New Theory of the Resistances of Ships and other
Moving Bodies in Water.
Ine following is an abstract of the address of Mr. W. Froude, C.E., F.R.S., as president of section G (Mechanical Science), British Association :
" I propose," he said, 'to treat of certain of the fundamental principles which govern the behavior of fluid, and this with special reference to the resistance of ships. By the term "resistance" I mean the opposing force which a ship experiences in its progress through the water. Considering the sion of ships, or, in other words, in overcoming the resis tance of ships, I trust you will look favorably on an attempt to elucidate the causes of this resistance. It is true that to elucidate the causes of this resistance. It is true that through accumulated experience; but it unfortunately happens that many of the theories, by which this experience is commonly interpreted, are interwoven with fundamental fallacies, which, passing for principles, lead to mischievous results when again applied beyond the limits of actual experience. The resistance experienced by ships is but a branch of the general question of the forces which act on a body moving through a fluid, and has within a comparatively re. cent period been placed in an entirely new light by what is commonly called the theory of stream lines. The theory as a whole involves mathematics of the highest order, reaching alike beyond my ken and my purpose; but I believe that, so far it concerns the resistance of ships, it can be sufficiently understood without the help of technical mathematics; and I will endeavor to explain the course which I have myself found most conducive to its easy apprehension. It is con venient to consider first the case of a completely submerged body moving in a straight line with uniform speed through
an unlimited ocean of fluid. A fish in deep water, a submaan unlimited ocean of fluid. A fish in deep water, a submarine motive turpedo, a sounding lead while descending through water, if moving at uniform speed, are all examples of the case I am dealing with. It is a common but erroneous belief that a body thus moving experiences resistance
to its onward motion by an increase of pressure on its head end, and a diminution of pressure on its tail end. It is thus supposed that the entire head end of the body has to keep exerting pressure to drive the fluid out of the way, to force a passage for the body, and that the entire tail end has to keep on exerting a kind of suction on the fluid to induce it to close in again--that there is, in fact, what is termed plus pressure throughout the head end of the body and minu pressure or partial vacuum throughout the tail end. This is not so: the resistance to the progress of the body is not
due to these causes. The theory of stream lines discloses to us the startling but true proposition that a submerged body, if moving at a uniform speed through a perfect fluid, would encounter no resistance whatever. By a perfect fluid I mean
a fluid which is free from viscosity, or quasi-solidity, and in a fluid which is free from viscosity, or quasi-solidity, and in
which no friction is caused by the sliding of the particles of the fluid past one another, or past the surface of the body. The property which I describe as 'quasi-solidity' musc not be confused with that which persons have in their mind when they use the term 'solid water.' When people in this sense speak of water as being 'solid,' they refer to the sensation of solidity experienced on striking the water sur blade or propeller. What I mean by 'quasi-solidity' is the blade or propeller. What I mean by quasi-solidity is the
sort of stiffness which is conspicuous in tar or liquid mud sort of stiffness which is conspicuous in tar or liquid mud
and this property undoubtedly exists in water, though in a very small degree. But the sensation of solid reaction which is encountered by the hand or the oar blade is not in any way
due to this property, but to the inertia of the water. It is due to this property, but to the inertia of the water. It is
in effect this inertia which is erroneously termed solidity; and this inertia is possessed by the perfect fluid, with which we are going to deal, as fully as by water. Nevertheless it
is true, as I am presently going to show you, that the per fect fluid would moving through it at a steady speed.
It will be seen that the apparent contradiction in terms which I have just advanced is cleared up by the circumstance that in the one case we are dealing with steady motion, and in the other case with the initiation of motion. In ocean of perfect fluid, unlimited in every direction, I need ocean of perfect fluid, unlimited in every direction, I need
hardly argue that it is immaterial whether we consider the body as moving uniformly through the ocean of fluid, or the ocean of fluid as moving uniformly past the body. The proposition that the motion of a body through a perfect fluid is unresisted, or, what is the same thing, that the motion of a of a perfect fluid past a body has no tendency to push it in the direction in which the fluid is flowing, is a novel one to many persons; and to such it must seem extremely startling.
It arises from a general principle of fluid motion, which I shall presently put before you in detail-namely, that to cause a perfect fluid to change its condition of flow in any manner whatever, and ultimately to return to its original condition of flow, does not require, nay does not admit of, the expendi curved path, as it must do in order to get round a stationary body which stands in its way, or to flow with altered speed as it must do in order to get through the local construction of a channel which the presence of the stationary body practi-
cally creates. Power, it may indeed be said, is first expendcally creates. Power, it mayindeed be said, is first expend
ed, and force exerted to communicate certain motions to the fluid; but that same power will ultimately be given back, and the force counterbalanced, when the fluid yields up the motion which has been communicated to it, and returns to its original condition." He illustrated this portion of his address with several interesting experiments, in one of which he was assisted by Sir William Thomson, showing that, if a chain be set rotating at a very high velocity over a pulley, the
centrifugal forces did not tend to disturb the path of the run-
ning chain, and that a stream of fluid in a tortuous flexible ning chain, and that a stream of fluid in a tortuous flexible
pipe would behave in a strictly antagonistic manner. He also introduced an experiment to show that, in a pipe of vary ing diameter, the pressure of a running stream is greater in the wider part. He then pointed out that the causes of resistance to the motion of a ship through the water are: First, surface friction; secondly, mutual friction of the particles o water (and this is only practically felt when there are fea tures sufficiently abrupt to cause eddies); and thirdly, wave genesis; and that these are the only causes of resistance He also showed that a ship at the surface experiences no re sistance in addition to that due to surface friction and the action of eddies, except that due to the waves she makes
He then said: "I have done my best to make this clear ; bu there is an idea that there exists a form of resistance, something expressed by the term ' direct head resistance', which is independent of the abovementioned causes. This idea is so largely prevalent, of such long standing, and at first sight so plausible, that I am anxious not to leave any misunderstanding on that point. The notion of head resist ance, in the ordinary sense of the word, or the notion of any opposing force due to the inertia of the water on the area of the ship's way, a force acted upon and measured by the area midship section, is, from beginning to end, an entire de lusion. No such force acts at all, or can act. No doubt, i two ships are of precisely similar design, the area of midship section may be used as a measure of the resistance, because it is a measure of the size of the ship; and if the ships wer similar in every respect, so also would the length of the bow
sprit, or the hight of the mast, be a measure of resistance sprit, or the hight of the mast, be a measure of resistance,
and for just the same reason. But it is an utter mistake to suppose that any part of a ship's resistance is a direct effec of the inertia of the water which has to be displaced from the area of the ship's way. Indirectly the inertia causes resistance to a ship at the surface, because the pressure due merged portion of a ship traveling beneath rigid ice, no re sistance whatever will be caused by the inertia of the wate which is pushed aside. And this means that, if we compare wo such submerged bodies, or two such submerged portions of ships traveling beneath the ice, as long as they are both of sufficiently easy shape not to cause eddies, the one which will make the least resistance is the one which has the leas skiu surface, though it has twice or thrice the area of mid ship section of the other. The resistance of a ship, then practically consists of three items-namely, surface friction, eddy resistance, and wave resistance. Of these the firs
named is, at least in the case of large ships, much the larg named is, at least in the case of large ships, much the larg est item. In the Grayhound, a bluff ship of 1,100 tuns, only 170 feet long, and having a thick stem and sternposts, thus making considerable eddy resistance, and at 10 knots visibly making large waves, the surface friction was 58 per cent o the whole resistance at the speed; and there can be no doubt that, with the long iron ships now built, it must be a far greater proportion thanthat. Moreover, the Grayhound wa coppered ship; and most of the work of our iron ships ha to be done when they are rather foul, which necessarily in ance-namely, the formation of eddies-is, I believe, imper eptible to ships as finely formed as most moderniron steam hips. Thick square shaped stems and sternposts are th most fruitful source of this kind of resistance. The thir tem is wave resistance. On this point, the stream lin theory rather suggests tendencies than supplies quantitativ results, because, though it indicates the nature of the force in which the waves originate, the laws of such wave com binations are so very intricate that they do not enable us to predict what waves will actually be formed under any given condition. In order to reduce wave resistance, we should make the ships very long. On the other hand, to reduce th surface friction we should make her comparatively short, so as to diminish the surface of wettedskin. Thus, as commonhappens in such problems, we are endeavoring to reconcile conflicting methoas of improvements; and to work out the
problem in any given case, we require to know actual quan proble

