ments made thus far prove that this new machine will drag on ordinary roads, or on rails, a train four times as heavy as the ordinary trains; the cost of this augmented train will not, it is said, vary materially from that of the ordinary machines with the usual trains when used on equal grades; but the increased adhering power of the new locomotive will per mit of the employment of a lighter built machine for the usual trairs, as well as the power to surmount steeper grades tha
This new system of M. Fortin-Hermann enlarges very reatly the capacities of all locomotives for any roads, and wreatly the capacities of allow of passing through ground where roads have not will allow of passing through ground where roads
been constructed, and up grades of one foot in ten.

MUNN \& CO., Editors and Proprietors.

 PUBLISGED WEEELIT ATNO. BTY PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.

One copy, one year, postage include \boldsymbol{M}
Ten coples, one year, each $\begin{gathered}\text { CII } \\ 70\end{gathered}$
Ten coples, one year, each $\$ 270$, postage included.
Over ten coples, same rate each, postage included
8.By the new law, postage is payable in advance by the........... 2 ye the subscriber then recelves the paper free of charge.
Nore.- Persons subscribing will please to give thetr full names; and Post Office and State address, platnly written, and also state at which time they
wish their subscriptions to commence, otherwise the paper will hesent from wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be supplied from January tst, when the volume commenced. In case of changing rest from January ist, when the volume commenced. In case of changing resi-
dence, state former address, as well as give the new one. No changes can
be made unless theformeradiress is given. be made un less theformeraddress is given
VOLUME XXXIII., No. 11. [New Series.] Thirtieth Year.
NEW YORK, SATURDAY, SEPTEMBER 11, 1875.

the education of sight

As the reader's eyes rest upon this page of the ScIENTIFIC American, a very complex impression is conveyed to his mind. He perceives a contrast of light and shade, the white paper and the black ink. The dark portions exhibit various forms, which stand in definite positions with reference to each other and to the reader. The paper lies at a recognized distance from the reader's eye. It has form and size, a cer tain degree of smoothness, and certain roughnesess indicating lines of print on the reverse side. Further looking will discover a succession of black forms-letters, words, etc. conveying the ideas now in the writer's mind.
How much of all this is striclly speaking, seen? How much is the result of ulterior processes?
Paradoxical as it may seem, the reader's eyes report only the first mentioned contrasts of light and shade: all the rest is extravisual. In other words, when we look at a complex object, say a landscape, the eye distinguishes light and shade only :the situation, direction, distance, form, size, etc., of the several objects which produce lights and shades, we have to determine by other means, for the discovery of which we are indebted to the patients of Cheselden, Home, Wardrop, Franz, and others, who were born blind and given the power of vision in later years by a surgical operation. In all these cases, we believe, the cure consisted in the removal of an overlying growth which eclipsed the otherwise perfect organ of vision. In each case the patient was sufficiently mature to report the exact nature of the sensation aroused by the act of sight on the part of a perfect but uneducated eye-uneducated, that is, in respect to motion, and unaided by any knowledge acquired by the otber senses. Their experiences, therefore, clearly demonstrate the scope of pure vision in all persons, and also the origin of the ideas through simple seeing.
Of the earliest parg.
Of the knew not the shape of anything, nor any one thing from an.
other, however different in shape or magnitude," and the Ten minutes after his of all the others.
Ten minutes after his eyes were opened, Home's patient was showu a round piece of card,and was asked the shape of it. He could not tell till he had touched it. The next mo ment a square card was shown him, and he said it was round like the other. He said the same of a three-cornered card. He was then asked if he could find a corner on the square card. It was only by much thinking that $h \in$ decided that the card had a corner, after which he readily recognized the other three corners.
An exceedingly instructive subject was a lady operated on by Wardrop: she could merely distinguish a very light from a very dark room, so complete was her blindness. At first she saw only patches of light and shade; by degrees she learned the names of colors and was able to distinguish them, though unable to interpret the chaos of color inpressions she received. On the seventh day after the operation, she was seen to examine some tea cups and saucers. She thought them queer, but could not tell what they were till she touched them. Similarly she saw but failed to recogcase, with which she was perfectly familiar by touch, were placed side by side on a table before her: she could not tell which was the pencil case, which the key. At the end of thiee weeks, she saw a grassplot simply as a large and beantiful patch of green in her field of vision. How far it might be from her she had no idea. Usually in cases of this sort, the patient imagines at first that all that he sees touches his eyes. just as objects felt touch the skin
On the twenty-fifth day, Wardrop's patient was taken out in a carriage, and inquired continually as to the meanings of her visual sensations. A person on horseback was vaguely a large object. She asked: What is that? of a soldier and of scme ladies wearing red shawls she inquired: "What is that on the pavement, red?"
At the end of six weeks it was found that she had acquired a pretty accurate knowledge of colors and their shades and names, but was unable to judge of distances or of forms, and the sight of all new objects was still very confusing. Neither was she able, without considerable difficulty and numerous fruitless trials, to direct her eyes to any object: when she attempted to look at anything, she turned her head in various directions until her eye caught the object she was in search of.
That our power of "seting" solids is also extravisual was clearly shown in the case of Franz's patient. Among the observations reported of tbis patient, the following applies here: A solid cube and a sphere, each of four inches diameter, were placed before him, three feet off and at the level of his eye. After attentively examining these bodies, he said he saw a quadrangular and a circular figure, and after some consideration he pronounced the one a square and the otber a disk. His eye was then closed, the cube taken away, and a disk put in its place. On opening his eye, he observed no difference in these objects, but regarded them both as disks. The cube was now placed in a somewhat oblique position before the eye, and close beside it a figure cut out of pasteboard, representing a plain outline prospect
of the cube when in this position: both objects he took to be of the cube when in this position: both objects he took to be
somewhat like a flat quadrate. A pyramid placed before him, with one of its sides turned toward his eye, he saw as a plain triangle. Placed so as to present two of its sides to view, the pyramid was a puzzle. After considering it a lovg time, he said it was a very extraordinary figure. It was neither a triangle nor a quadrangle, nor a circle; he had no idea of it and could not describe it. When he took the sphere, cube, and pyramid into his hand, he was astonished that he had not recognized them
What these patients had to learn in later life, more fortu nate individuals born with unclouded eyes learn in infancy, but so forget the process that the acquirement seems to be innate, a simple function of the unaided eye. The mechan ism involved in the process is described in every good treatise on human physiology: the metaphysics of the case are
cleverly discussed in Taine's treatise "On Intelligence." cleverly discussed in 'Taine's treatise "On Intelligence."
Those of our readers who have taken issue with our remarks Those of our readers who have taken issue with our remarks
with reference to sight will find both aspects of the subject well worth pursuing in those works, to greater length than is possible in our limited space. The facts given are suff cient to sustain the position taken by us on this point in previous articles.

