

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, SEPTEMBER 11, 1875.
which connect the conservatory with the surrounding rooms, open fine vistas in every direction.
In the basement, which is of fireproof construction, are the kitchen, store rooms, coal houses, ash pits, heating arrangements, etc.

A SOLAR CHRONOMETER.
In the accompanying illustration is represented a solar
the latitude of the place, by means of the point, E. F is a lens, located in the center of an exactly spherical concave late and capable of adjustment toward the sun.
When the instrument is arranged so that the axis is inclined as above noted. the disk, A B, is turned so that the image of the sun produced by the lens, F, falls on the arc, image of the sun produced by the lens, F , falls on the arc,
$m n$. The hour is given by the pointer at A , and the corresponding hour mark on the disk. The instrument is said to be accurate within one quarter or one third of a minute

The Steam Donkey.
At a recent séance of the French Academy of Sciences, some interesting particulars about a new locomotive of M. Fortin Hermann were given: Its pro pulsion is produced by the rising and falling of six articulated feet, which strike the ground or rails something like the feet of a quadruped. These feet are arranged in two groups. three support the fore part of the machine, and the other three the after part of the machine, and the other three the after
part. The two middle feet are connected together part. The two middle feet are connected together
by a horizontal shaft; the four others are independent, by a horizontal shaft; the four others are independent,
and strike the ground successively in such a manner that, while the middle feet move at a moderate pace, the others have a highly accelerated motion. Each of these groups of three feet is affixed to a single trunk. The force of the steam is applied in such a way as to drive these feet toward the ground.
The experiments made by the Eastern Railway Company at Paris with one of these machines have demonstrated that, when the feet are shod with soles of india rubber weighing one kilogramme (2.2 lbs .) each squarecentimeter ($4-10$ th inch), an adherence to each squarecentimeter(4-10th inch), an adherence to the rails or road is obtained equal to three fourths of the weight of the machine itself. In the ordinary locomotive this adherence does not go beyond one fifth of the weight of the machine; it may be added that this | chronometer, recently invented by M. Fléchet, from which, |adherence is, in point of fact, variable; on wet or damp rails it according to La Nature, the hour may be determined with is not more than one half; but in the vewly invented locomoaccuracy. It consists of a rounded disk, A, divided into 24 tive of M. Hermann, although the state of the rails or ground hours and their fractional parts. This turns about an axis, will always have an intluence, as in the case of the machines C D, which is placed parallel to the earth's axis according to \mid in actual use, it will always begreatly superior. The experi-

CENTENNIAL HORTICULTURAL BUILDING PHILADELPHIA PA.
ments made thus far prove that this new machine will drag on ordinary roads, or on rails, a train four times as heavy as the ordinary trains; the cost of this augmented train will not, it is said, vary materially from that of the ordinary machines with the usual trains when used on equal grades; but the increased adhering power of the new locomotive will per mit of the employment of a lighter built machine for the usual trairs, as well as the power to surmount steeper grades tha
system of M. Fortin Hermann anlarges 1 lis the live for will allow of passing through ground where roads have not will allow of passing through ground where roads
been constructed, and up grades of one foot in ten.

צrimutifir ${ }_{6}$ Mmoricam.

MUNN \& CO., Editors and Proprietors.

 PUBLISAED WEELLY ATNO. B't PARK ROW. NEW YORK
O. D. MUNN. A. E. BEACH.

Ten coples, one year, each $\$ 270$, postage included.
Over ten coples, same rate each, postage included
Be By the new law, postage is payable in advance
the subscriber then recelves the paper free of charge
Nore.-Persons subscriblngwill please to glve their full names; and Post Office and State address, plainly written, and also state at which time they
wish their subscriptions to commence, otherwise the paper will be sent from wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be supplied from January 1st, when the volume commenced. In case of changing rest from January ist, when the volume commenced. In case of changing resi-
dence, state former address, as well as give the new one. No changes can
be made unless theformeradiress is given. be made un less the formeraddress is given
VQLUME XXXIII., No. 11. [New Series.] Thirtieth Year.
NEW YORK, SATURDAY, SEPTEMBER 11, 1875.

