inflected over it.
In our third engraving are shown the magnified cells of he tentacles, exhibiting the various forms assumed by the Fig. 3.

protoplasm. Mr. Darwin says: "If a tentacle is examined some hours after the gland has been excited by repeated touches or by inorganic or organic particles placed on it, or by the absorption of certain fluids, it presents a wholly changed appearance. The cells, instead of being filled with homogeneous purple fluid, now contain various shaped mass es of purple matter, suspended in a colorless or almost co orless fluid; and shortly after the tentacles have re-expan ded, the little masses of protoplasm are all re-dissolved, and he purple fluid within the cells becomes as homogeneous nd transparent as it was at first."
Mr. Darwin's investigation also comprised an elaborate study of the digestive apparatus of the plants, and of the secreted fluids, which, beyond any doubt, perform the func ions of the gastric juice and of a kind of pepsin, the latte being necessary to the complete direct assimilation of anima matter to a vegetable body

THE FAIR OF THE AMERICAN INSTITUTE.

There is an ingenious device in a rather out-of the-way corner of the fair, which will prove interesting to owners of orses, inasmuch as its object is to benefit the animals in ariety of ways, and principally by protecting them from egligence on the part of stable men. It is
an automatic horse feeder,
consisting of a simple clock, the works of which are con nected by a cord with the hinged bottom of a grain hopper or water receptacle. At certain bours to which the clock mechanism is adjusted, the cord is slackened, and the bottom of the hopper or water vessel falls, allowing of the escape of he contents into the manger, This escape takes place for a ertain time, regulated by suitable mechanism. so that a cer tain quantity of material is measured out, and then the bot tom shuts, preventing a further supply. The horse is thu ed at exact hours and given a previously determined amoun of food and water, without the intervention of the stable people, or requiring any other care than the timely winding of the clock.
burglar alarms
in great variety are exhibited. The simplest is one which travelers can carry in their trunks or even pockets, and which will be found an excellent protection against the entry of thieves into an hotel room. It is a small wedge-sbaped ase of metal, containing a gong, the hammer of which is actuated by clockwork. The latter is wound, and the device is placed on the floor with the edge of the wedge just in front of the door. When the door is opened, however gently. from the outside, it strikes against the wedge, and suitable mechanism therein frees the spring of the clock train so that the gong is loudly and continuously sounded. The noise is sufficient to arouse the soundest sleeper. The invention might easily be adapted for windows as well as doors.

A NEW INDUSTRY

bids fair to be set on foot, through the utilization of the fir and pine tree leaves. Mr. Charles Fulton has devised a pro cess by which the coherent parts, such as resin, wood, tannin etc., from the fibers of the needles or acicular leaves, are dissolved and removed by boiling in suitable chemi cals. The result is a substance resembling cotton, or per haps more nearly wool, of a dark greenish brown color It is prepared in four qualities, adapted for stuffing mattresses, pillows, etc., and for weaving. For the latter purpose, the fibers of the material are separated and treated in machines similar to fulling mills. Other processesfollow, which resultin the production of an excellent thread, which can be woven alone or mixed with wool, cotton, silk, or other fibers Cloth of very close and fine texture is exhibited, made of the thread. It is soft and pliable,and resembles a fair quality of flannel. There is an enormous amount of raw material fo his manufacture in the country, which now is of no value, and which can be obtained at simply the cost of transporta tion. By the process above described, it is rendered availa ble both for textile and for paper industries, and hence may form a new and valuable supply.
The needs of dwellers in the narrow quarters of our city flats must be uppermost in the minds of inventors, if we may judge from the quantity of
as if we had witnessed the wonderful performances of the mpossible furniture of the average pantomime. At one in stant, we observed an individual stretched upon a bed; we looked again,and the bed had vanished and its occupant was calmly sitting by a table. Another person launched himself at an inoffensive couch and dragged fiercely on handles and pulled on strings, and behold, a bookcase developed itself. Then there are pieces of furniture which are riddles in themselves; one never knows when he is through finding things in them. For instance, there is an affair which looks like an overgrown book case. On each side you discover a swing ing rack of paper files; then you lift up a flap and pull out some legs, and there is a writing desk with a pivoted inkstand swung in it. You pull aside the flaps, and a series of closets and drawers appear. At the ends you discover mor writing desks, with sunken inkstands and receptacles for pen cils, more doors and pigeon holes, more cupboards under neath, until you depart, lost in admiration at ingenuity which leaves such simple affairs as Chinese puzzles far in the shade.

a puffing machine

is something new for the ladies. There is a corrugated bed piece, and a kind of band irnn having a bottom similarly corrugated to fit into the indentations of the bed. The bot tom of the iron is,however, V-shaped in section, the apex of the V being in line parallel with the direction of the handle which resembles that of the common flat iron. Both bed piece and iron are heated, and the gathered material is damp ened and pressed between the two until dry. The work is very neatly accomplished. The same machine may also be used, for fluting in which case a corrugated comb not heated is substituted for the iron.