SOME NEW VOLCANO REVELATIONS.

The theory that our earth was successively a vaporous, a fuid, and a plastic mass, which, by cooling during billions of centuries, finally obtained a solid crust, in connection with the fact that during all this time she rotated round the sun and received on her equator solar heat (of which the poles were nearly deprived). leads necessarily to the conclu sion that, in the neighborhood of the poles, the slowly forming solid crust must have become thicker than it is around the equator, because the solar heat was able to retard this
cooling longer at the equator than at the poles. Such a crust, is of course more easily perforated, by interior pressure acting outwardly, where it is thinnest; and volcanoes, which are the result of such perforation, must therefore be more numerous in the thinner places, such as around the equator, and scarce near the poles. This is confirmed by observation. Active volcanoes are not frequent around the poles; the only one near the north pole is in Iceland, while between the tropics such volcanoes are found in considerable numbers. Another interesting consideration is that the amount of jo the volume by volcanoes is enormous. The estimate jo the volume of the lava ejected by Vesuvius, Etna, and
especially by the volcanoes of Iceland are appalling figures and all these masses necessarily come from the interior of the earth. and must create in the neighborhood of the vol canoes (which may be considered as safety valves) empty spaces, which are filled up by a sinking of the crust. This logical conclusion has been verified by the observation that every active volcano is situated in the center of a region of depression, and never in one of upheaval, unless the material ejected by the volcano itself be so considered.
But a still more remarkable fact has been revealed by the calculations of astronomers making observations at different points of the earth's surface. It is that there are two points of depression, extending even over the ocean's surface, form ing a kind of flattened poles, one the exact antipodes of the ther. These points are the Antilles, in the West Indies, and the Sunda Islands (Java and its surroundings), in the East Indian Ocean. Each region contains a greater number of active volcanoes in a smaller surface than can probably be found anywhere else on the earth. But the reason why the ocean's surface partakes of this depression, at these two vol. canic centers, is as yet a problem. Modern observations have already proved many irregularities in the form of the ocean's mean level, making the ocean's surface to be far from a perfect spheroid. As this surface must, according to the laws of hydrostatics, be always at right angles to the direction of gravitation, it proves that, at various points of the earth's surface, the lines of gravitation do not pass through the same central point, even on places of the same latitude. As gravitation is a general property of matter, depending on its mass, it proves that the mass in the interior of the earth is not homogeneous nor of uniform density, and that it is unequally distributed. As the interior is liquid, this distribution may be affected by cosmic influences, as for instance the relative position of the moon and planets; and any change effected in this distribution may react on the direction of gravitation on the earth's surface, and so on the form of the ocean, and thus slowly produce changes in its level, which may, in some cases, cause an apparent rising or depression of the land.