We have sufficient general data from which the skin re sistance can be determined by simple calculation; but the data for determining wave resistance must be obtained from direct experiments upondifferent forms to ascertain its value tor each form. Such experiments should be directed to de
termine the wave resistance of all varieties of water line cross section, and proportion of length, breadth, and depth so as to give the comparative result for each. An exhaustiv series of such experiments could not be tried with full sized ships; but I trust that the experiments I am now carrying out with models for the Admiralty are gradually accumulat ing the data required on this branch of the subject. I wish n conclusion, to insist again, with the greatest urgency, on form in in eless futility of any attempt to theorize on goodness o which the doctrine of stream lines throws on it. It is, I re peat, a simple fact that the whole framework of thought, by which the search for improved forms is commonly directed consist of ideas which, if the doctrine of stream lines is true,
are absolutely delusive and misleading. And real improvements are not seldom attributed to the guidance of those very ideas which I am characterizing as delusive, while in reality they are the fruit of painstaking, but incorrectly rationalized experience. I am but insisting on views which the highes mathematicians of the day have established irrefutably ; and my work has been to appreciate and adopt these views w hen plausibility me. No one is more alive than myself to th tending: but it is for the very reason that they are so plausi-
ble that it is necessary to protest against them so earnestly and I hope that, in protesting thus, I shall not be regarded a dogmatic. In truth, it is a process of scepticism, not of dog matism ; for I do not profess to direct any one how to find his way straight to the form of least resistance. For the pre sent we can but feel our way cautiously towards it by care ful trials, using only the improved idea which the stream line theory supplies, as safeguards against attributing this or that result to irrelevant or, rather, non-existing causes."