the education of sight

As the reader's eyes rest upon this page of the Scientific american, a very complex impression is conveyed to his mind. He perceives a contrast of light and shade, the white paper and the black ink. The dark portions exhibit various forms, which stand in definite positions with reference to each other and to the reader. The paper lies at a recognized distance from the reader's eye. It has form and size, a cer tain degree of smoothness, and certain roughnesess indicating lines of print on the reverse side. Further looking will discover a succession of black forms-letters, words, etc. conveying the ideas now in the writer's mind.
How much of all this is striclly speaking, seen? How much is the result of ulterior processes?
Paradoxical as it may seem, the reader's eyes report only the first mentioned contrasts of light and shade: all the rest is extravisual. In other words, when we look at a complex object, say a landscape, the eye distinguishes light and shade only :the situation, direction, distance, form, size, etc., of the several objects which produce lights and shades, we have to determine by other means, for the discovery of which we are indebted to the patients of Cheselden, Home, Wardrop, Franz, and others, who were born blind and given the power of vision in later years by a surgical operation. In all these cases, we believe, the cure consisted in the removal of an overlying growth which eclipsed the otherwise perfect organ of vision. In each case the patient was sufficiently mature to report the exact nature of the sensation aroused by the act of sight on the part of a perfect but uneducated eye-uneducated, that is, in respect to motion, and unaided by any knowledge acquired by the other senses. Their experiences, therefore, clearly demonstrate the scope of pure vision in all persons, and also the origin of the ideas through simple seeing.
Of the earliest patient, Cheselden's, it is recorded that "he knew not the shape of anything, nor any one thing from an.
other, however different in shape or magnitude," and the Ten minutes after his of all the others
Ten minutes after his eyes were opened, Home's patient was showu a round piece of card,and was asked the shape of it. He could not tell till he had touched it. The next mo ment a square card was shown him, and he said it was round like the other. He said the same of a three-cornered card. He was then asked if he could find a corner on the square card. It was only by much thinking that $h \in$ decided that the card had a corner, after which he readily recognized the other three corners.
An exceedingly instructive subject was a lady operated on by Wardrop: she could merely distinguish a very light from a very dark room, so complete was her blindness. At firs she saw only patches of light and shade; by degrees she learned the names of colors and was able to distinguish them, though unable to interpret the chaos of color inpressions she received. On the seventh day after the operation, she was seen to examine some tea cups and saucers. She
thought them queer, but could not tell what they were till thought them queer, but could not tell what they were till she touched them. Similarly she saw but failed to recognize an orange.
case, with which she was perfectly familiar by touch, were placed side by side on a table before her: she could not tell which was the pencil case, which the key. At the end of thiee weeks, she saw a grassplot simply as a large and beaatiful patch of green in her field of vision. How far it might be from her she had no idea. Usually in cases of this sort, the patient imagines at first that all that he sees touches his eyes. just as objects felt touch the skin
On the twenty-fifth day, Wardrop's patient was taken out in a carriage, and inquired continually as to the meanings of her visual sensations. A person on horseback was vague ly a large object. She asked: What is that? of a soldier and of scme ladies wearing red shawls she inquired: "What is that on the pavement, red?"
At the end of six weeks it was found that she had acquired a pretty accurate knowledge of colors and their shades and names, but was unable to judge of distances or of forms, and the sight of all new objects was still very confusing. Neither was she able, without considerable difficulty and numerous fruitless trials, to direct her eyes to any object: when she attempted to look at anything, she turned her head in various directions until her eye caught the object she was in search of.