A NEW fire escape
is exhibited, which seems to us one of the best of the many similar inventions which have appeared. It consists of a swing ladder, with hickory rounds and wrought iron links. Between each pair of rounds is a light frame of iron which keeps the ladder out from the building. A hook on the upper end sustains the whole,whenin use. It can be folded into a very small parcel, and weighs about one pound to the foot.

We defer reference to the

MACHINERY DEPARTMENT
for a time, until further novelties a ppear; as the present ion tents, though numerous, are almost entirely composed of machines already well known to our readers.

SCIENTIFIC AND PRACTICAL IN FORMATION.

dollar telescope
Mr. Lick has fixed on Mount Hamilton, in Santa Clara county, Cal., as the most eligible site for the establishment of the observatory in which the great telescope is to be located, and he has notified the county supervisors that he will begin the erection at once, if they will construct a road to the summit of the mountain. As Mr. Lick offers to advance the necessary money to begin work on the road, and accept its bonds in payment, it is probable that his proposals wil be adopted, and hence there is an excellent prospect of the much-talked-of telescope becoming ere long an accomplished fact.
Mount Hamilton is 4,448 feet high. The summit is high er than any land within 50 miles, and consequently below the level of the plane of the observatory, which, in an astro nomical point of view, is the desideratum sought. The beautiful valley of San José, the snowy ridge of the Sierra Nevada , and a boundless area of mountain scenery are in the scope of vision, and the elevation is so high as to be above the fogs of summer, and is not so high as to be much disturbed by the storms of winter.

ABOUT BITTERS.
The Board of Health of the city of Boston, Mass., notlong ago appointed Professor W. R. Nichols, a celebrated chemist of that city, to examine into the various concoctions enormously advertised and sold to an unsuspecting public under the mild name of "bitters." Mr. Nichols is continuing his investiga tions, and up the present time has elicited enough to warran a wholesale condernation, certainly, of the most popular o these disguised drinks. He says that, out of twenty samples, only one did not contain alcohol, and that had the least sale mproved sugar machinery
Messrs. Morris, Tasker \& Co., of Philadelphia, are now shipping a large amount of machinery to be used in Louisiana in a new prucess of manufacturing cane sugar. The method is what is known as the diffusion process, as distinguished from the maceration process, which is that of all previously constructed sugar machinery. The cane is passed between rollers by the old method and the juice squeezed out In the new, the cane is sliced and the saccharine matter is dissolved out of it.

Parlor magic

The following beautiful experiment in instantaneous crys tallization is given by Péligot in La Nature: Dissolve 150 parts, by weight, of byposulphite of soda in 15 parts boiling water, and gently pour it into a tall test glass so as to half fill it, keeping the solution warm by placing the glass in hot water. Dissolve 100 parts by weight sodic acetate in 15 parts hot water, and carefully pour it into the sameglass; the lat ter wil [form an overlying layer on the surface of the former, and will not mix with it. When cool there will be two su persaturated solutions. If a crystal of sodic $h \bullet$ posulphit be attached to a thread and carefully passed into the glass, ee altached to a thread and calill pase but, on reaching the hyposulphite solution, will cause the latbut, on reaching the hyposulphite solution, will cause the lat-
ter to crystallize instantaneously in large rhomboidal prisms
with oblique terminal faces. When the lower solution is completely crystallized, a crystal of sodic acetate, similarly lowered into the upper solution, will cause it to crystallize in oblique rhombic prisms. The appearance of the two different kinds of crystals will not fail to astonish those not ac quainted with this class of experiments.

FLAT SURFACES.

The following rules, for determining the thickness of boil er heads, cylinder covers, and other flat surfaces, are take rom Des Ingenieur's Taschenbuch, being adapted to English measures, and the constants being chosen so that the work ing pressure is one eighth as much as the breaking strain These rules have never before been published in English, so far as we know, and we judge that they will be of interes to the engineering profession. They were deduce by D_{r} R Grashof, and the reasoning on which they are b by Dill . Grand in D. Fintill lin, 1866. Being purely theoretical deductions, which have not. we believe, been verified by experiment, it is possible that they may be somewhat incomplete; but we are confiden that, with the constants we have chosen, they will give pro portions that are at least as safe as those determined by the mpirical methods in common use. It is worthy of notice, in this connection, that so high an authority as Professor De Volson Wood remarks in a recent publication (as we under stand him) that, in the present state of our knowledge of the strength of materials, it is impossible to solve the problems under consideration without additional experimental data We believe, however, that the results of Dr. Grashof's in vestigations are generally accepted by German engineerscertainly they are by the distinguished editors of Des Ingen ieur's Taschenbuch.
A. To find the necessary thickness for a flat plate exposed o a given pressure in lbs. per square inch (all dimensions in nches) :