Remarkable Shower of cce--Perifs of Rocky

Mountain Railway Traveling.
At Potter station, on the Union Pacific Railroad, recently train was just pulling out from the station when a storm , and in ten seconds there was such a fury of and wind that the engineer deemed it best to stop the
 , many of them threeand four inches in diameter, and o shapes-squares, cones, cubes, etc. The first stone tha truck the train broke a window, and the flying glas severely injured a lady on the face, making a deep cut. Fiv minutes afterward there was not a whole light of glass on the south side of the train, the whole length of it. The win dows in the Pullman cars were of French plate.three eighth of an inch thick, and double. The hail broke both thick esses, and tore the curtains into shreds. The wooden shut ers, too, were smashed, and many of the mirrors wer broken. The decklights on the top of the cars were als demolished. The dome of the engine was dented as if it ha been pounded with a heavy weight, and the woodwork o he south side of the cars was plowed as if some one had struck it all over with sliding blows from a hammer. Dur ing the continuance of this terrific fusillade, which lasted fully twenty minutes, the excitement and fear among the passengers ran very high. Several ladies fainted, and on lady, Mrs. Earle, wife of the superintendent of the Moun tain division of the road, went into spasms, from which she did not recover for over an hour after the cessation of th storm. Several persons sitting on the south side of the cars were more or less injured about the head and face
As soon as the storm abated a little, the matting in the ars was hung up in front of the windows, and the train moved ahead, the drifted hailstones proving an obstacle fo some miles. At the next station, strips of tin were pro cured and fasted over the windows the entire length of thd rain. The cars have been run into shop for repairs, an hedamage will amount, it is estimated, to several thousand dollars.-Denver Neus.

DECISIONS OF THE COURTS.

United States Circuit Court.--Northern District of

Improved Screw-Pegging Machine.

A. C. McKnight, Philadelphia, Pa.-This invention consists of sev
eral novel devices in a screw-pegging machine, by which the fast ening together of sole and upper of boot or shoe may be greatly facilitated. These new features, both separately and in the aggre gate, will materially contribute to the cheaper manufacture of boots and shoes, while the peyging is done thoroughly and in

Improved Nachine for Stiffening Hat Granville B. Fuller, Middletown, N. Y.-The hats are dipped into stiffening in a tank, and are placed upon blocks, to which a rapi otary motion is then given to throw off the surplus stiffening. Th hats are given a heavy or a light stiffening by v
of the stiffening solution contained in the tank.