PROGRESS OF RAPID CITY TRANSIT

The new Commissioners of Rapid Transit in this city are

 daily holding their sessions, and day by day their perplexities increase, if the published newspaper reports of their proceedings are correct. They are unable to agree either upon the plan of construction or upon the proper route. The original assumption that the Commissioners were committed to the election of some form of cheap elevated railway resulted in the production of a multitude of plans of that or der: and the promoters of some of these plans are backed by influence which is not without effect upon the minds of the Commissioners.The indications at present are that, if any plan of rapid transit is adopted now, it will be one comprising some form of cheap elevatia structure to meet an immediate want, with little reference to uitimate economy. Not what is really best and cheapest, but what is least expensive at first, seems likely to win. The question, therefore, is not so much which of the temporary devices to adopt, as where the road shall ve put.

All but two of the plans for elevated roads, laid before the Commissioners, propose to take possession of the public streets. Their projectors are no doubt able to demonstrate to their own satisfaction that such an occupation of the sidewalk or the roadway would be of signal advantage to ar street which should be chosen as the route of their road: but can the occupants and property owners of any street be made to believe it?
If we are to have an extension of elevated rapid transit, which now seems quite probable, the public ought to insist that the new roads be put where they will do least injurg to prope
them.
The worst fallacy connected with this whole matter is the assumption that economy dictates a temporary structure of small capacity-a cheap affair to meet a pressing present need. The city of New York is in its infancy. Much as it need. The city of New York is in its infancy. Much as it
needs rapid transit, and scarce as money is now, the metropneeds rapid transit, and scarce as money is now, the metrop
olis of the country cannot afford to begin ill-advisedly, how ever cheaply, in a matter which must largely determine its future prosperity and growth.
The example and experience of the great city of London would be a very safe one for New York to follow. Rapid transit is chiefly effected in London by underground railways, which ramify in all directions; but as they are placed below the level of the streets, out of sight, their operation disturbs no one, while their advantage to the public is so great that every year witnesses their extension.
Sir Edmund Watkin, a member of Parliament and President of the Metropolitan (London) Underground Railway, and of the London and Great Eastern Railway, is now in this country; and a few days ago, at the request of the New York Rapid Transit Commissioners, he addressed them, giving a number of interesting particulars concerning the present status and operation of the rapid transit railway system of London.
The London Underground Railroad Company, he said, already had about sixteen miles of road in operation, and in a few months they would have twenty miles of completed road. They were negotiating for astill further extension of their routes, and would in time burrow under the whole city of London. These roads had proved to be a greater convenience to the poorer classes than to wealthy persons. The average fare collected was five cents, and the rate per mile was reduced by a system of commutation to one penny Last year these roads carried 70,000,000 passengers. Heavy
locomotives were used, and 1,000 trains per day, each having a carrying capacity for 1,000 persons, were run over them. The rate of speed was thirty miles per hour, or
twenty miles including stoppages. The cost was $\$ 5,000,000$ per mile, of which about four fifths was due to damages to real estate caused by cutting through blocks of buildings and tunneling under houses. In some places the roads ran under gravey

aults above.

