IMPROVED ELLIPSOGRAPH
Weillustrate herewith a new and usefulinstrument for ratsmen, by means of which any figure, from a circle to a very flat ellipse, can be accurately and quickly described. At A are parallel rods, carrying a carriage, B, through which passes the main axis, C, to which is fastened the drawing arm, passes the main axis, C , to which is fastened the drawing arm, D, with a head for the pencil or pen
binding screw. The head slides to any desired point on the arm, and is likewise secured by a binding screw. The crank arm, E, passes through the head of the main axis, and also, by a set screw, may be secured in any position. The crosshead, F, fits the crank arm, and carries the paral lel motion rods, G, which are se cured to steady pins on the frame There are center points by which the machine is set over any desired line upon which the ellipse is to be drawn.
It operates as follows: The cente points are placed upon the minoraxis the pen point is set at the extremity of the major axis, and fastened. Th $\operatorname{arm}, \mathrm{D}$, is then turned to the mino axis, or 90°, and the pen point is set a its extremity, by means of the arm and by sliding the carriage upon the parallel rods. The crank arm is the clamped. By turning the crank, the point will describe the desired el lipse. It carries the pen at righ angles to the drawing bar, so that it will draw an ink line as well as pencil line.
Samples of the work of this ma chine, which have been transmitted for our inspection, show that the fig ures are perfectly drawn.

For further particulars addres
Messrs. W1 L. Bramhall and W. W. Johnson, 607 Seventh ; the mouth of which may then be closed as above directed street, Washington, D. C.

IMPROVED RAILWAY TIE.

The invention illustrated herewith is a new iron railway crosstie, intended to replace the wooden tie usually employed. It is claimed to offer the advantages of permanence and indestructibility, and therefore to be much more economical than wood, the renewal of which, owing to its rapid deterioration, is a constant and large source of expense. A perspective view of the track secured in the tie is shown in Fig. 1, and a sectional view of the device is given in Fig. 2 The body of the tie is made of a rolled iron girder of T cross section. It is proiron girder of cross section. It is prothe rolls, while hot, and to stamp the lugs, A, at the same handling. It will be seen from Fig. 2 that these lugs, A, overlap the inner base flange of the rail, while the out side flanges are retained by the adjustabl clamps, B. The tapering plajes or wedges, C, pass under, and are guided and held by the bent lugs, D, and, by being driven in ward, are tightened against clamps, B. The wedges are serrated on one edge, to prevent their tendency to work out through jolts and jars. In order to protect the ties against the weather, while still warm the are immersed in a bath of melted asphal or other weatherproof substance.

The device shows strength, and apparent y is neither difficult nor costly to manufac ture. It would probably resist wear, and is as easily laid as a wooden tie.
Patented through the Scientific America Patent Agency, May 11, 1875. For further information address the inventor, Mr. Henry Reese,209 W. Pratt street, Baltimore, Md.

The Weather Glass.

In compliance with the repeated request of some of our me teorologically inclined correspondents, we publish below instractions for the construction of the so-called chemical ba rometer or weather glass. The utility of this little instru ment is based upon the varying solubility of certain salt under different atmospheric conditions of pressure, humidity and temperature, and the employment of a menstruum of such a density that the siightest increase or decrease of the same will cause the newly formed crystals to rise or sink in the liquid. The instrument generally consists of a tube, from ten or twelve inches long, and from three quarters to one inch in diameter. It is closed at the lower end, and, after the solution has been poured in, the upper end is drawn out by means of a spirit lamp or blowpipe until the tube is hermetically sealed When cooled, the point is broken off in such a manner that in suck a maner that a minute hole is left, which suffices for the necessary commuication betw ine contents of the tube and the estal consists of a large test tube with a piece of bladder or caoutchouc tied over the mouth, and a small pinhole made through this covering; this arrangement, however, is not so satisfac tory as the first, as the covering does not last very long The solution may be made as follows: Take pure nitrate of potash (saltpeter) and chloride of ammonium (sal ammoniac) each 1 part, camphor 4 parts, strong alcohol 70 parts, dis-