Improved Knock-Down Bedstead. achably locking the end boards and standards of the method of deportions of a bedstead by hooks on the lower end board and screw at the top, by which the parts may be readily separated for packing

Improved wrench
Peter Samuel, New York city.-A movable jaw is first adjusted relatively to the stationary jaw, to embrace the nut between them.
 the movable jas and clamp the nut tightly. The increase of press-
ure increases the closeness of such contact, so that abrasion of the ure increases the closeness of such contact, so that abrasion of the
nut is impossiole. When the handle is turned, a cam will act on an nut is impossiole. When the handle is turned, a cam will act on an
arm, and thus on the movable jaw ; and when turned in the oppoarm, and thus on the movable jaw; and when turne in the oppo-
site direction, another cam acts similiarly, so that the wrench may site direction, another cam dects similarly, so that the wrench may
be operated to screw nuts on or off the bolts. A spring moves the jaw a way from the side of the nut; at oncet the action of the handle

Combined Spark Arrester and Stove Register. Thomas R. Freeman and Perine Y. Jones, Ripnn, Wis.-The body
of the stove has a register frame, to which is attached a frame in which is formed a groove to receive a plate of wire gauze, by which Which is formed a groove to receive a plate of wire gauze, by which
the escape of any sparks through the openiugs of the register is
wholly prevented. The plate can be readily removed when worn wholly prevented. The plate can be readily removed when worn
and replaced with a new one, and does not interfere with the operaand replaced with a
tion of the register.

Improved Beer Refrigerator.

John N. Bohart, Denison, Texas.-This consists of a skid for supporting the barrel, an ice box arranged above the latter, and an outer case or cover. It was illustrated and described on page 150,

Improved Brush.

Moritz Leiner, New York city.-This coasista of a brush having the twisted wire which secures the bristles fastened over the block of the brush, the invention applying only to brushes which have
blocks of wood or metal or other suitable material, and of sections blocks of wood or metal or other suitable material, and of sections

Improved Toy Store.

Eias Durlach, New York city.-This consists in a toy grocery store, made of sheet metal, and provided with the detachable sign
and ornament, shelves, drawers, boxes, or canisters, a movable counter, and pivoted detachable chandeliers.

Improved Grain Drill Tooth.
George L. Ives, Galesburg, Mich., assignor to himself and Henry . Keith, same place - hihis is a too forgrain drill tubes, consisting rear cavity running through both, and passing out on a rearward curve near the bottom.

Improved Animal Trap.
Ebenezer Oliver, New York city.-The body of the trap is made
with an offset, formed by bending back the upper part of the front wire of the frame. A wire is secured to the frame of the body and carries a spring, one end of which is secured to the body, and its other end is secured to the door. The door is provided with upright
wires at a little distance from the side wires of its frame. The door wires at a little distance from the side wires of its frame. The door left is placed a wire, secured to the bottom and to the front wire of the body of the trap. Riogs pass around the side wires of the door frame and around the wires last mentioned. When the trap is
sprung, the rings slide down upon the wires and fasten the door ecurely, so that no tffort of the animal can open it.

Improved Car Coupling.

Peter Harper, Marshall, Texas.-The drawbar has an upwardly extending hook part, and a coupling link, which is passed through a slot of the bar, and raised for coupling with the approaching connection from the platform. The link is retained, raised by a hook arm of the buffer rod engaging the connecting lever mecbanism, and is released by the concussion of the cars, dropping forward over the drawbar of the adjoining car. A fulcrumed lever with forked lower part engages the hook arm of the buffer rod, and ad-
mits the direct lowering of the link independentiy of the buffer rod. Improved Windmill.
Chesley Gates, Locust Grove, Mo - A small wind wheel for regulatiog the speed of the large one is arranged where it is subject to o a brake lever, so as to pull it against the wheel with more or less force, according to the action of the wind on it. Its effect is varied
by an adjustable weight. by an adjustable weight.

mproved Grain Drill.

John T. Lynam, Louisville, Ky.-A round the bearings for the wheel shaft are formed circular projections, upon which rest the dges of a curved plate, the outer part of which projects outward, is bent upward, and is attached to a cross bar. To the cross bar are the circular plate. A cross bar is moved to adjust the plate to reyulate the amount of seed dropped. An arm is provided with an index that points to division marks upon the side of the bar to indicate the amount of seed the machine will drop to an acre when the plate is adjusted in any particular position.

Improved Screw-Cutting Die.
George R. Stetson, New Bedford, Mass.-In this improvement the chasers are fitted in sockets of a solid die, tapered so that they are held by a binding screw at one side of each. Two of the chasers are provided with an adjusting s
as they become worn a way.

Improved Crown Bar for Steam Bollers. James McPhail, Ellis, Kan.-This invention is an improvement pon that covered by letters patent No. 129,634, and consists in the employment of a detachable lock bar, having lugs on its ends, in lock bar aids in preserving the parallelism of the bars, and strengthens and braces the same. It also prevents the bolts being thrown of the crown sheet.