According to this statement, the cost of building and equipment of the London underground roads has been one million dollars per mile, and the expenses for right of way and land damages four millions dollars per mile. This enormous cost for land would be wholly saved in New York, because here the railway lines would be longitudinal with and run directly under the main streets, without invading private property. But in London, owing to the formation of the city, the underground roads pass athwart the streets and cut through private property in all directions. The citizens of London have ascertained 'by practical experience that the underground system is the best, have invested in it upwards of eighty millions of dollars, and are annually increasing the investment and extending the works.
Sir Edmund answered a large number of questions put to him by our Commissioners, and corrected several erroneous impressions prevalent here concerning the underground railways of London. He explained the construction of those railroads, and described at considerable length the dif ficulties encountered in building and running them. He said that 93 per cent of the passengers on the London underground roads traveled only short distances, and only 7 per cent of them were carried to the end of the various routes This fact was regarded as very important, because it showed that, in selecting a plan of rapid transit, the convenience and facility of those who wish to ride for short distances only ought to be considered.

STEALING BRAINS

Professor Weisbach, in the preface to the further edition of his "Treatise on Mechanics,"'makesthe following remarks As I consider my reputation as an author of much more importance than any mere pecuniary advantage, it is alway a pleasure to me to find $m y$ ' Mechanics' made use of in works of a similar character; but when writers avail themselves of it without the slightest acknowledgment, I can only appea to the judgment of the public." What the distinguished author has so clearly laid down is generally recognized as a leading principle by writers and editors. Most writers, for example, are glad to have the widest publicity given to thei productions, provided they receive credit for the same; and there are few reputable editors or publishers who neglect this courtesy in copying from books and other periodicals. Still more rarely do writers who are compelled from the na ture of their subjects to draw material from all source omit to state this fact, and give due credit to all from whom they derive information. Recently, however, a very fla grant instance of neglect of this most ordinary courtesy has come to our notice, in a work entitled "Handbook of Land and Marine Engines, by Stephen Roper, Engineer.' No reference is made, in the preface of this book, to any authorities who have been consulted; and throughout th text, all credit for data and remarks is, with very few excep tions, omitted. Some illustrative examples are given below and in every instance mentioned, for anything that the au thor says, it might fairly be inferred that the matter is orig inal

1. On page 81 is a stroke table, which is an exact repro duction of the original calculated by Mr. Auchincloss, to b found in " Link and Valve Motions," page 59.
2. On page 39 is a table of the properties of saturated steam, which originally appeared in the eighth edition o the Encyclopodia Britannica, and was copied, with due credit, in Wilson's "Treatise on Steam Boilers," and possibly in other works.
3. On pages 82,84 , and 88 are three tables from "Link and Valve Motions," which were original with the author of that work.
4. On pages 197, 216, 219, 220, and 285 are statements, il lustrations, and examples, which were originally given in the "Cadet Engineer," on pages 156, 133, 136, and 24, re pectively
5. On page 227 , we recognize a remark in regard to practi cal men, which originally appeared in the Scientific Amer ICAN, page 17, volume XXX. Other quotations from the Scientific American occur as follows: Page 258, the open ing remarks of an article on page 305 of our volume XXXII; page 279, the entire article on " The Measurement of a Screw Propeller," which was published for the first time on page 240 of our volume XXXI; page 473, table and example from an article on "Feed W
These are a few of the instances which we have marked. We could fill several columns with similar illustrations but those already given, selected at random through the book, tell the whole story. In fact, we have never seen a more decided case of wholesale plagiarism, if we except an
incident which occurred in our younger days, when the dullest boy in school mounted the platform and attempted to pass off one of Lord Bacon's most profound dissertations as an essay of his own composition. Happily, such instances of literary robbery are very rare, and we are inclined to think that Mr. Roper has sinned rather through ignorance tardy though they be, by publishing a supplement to his work, in which due credit is given to all authorities which
have been used. By doing this, he will both increase the value of his work,
by his fellow men.

TRAUBE'S ARTIFICIAL CELLS.