1. A circular plate, supported at the edges: Multiply the product of the square root of the pressure, and radius of the plate, by 0.018257 , for a cast iron plate; by 0.11785 , for wrought iron plate ; and by C•0091287, for a steel plate.
2. A circular plate, secured at the edges, such as a boiler head, or cylinder cover: Multiply the product of the square root of the pressure, and radius of the plate, by 0.01633 , for a cast iron plate; by 0.010541 , for a wrought iron plate; and by 0.0081649 , for a steel plate
3. A flat plate, supported by stays, at a given distance from center to center: Multiply the product of the square root of the pressure, and distance between stays, by 0.0094281 for a cast iron plate: by 0.0060858 , for a wrought iron plate and by 00047141 , for a steel plate.
4. A rectangular plate, secured at the edges:
(1) Divide the pressure by the sum of the fourth power f the two adjacent sides of the rectangle.
(2) Take the square root of the quantity obtained by (1)
(3) Multiply the product of the square of the long side of he rectangle, the short side, and the quantity obtained by 2), by 0.014142 , for a cast iron plate; by 0.0091287 , for a wrought iron plate ; and by 00070711 , for a steel plate.
5. A square plate, secured at the edges: Multiply the pro duct of the square root of the pressure, and the side of the square, by 0.01 , for a cast iron plate; by 0006455 , for a wrought iron plate; and by 0.005 . for a steel plate.
B. To find the working pressure, in lbs. per square inch or a flat plate of given thickness (all dimensions in inches) 1. A circular plate, supported at the edges: Divide the square of the thickness by the square of the radius of the plate, and multiply the quotient by 3,000 for a cast iron plate; by 7,200 , for a wrought iron plate ; and by 12,000 , for steel plate.
6. A circular plate, secured at the edges: Divide the square of the thickness by the square of the radius of the plate, and multiply the quotient by 3,750 , for a castiron plate; by 9,000 for a wrought iron plate; and by 15,000 , for a steel plate.
7. A flat plate, supported by stays: Divide the square of the thickness of the plate by the square of the distance be ween centers of stays, and multiply the quotient by 11,250 or a cast iron plate; by 27,000 , for a wrought iron plate nd by 45,000 , for a steel plate.
8. A rectangular plate, secured at the edges
(1) Take the sum of the fourth powers of the adjacent sides of the rectangle.
(2) Multiply the quantity obtained by (1) by the square of the thickness of the plate.
(3) Multiply the fourth power of the long side of the rec tangle by the square of the short side.
(4) Divide the quantity obtained by (2) by the quantity ob ained by (3), and multiply the quotient by 5,000 . for a cas ron plate ; by 12,000 , for a wrought iron plate ; and by 20,000 for a steel plate.
9. A square plate, secured at the edges: Divide the squar of the thickness of the plate by the square of the side of the late, and multiply the quotient by 10,000 , for a cast iro plate; by 24,000 , for a wrought iron plate ; and by 40,000 for a steel plate
A few examples are added, to illustrate the foregoing rules
10. What is the proper thickness for a steel boiler head the pressure of the steam being 60 lbs . per square inch, and the diameter of the boiler 24 inches?
The product of 77746 (the square root of 60), 12 , and 0081649 is $0 \cdot 78$, or $\frac{2}{3} \frac{5}{2}$ of an inch, nearly, the thickness re quired.
11. Required the thickness for the sides of a cast iron bo 20 inches long, 15 inches high, exposed to a pressure of 20 bs. per square inch
Dividing 20 by 210,625 (the sum of the fourth power of 20 and 15), and extracting the square root of the quotient, w obtain 0.0097445 . The product of 400,15 , and 0.0097445 is 0.83 , or about $\frac{5}{6}$ of an inch.
12. What is the safe pressure for a flat plate, supported by stays, 10 inches from center to center, the plate being of wrought iron, $\frac{8}{8}$ of an inch in tbickness?
Dividing $0 \cdot 140625$ (the square of $\frac{f}{8}$) by 100 , and multiply ing the quotient by 27,000 , we obtain the pressure, about 38 lbs. per square inch.
13. The side of a rectangular box, 25 inches long, 20 inches high, is of steel, $\frac{1}{4}$ of an inch thick. What is the working pressure?
The sum of the fourth powers of 25 and 20 is 550,625 The product of 550,625 and 0.0625 (the square of 4) is 6882 , 812,700. The product of 390,625 (the fourth power of 25) and 400 is $156,250,000$. Dividing $6,882,812,700$ by 156,250 , 000 , we obtain the working pressure, 44 lbs . per square inch Below will be found the analytical expressions for the rules
given in this article.
o a uniform pressure ((p) per square inch.