Improved Wrench.

John H. Morrissey, Indianapolis, Ind.-The invention consists of
wheel wrench haviog a central socket part, with diametrically wheel wrench have a cecurely locked by fastening springs to the hub hand, to be applied to the nut for unscrewing the same, and in

Improved Picture Nail

Owen W. Taft, 221 Pearl Street, New York city.-This consists of an ornamental head made of two cups of sheet metal, one being permanently attached, and the other detachable. The cups are ornamented with spiral ribs, which also form screw threads, by which the detachable part is connected to the permanently attached part.
The cup, which is permanently attached to the nail, is fastened by The cup, which is permanently attached to the nail, is fastened by
filing it around the shank by solder. filling it around the shank by solder.
lmproved Combined Har
William McCray, Black Oak, Mo.-Wings are used upon eacn $\$ 1$ ae of the central bar. The forward ends of the wings are connected by bars. The rear ends of the wings are connected by bars secured
to their upper sides. To and between the rear ends of the bars and the rear braces are secured the outer ends of the two bars, in which several holes are formed to receive the bolts by which they are secured to the plate, so that the wisgs may be expanded or contracted to make a wider or oarrower cut, as m y be desired. The
wing teeth, which are curved outward and rearward, are made "in upon thrir forward cdge.

Improved Hose Spanner and Key

 Andrew J. Barnard, Camden, N. J.-By this implement, a hose stopcock of the same opened. The handle is made of a doubl curved or S-shaped form. At one end, and csat in one opiece thereith, are arranged recessed prongs, which fit in a semicircle around and, by their recessed parts, on the lug of the hose coupling. Thecoupling is first screwed on by hand, and then drawn tightly by applying the prongs. A key at the other ends of the handle serves applying the prongs. A key at the other ends of the handle serve
to turn the water on or off by being applied to the stopcock of th water pipe. A tapering lug, forming an extension of the key serves for lifting the lid o
and the water turned on.

Improved Car Wheel Lubricator.
John Woodville, Washington, Ind.-The car wheel has an oil chamber arranged between its spokes or arms. As the wheel re olves. oil will slide down the back wall and turn into the passage out if more falls than is required, the superfluity falls back, the col

Improved Rotary Engin
Jacob W. Vanarder and George F. Savage, Utsaladdy, Wash. Ter.This invention is an improvement in the class of rotary engine
whose pistons are caused to reciprocate as they rotate, by means of a fixed cam; and it relates to cutting out the middle portion of the pistons and fitting them together in such a mannerthat space is conomized within the wheel case
Improved Device for Hanging Pictures, Mirrors, etc. Harvey D. Pope, Dayton, Ohio.-Theobject of this invention is to rovide a device for ajastably haoging pictures, mirrors, etc., so a at which they are hung, and the different lighich they are hung, and the different quarters whence the
light proceeds. It consists of a frame to be attached to the wall, to which the picture or mirror is fastened upon both sides by links which are long enough to give the desired adjustment. The lower part of the picture is hinged to a hollow bar which slides in-
side a hollow pendent bar or case attached at the top to the frame side a hollow pendent bar or case attached at the top to the frame,
and provided upon one of its inner sides with ratchet teeth or and provided upon one of its inner sides with ratchet teeth or
notches. Inside the inner bar is a rod or wire attached co a spring pawl at the top, and a thumb latch below, by pressing upon which raised or lowered, the links serving to control the different inclinations to the wall.

Improved ibovetalling Machine

Charles P. Baile, New Windsor, Md.-This invention relates to certain improvements in that class of dovetailing machines in which revolving cutter is moved against the boards to be cut so as to produce, by a single movement, the reciprocally fitting tenons and rigge moving consists in a vertical catter revolving in a sliding car by a treadle, cord, and spring, and the guides in which it is con tained being supported upon a vertically adjustable bed.