In the early days of modern chemistry it used to be taught that the compounds produced under the influence of life were different in kind from those of the chemist's laboratory, and subject to different laws. A characteristic of "vitality," indeed, was thought to be its the laws of "dead" matter, death being the surrender of the organism to the forces of inorganic chemistry. It was commonly and confidently predicted that the chemist, however skillful, would never be able to construct the magic compounds formed by the creative power of life: it was even declared impious to attempt it. But chemists were not to be deterred by such objections. They persevered. They built up from inorganicmaterials first one, then another, then thousands of the so-called organic compounds, and the old theory of vitality was for ever shelved
A corresponding mechanical theory of life is still held by most physiologists. The mechanism of organic growth is declared to be something quite unlike anything that occurs in the domain of lifeless matter, something utterly beyond the skill and power of man to imitate. Even the lowest of organized structures, it is said, exhibits a power of choice in the seléction of food, and an individual mode of develop ment; which combinations of inert matter can never rival Life is assumed to be something unique, something superio to the crude forces of dead matter; hence the structura forms built upthrough its agency must be unique; hence it is impossible for man to produce anything like them. The whole chain hangs upon the first assumption, for which roof is lacking.
Seeing that the physiology of growth hinges on the life history of the cell-all organized bodies consisting simply of a more or less simple aggregation of these organic elementsthe success which Traube has had in imitating with dead matter the characteristics of living cells shows that it is al ogether too early to dogmatize touching man's present or future inability to rival the physics as he has the chemistr of life.
The behavior of those groups of compounds denominated colloids and crystalloids by Graham, when their solutions re separated by thin membranes from each other or from solutions of crystalline substances, needs no description here The established fact that dissolved colloids cannot pas hrough colloidal membranes formed the starting point of raube's investigations. He was aware of the additiona fact that the precipitates of colloidal substances are them selves usually colloidal. It followed, as a natural conse quence, that a drop of one colloid, if placed in the solution of another suitable colloid, would be converted into a closed cell y the precipitate formed by the mutual action of the two colloids at their surface of meeting. For example, a drop of concentrated solution of gelatin plunged into a solution of tannic acid is immediately surrounded by a pellicle of gela tin tannate, the thickness of which depends upon the rela tive densities of the two solutions. This colloidal pellicle is impervious to the colloid solutions, while it allows water to pass through freely. Hereupon most significant phenomena rise. The gelatin within the cell is more concentrated than he solution of tannic acid in which it is immersed; it ha in consequence a stronger attraction for water, and absorb portion from the weaker solution. To make room for the ncreased contents of the cell, the pellicle stretches, separat ng its molecules to such an extent that the outer and inner solutions come in contact, and a fresh precipitate of gelatin tannate is formed between the original molecules. Throug the enlarged pellicle, water continues to penetrate, and the process of growth in the cell wall goes on so long as a differ ncein density exists between the contents of the cell an the surrounding liquid. A firmer pellicle is formed when little lead acetate or copper sulphate is added to the gelatin That the growth observed is not a mere stretching of th pellicle occasioned by endosmose is proved by replacing th utside solution by water, whereupon the growth ceases,th frmation of new molecules of precipitate being prevented t will be remembered that the natural growth of living cel walls is by the same process of intussception, or the deposi
While the cell wall is growing, changes also go on in th interior. So long as a nucleus of undissolved gelatin re mains, the artificial cell is spherical. When the enclose gelatin is all dissolved, the contents become diluted by th infiowing water, the density being least at the top, the heavier solution settling to the bottom of the cell. When ufficiently dilute, the cell contents begin to dissolve the cellwall at the top; the pellicle of that part becomes thinner nd more extensible; as it yields, new matter is precipitated between its molecules; in short the cell grows upward, and ften protuberances directed outward are formed, in imita ion of living cell growth. Still more remarkable is the be avior of the pellicle of copper ferrocyanide precipitated ound a drop of a concentrated solution of copper chloride in solution of potassium ferrocyanide: or, better yet, accord ing to Sachs, around a small piece of solid copper chloride in the ferrocyanide solution. In the latter case a gree rop is immediately formed at the expense of the solution, the precipitated pellicle of which encloses the solid nucleus which is gradually dissolved by the permeating water. Cells so formed manifest active growth and a variety of differences not easy to explain. Some have very thin pellicles, are oundish, and exhibit a slight tendency to grow upward and attain very considerable di mensions-from 0.4 to 0.8 of
an inch in diameter. Others have thick reddish brown pellicles, grow quickly upwards in the form of irregular cylin ders, rarely branch, and attain a diameter of from 0.08 to $0 \cdot 16$ of an inch, and often several times that measurement in hight. Sometimes combinations of these two kinds form a sort of horizontal tuberous rhizome-like structure, from which long stalk-like outgrowths arise upward and root-like protuberances downward.
Sachs insists that these pellicles of copper ferrocyanide o not always grow entirely by intussception, as Traube supposed, but sometimes by eruption, as he terms it. In such cases a brown pellicle is formed round the green drop water penetrates quickly through the pellicle to the enclosed copper chloride, stretches the pellicle rapidly, and at length ruptures it. The green solution immediately escapes through the fissure, but becomes at once coated with precipitat which appears either as an intercalated piece of the pre tious pellicle, or as an excrescence or branch of it, a proces which is repeated as long as any copper chloride remains in ide the cell. Besides these solutions already named,Traube experimented also with mixtures of tannic acid with copper nd lead acetates, and soluble glass with the same substances, or with copper chloride, etc., and came to the conclusion hat every precipitate, the molecular interstices of which ar maller than the molecules of its components, must assum he form of a pellicle when the solutions of its component ome in contact.
These pellicle precipitates are peculiarly well adapted or the study of endosmotic processes. They behave ver differently from other membranes, being often impermeable to the most diffusible substances, while ailowing other com pounds to pass through them; and every kind of pellicle ha n this respect its own peculiarities. For instance, the gela in tannate employed by Traube in most of his experiment is impermeable to potassium ferrocyanide but permeable to ammonium chloride and barium nitrate. The pellicle of copper ferrocyanide of the orher experiments mentioned is mpermeable to barium chloride, calcium chloride, potas sium sulphate, and barium nitrate, but permeable t potassium chloride. Again, if a small quantity of ammonium sulphate is added to the solution of gela in, and a small quantity of barium chloride to the tannic cid, the pellicle formed by their admixture is composed f calcium tannate with barium sulphate deposited upon it iminishing its permeability: the two solutions can n onger diffuse, but the encrusted pellicle is still permeabl the smaller molecules of ammonium chloride and water From facts of this sort Traube infersthat, in the per meability f pellicle precipitates, we have a means of determining th size of the molecules of different solutions, since only thos molecules can pass through a pellicle which are smalle han its molecular interstices, and therefore smaller than the molecules of the solutions which produce the pellicle.