Fig 2

REESE'S RAILWAY TIE

 white stars constantly floating in it. The instruments are pretty ornaments, and their indications are al ways interest ing and instructive.FLEURY'S EUREKA WEATHERSTRIP
The invention illustrated herewith is an improved wea

therstrip, which"may be adjusted to suit any depression worn
and the whole allowed to cool very slowly.
The indications that this little instrument gives are of this ing, 1 the tube, the supernatant liquid being perfectly clear; but on the approach of rain or wind, the solid matter will gradually rise, and small crystals of stellar formation will be found floating in the otherwise pellucid liquid. On the approach of strong winds, flakes of feather-like form will sometimes appear on the surface of the liquid; this often occurs several Orleans. Ah Chu passed a bottle with
a quill fitted in the cork. ' Vinegar? said I. 'No; here is the vinegre's the cork. 'Vinegar bottle exactly like the first. 'Me thought you asky fo salt.' 'Salt it was,' said I. 'Well,' said Ah Chu, 'tha is the salt me gave you first." And sure enough it was; salt dissolved in water and used in a fluid state. 'So,' says Ab Chu, 'table salt is served in China.'
"For convenience of application, and exactness with which the seasoning can be regulated, give me liquid salt."

A Model; Locomotive

An ingenious mechanical curiosity has recently been shown to us by its maker, Mr. Joseph Butcher, of 43 Center street this city. It is a miniature locomotive and tender, containing every portion found in the full sized machine, perfectly proportioned, capable of carrying a steam pressure of 75 lbs. to the square inch, and of running at high rate of speed. An alcohol lamp, which by its heat, generates an alcohol steam, which, in turn, is ignited under the boiler, heats the latter, which is supplied with water by feed pumps, perfect in everyvalve and connection. No less than 230 separate pieces enter into the construction of the cab alone. The model is admirable in mechanical execution and strange to say, is its maker's first effort at me chanical work, and has occupied his leisure hours, outside his regular trade of ornamen tal painting, for the past three years. Th engine shows remarkable skill both in design and handiwork, and evinces the great patience and native mechanical genius of its construc tor, who first made the tools he used in con structing his machine.

Velocity--Effects of its Increase and Arrest.

Mr. F. J. Bramwell, C. E.,in a paper read a weather the liquid is rendered milky by the multitude of the recent meeting of the British Association, said

Gravity can put into our frames a velocity in one second Gravity can put into our frames a velocity in one second
amounting to 20 miles an hour without injury, there amounting to 20 miles an hour without injury, there
fore it is reasonable to suppose that that velocity may fore it is reasonable to suppose that that velocity may
be taken out at the rate of two and a quarter miles per be taken out at the rate of two and a quarter miles per
second with even less risk of injury; and if we want a proof of this,one might instance a swing at a fair. Take the case of a swing 30 feet long, rising to the horizontal at each vibration; when the swing is at the lowest point, it has a velocity of 45 feet per second, or 30 miles; one knows it will make this half vibration and will reach its high est point in less than 18 seconds, so that a speed of 30 miles an hour is taken out at the rate of nearly 17 mile per second instead of the two and a quarter miles of the pas senger train.
Another instance of rapid reduction of velocity without injury occurs in colliery winding. The Rosebridge Colliery, in the neighborhood of Wigan, is nearly half a mile, actu ally 806 yards deep; the winding is done under the minute or at an average rate of thirty miles an hour; but this in cludes the stopping and the starting; the maximum pace is equal to 58 miles anhour,and this 58 miles an hour is brough to rest in from 180 to 200 yards. There is thus, therefore, abundant evidence that the powers of brakes may be carried yet further than they have been without fear of injury to railway passengers from the sudden checking of momentum so long as the brakes are properly applied.
in the door sill. It consists of flexible tubing, A, Fig. 2, made of rubber, felt,or similar material, through which runs a metal rod, B , the object of which is to keep the tubing in position. Metal fastenings, C, have a hook at one end which fits around the rod, and an eye at the other end, by which they are secured by screws or other simple means to the bot tom of the door, as represented in Fig. 1. The strip, by bending, may be fitted to any de pression in the sill, so as entirely to fill up the opening between the sill and door when the latter is shut, thus preventing the ingress of either wind or water.
The door, by its weight, on being shut, draws the rubber against the ging of the and on opening the drag hold is prevented. The iron rod is made just the length of the door. The rubber tubing extends over one inch a each end, and rests against the casing
The device is quite durable, is nea in appearance, and may be manufac tured at a small cost
Patented July 27, 1875. For furthe particulars relative to sale of rights or of entire patent, address the inventor Mr. Frank Fleury, Springfield, Ill.

Ah Chu and his Salt

B. writes as follows:

Where is your salt, Ah Chu?' said I. Ah Chu had invited me to dine at his mess, to celebrate a Chinese festival, and, barring the chopsticks and some national dishes, which I did not venture upon, a capital dinnerit was venture upon, a captal dinnerit was Ah Chu and his messmates were work ing on a sugar plantation below New