Improved Insole for Boots and Shoes.
Charles F. Hill, Baltimore, Md.-The object of this invention is to in cutting in the insole or lasting sole, or both, slits transversely to the same at the bend of the sole

Patent Heating and Ventilating Stove
Marius C. C. Church, Parkersburg, W. Va.-This invention relate to certain improvements in heatiog stoves, and it consists in a de tachable fire pot back, having flanged sides that slide vertically int guide ways in the outer casing. It also consists in the particular
construction of the smoke flue ascending vertically from the stove and having partition plates attached thereto, in combination with a detachable cover above leave an annular outlet for the heated air, which, passing up in
columns adjacent to said pipe, heats the room better by affording a more perfect convection. This invention is claimed to be a valuable improvement; but our readers can form their own opinions on Improved Plow.
J. Freeman, Corpus Christi, Texas.-This invention contemplates an improvement in the present mode of securing the share and bolt both to serve as a fastening of the parts aad a brace to the whole structure.

improved signal Lantern

George J. Cave, Elizabeth, N. J.-Two glass tubes, made of differ colors and of the same diameter, are placed end to end, and are tube is secured to a base ring, to which is rigidly attached a handle, so that the glasses can be conveniently raised by grasping and rais-
ing the said handle. A spring catch receives the base ring when the glass tubes have been raised sufficiently to display the upper tube above the case. Another spring catch receives the base ring when the glass tubes have been raised sufficiently to display the lower
tube. By this construction, by operating a handle, the upper or the tube. By this construction, by operating a handle, the upper or the at the same time. To the base ring are attached three spring rods, which pass up along the sides of the colored glass tubes, and which, part of the globe, and prevent the said glass tubes from shakiog about. A shade, made in telescopic parts, is secured to the cap of
the lantern, and extends downward so far as to cover the upper the lantern, and extends downward so far as to cover the upper glass tube when the tubes are fully raise
from shining through said upper tube.
Improved Method of Scouring and Polishing Rice Philip R. Lachicotte, Waccamaw (Georgetown P. O), S. C., as of scouring Lachiche and Sons of one plis a metho of scouring and polishing rice by applying friction surfaces to
previously hulled article commixed with the ash of rice chaff.

Improved Railroad Rail Joint.
Joseph C. Wright, Monocacy Station, Pa.-This invention consist of an inside spriag plate for the flange, and an outside spring for the of it, from the end, to take off the weight of the wheel, or a portion or it, from the ends of the rails, and thus prevent the pounding and
hammering due to the springing down of the rails when the whe passes over the ends. It also consists in the form of the plates, an arrangements for fastening them in position, whereby they ar

Improved oil Can.
John Askwith, Chicago, Ill.-This isanattachment to the botton the can, so contrived that the drip escaping from the nozzle o It also consists of a nozzle for pouring out the drip, so contrive with the attachment that it serves for a handle to use in pouring,
and of a nozzle so combined with the drip attachment and the nozzle for pouring out of the can that the drip may be poured out to zle for pouring out of the can that the drip may be poured out to
gether with the contents of the can or through the same nozzle.

Improved CuItivator Teeth.
John Flynn, Monches, Wis.-The invention consists in the combi farmed in its rear side contiguous to a lug, through which passes formed in its rear side contiguous to a lug, through which passes
set screw, whereby the wheel can be adjusted in such manner as to cause the teath to yield more or less readily, as required in differ ent soils.

Machine for Making Crimping Tacks, Awls, Etc Heller die machinery for shaping sboemakers' awls, also crimping acks; and it consists, first, of notches in the surface of the roller surrounding the dies. and between the dies, and the cavities outside of the dies, for clearance, the object being to utilize the holdingback tendency of the notches on the metal expelled from the sides
in the form of fios, to counteract the longitudioal strain which the metal is subject to by the drawing action of the rollers. Second, einvention consists of feed mechanism, in combination with die he diero formed, draw the rod back to the cutters, and then leave it an slide back to take hold for feeding again. Third, it consists of their office, and hold it while the carrier continues to go back for new hold, and while the cutters detach the rolled piece; and, fourth feed mechof the rollers contrived for shifting laterally along th to utilize one feed for all the different dies of a set of rolls having different sizes or forms for different articles.
improved Automatic Gate
William W. McKay, Ossian, Iowa.-This gate is so constructed that it may be readily opened by a person in a vehicle or upon horse-
back, and again closed after the said vehicle or horse has passed back, and again closed after the said vehicle or horse has passed
through. The only operation is slightly pushing upon levers before through. The only operation is slightly pushing upon levers before
and after passage, whicn, through the medium of counterpoises, and after passage, which, through the mediuw of co
cause the gate to shut into compact form, or to extend.

Improved Hat.

Charles Sinclair, New York city.-The invertion consists of a or lower position, the wire ends being attached in suitable manne o thesweatband of the hat. The head is thereby kept cool and comfortable, as no pressure of the hat is exerted on the forehead o back of the head.