SCIENTIFIC AND PRACTICAL INFORMATION.

oxdvitic acid.
MM. A. Oppenheim and S. Pfaff announce the discovery a new acid named as above, and having the formula C $\mathrm{H}_{2}\left(\mathrm{CH}_{3}, \mathrm{OH}, \mathrm{COOH}, \mathrm{COOH}\right)$. It results from the action of hloroform on acetic sodic ether.

manufacture of artificial alizarin

The process of manufacture of this substance, as prac ised in Frankfort, Germany, consists in heating for 3 hours in earthen vessels, anthracene having its fusing point be-
tween 404° and 410° Fah. with one fourth its weight of bitween 404° and $410^{\circ} \mathrm{Fah}$. with one fourth its weight of bi
chromate of potash and 12 parts nitric acid of a density of 5 © 04 . Anthrajuinone is thus formed and the crude result ing product is dissolved in 6 parts boiling nitric acid, of ensity $1 \cdot 5$. The dissolving of the anthraquinone is contin ued until, on cooling, no residue of that substance is precipi tated. The solution then contains anthraquinone in a mono nitrated state, which is precipitated by water; and on the solution becoming clear, the precipitate is dissolved in from to 12 parts of a solution of caustic soda of specific weigh $\cdot 3$ to $1 \cdot 4$, heated to about 382° Fah. When the precipitate i o longer augmented by the addition of hydrochloric acid he heating is arrested. The mass is allowed to cool, dis solved in boiling water, and filtered, and the coloring matte precipitated in the hotsolution by means of an acid. The ye ow brown deposit is then ready, after washing, to be use for dyeing. The residue on the filter is principally anthra quinone, which is re-used. The manufacture of artificial lizarin is constantly increasing. The German production is estimated at some $1,198,000 \mathrm{lbs}$. per year.
NEW METHOD OF DETECTING ADULTERATION OF FATTY OILS M. Roth employs, as a re-agent for the above, sulphuric acid at $46^{\circ} \mathrm{B}$. saturated with nitrous vapors by causing nitric acid to act upon large pieces of iron. At the end of six or ightdays,the solution acquires a fine bluish green color, in dicative of complete saturation. This re-agent solidifie ither partially or entirely the olein of non-siccative oils. The purity of the oil may thus be determined by noting the time which it occupies in solidifying.
detection of picric acid in beer.
For this purpose, Brunner recommends acidulating the eer with hydrochloric acid, and plunging therein a frag ment of woolen thread, and d gesting the same in abain mario. After the thread is removed, it is heated with a solution of mmonia. The latter is filtered, evaporated in a bain mari to small volume, and a few drops of cyanide of potassium are added. The presence of 0.015 grain of picric acid in a pint of beer is determined by a red color being produced, due to the formation of isopurpurate of potash.