Improved Stamp-Mill Feeder

John Walker, Sonora, Cal.-Thisinvention relates to an improved eeder for stamp mills, which is operated in combination with the stamp, and so constructed that a uniform and continuous feed of
ore is secured. The invention consists of a feeding disk, with sta tionary hopper, directing gage piece, and discharge apron, the disk being rotated by pulley, rope, and weight connection of its shaft with a pivoted lever and conical collar of the stamp shaft.

Improved Vehicle Top.

Jerome B. Relyea, Hicksville, assignor to himself and Lewis E. Brewster, Bryan, Ohio.-The case of the device is concaved upon its inner side to fit upon the rear bow of a buggy top. In the mid-
dle part of the concaved plate is formed a slotto receive the rubber dle part of the concaved plate is formed a slotto receive the rubber
block, the inner edge of which is designed to rest against the bow block, the inner edge of which is designed to rest against the bow
to which the device is attached. Upon the outer sides of the concaved plate are formed two caps, the inner ends of which form shoulders for the rubber block to rest against, to prevent the said rubber block from falling out.

Improved Cloth Measure Register.
James Brown, Jr., Matteawan. N. Y.-This is an improved machine for attachment to a store counter, to register the number of yards, of cloth or any other flexible material sold by the yard, measured off, so that the clerk can always know exactly how many measuring the goods one or more times, should the purchaser per ist in talkiog to him."

Improved Farm Fence.

Andrew Miller, Guntersville, Ala.-This improvement in fence consists of one of the upper boards of the panel extended a little while at the lower part the corners drop alongside of stop cleat nailed on the posts. Cleats are on the middle portion, which, at
the same time, drop down on the top of a stake on the opposite the same time, drop down on the top of a stake on the opposit side to the stop block, which effectually holds the panel upright
and at the same time allows it to be lifted off the posts readily. The nd at the same time allows are driven into the ground, and are not as high as the pand posts are driven into the
being small and light.

Improved Champagne Freezer

Charles H. Ludwig, New York city.-A frame is applied to the cooler in a fixed or detachable manner, as desired. A central ver-
tical rod is revolved in cross bearings at the top part of a frame by
gearing operated by a crank handle, the rod beiog provided at the gearing operated by a crank handle, the rod being provided at the the necks of champagae or other botties, are hinged. A clamp bol and screw nut connects the hinged iaws, and admits their rigid at uickly acted upon by the ice in the ree receptacle. Any beverag may thus be cooled in a very short time, and the champagne frappe be made in quick and convenient manner. Information regarding territorial or shop rights, purchase of machines, etc., may be had
by addressing Ludwig and Battin, No. 50 East 26th street, Ner y address

mproved Spring Power

Valentine Moeslein, Waterloo, Ill.-This invention is a contriv ance of double but independent springs in a spring power appa
ratus, so that both work together to drive one and the same train and each can be wound uv independent of the other, whereby one may be wound up when the other is partly run out, and vice vers \hat{a}, Improved Folaing School-Desk.
David I. Stagg, New York city.-This folding school-desk is so constructed that when the desk board is folded down, its upper ge will not project above the desk back. Bars are arr

Improved Manufacture of Horseshoes.

Alfred B. Seymour, Jersey City,N. J.-This is a process of making horseshoes by rolling stgel bars with a V-shaped flange, then notch ng said flange transversely, and fina.ly bending the blank into horsesho.
the toe.
Edward S. Perot and Harry C Beitenman, Philadelphia, Pa. There is a ring under the wheel, having ioclines to ride upand down studs in the bottom of the groove for the wheel, and a shank ex
tending out through the shell of the chuck, for turning it. The slo or the shank is inclined, to correspond with the inclines, so that b nifting the stud to one end of the slot, the ring will push the whee allow the wheel to move back out of gear, thereby causing the jaws to work in the manner of a universal chuck. A stop lug locks the
ring when raised up the inclives, to hold the wheel in gear by filling ring when raised up the inclives, to hold the wheel in gear by filling Improved Center Board.
Joseph L. Dickenson, Hempstead, N. Y.-This is an improved method of hanging center boards, which will enable the cente water to be shipped and unshipped while the vessel is foating in th ter board bolt. The center board trunk has a hole bored into but not through its timbers. There is a bolt, shorter than said hole, and a superimposed plug of woce to be driveninto the aperture.