That our power of "seting" solids is also extravisual was clearly shown in the case of Franz's patient. Among the observations reported of this patient, the following ap plies here: A solid cube and a sphere, each of four inches diameter, were placed before him, three feet off and at the level of his eye. After attentively examining these bodies, he said he saw a quadrangular and a circular figure, and after some consideration he pronounced the one a square and the otber a disk. His eye was then closed, the cube taken away, and a disk put in its place. On opening his eye, he observed no difference in these objects, but regarded them both as disks. The cube was now placed in a somewhat oblique position before the eye, and close beside it a figure cut out of pasteboard, representing a plain outline prospect of the cube when in this position: both objects he took to be somewhat like a flat quadrate. A pyramid placed before him, with one of its sides turned toward his eye, he saw as a
plain triangle. Placed so as to present two of its sides to plain triangle. Placed so as to present two of its sides to
view, the pyramid was a puzzle. After considering it a loog view, the pyramid was a puzzle. After considering it a loog time, he said it was a very extraordinary figure. It was idea of it and could not describe it. When he took the sphere, cube, and pyramid into his hand, he was astonished that he had not recognized them as such by sight, being well acquainted with them by touch.
What these patients had to learn in later life, more fortu nate individuals born with unclouded eyes learn in infancy, but so forget the process that the acquirement seems to be innate, a simple function of the unaided eye. The mechan ism involved in the process is described in every good treat ise on human physiology: the metaphysics of the case are
cleverly discussed in Traine's treatise "On Intelligence." Those of our readers who have taken issue with our remarks with reference to sight will find both aspects of the subject well worth pursuing in those works, to greater length than is possible in our limited space. The facts given are suffi cient to sustain the position taken by us on this point in previous articles.

SOME NEW VOLCANO REVELATIONS.

The theory that our earth was successively a vaporous, fuid, and a plastic mass, which, by cooling during billions of centuries, finally obtained a solid crust, in connection with the fact that during all this time she rotated round the sun and received on her equator solar heat (of which the poles were nearly deprived). leads necessarily to the conclu sion that, in the neighborhood of the poles, the slowly forming solid crust must have become thicker than it is around cooling lonato because the solar heat was able to retard this cooling longer at the equator than at the poles. Such a
crust, is of course more easily perforated, by interior pressure crust is of course more easily perforated, by interior pressure
acting outwardly, where it is thinnest; and volcanoes, which are the result of such perforation, must therefore be more numerous in the thinner places, such as around the equator, and scarce near the poles. This is confirmed by observation. Active volcanoes are not frequent around the poles; the only one near the north pole is in Iceland, while between the tropics such volcanoes are found in considerable numbers. Another interesting consideration is that the amount of aterial ejected by volcanoes is enormous. The estimates jo the volume of the lava ejected by Vesuvius, Etna, and
especially by the volcanoes of Iceland are appalling figures and all these masses necessarily come from the interior of the earth. and must create in the neighborhood of the vol canoes (which may be considered as safety valves) empty spaces, which are filled up by a sinking of the crust. This logical conclusion has been verified by the observation that every active volcano is situated in the center of a region of depression, and never in one of upheaval, unless the material ejected by the volcano itself be so considered.
But a still more remarkable fact has been revealed by the calculations of astronomers making observations at different points of the earth's surface. It is that there are two points of depression, extending even over the ocean's surface, form ing a kind of flattened poles, one the exact antipodes of the other. These points are the Antilles, in the West Indies, and the Sunda Islands (Java and its surroundings), in the East Indian Ocean. Each region contains a greater number of active volcanoes in a smaller surface than can probably be found anywhere else on the earth. But the reason why the ocean's surface partakes of this depression, at these two vol. canic centers, is as yet a problem. Modern observations have already proved many irregularities in the form of the ocean's mean level, making the ocean's surface to be far from a perfect spheroid. As this surface must, according to the laws of hydrostatics, be always at right angles to the direction of gravitation, it proves that, at various points of the earth's surface, the lines of gravitation do not pass through the same central point, even on places of the same latitude. As gravitation is a general property of matter, de pending on its mass, it proves that the mass in the interio of the earth is not homogeneous nor of uniform density, and that it is unequally distributed. As the interior is liquid, this distribution may be affected by cosmic influences, as for instance the relative position of the moon and planets; and any change effected in this distribution may react on the direction of gravitation on the earth's surface, and so on the form of the ocean, and thus slowly produce changes in its level, which may, in some cases, cause an apparent rising or depression of the land.

PROGRESS OF RAPID CITY TRANSIT

The new Commissioners of Rapid Transit in this city are daily holding their sessions, and day by day their perplexities increase, if the published newspaper reports of their proceedings are correct. They are unable to agree either upon the plan of construction or upon the proper route. The original assumption that the Commissioners were committed to the election of some form of cheap elevated railway resulted in the production of a multitude of plans of that or der: and the promoters of some of these plans are backed by influence which is not without effect upon the minds of the Commissioners.
The indications at present are that, if any plan of rapid transit is adopted now, it will be one comprising some form of cheap elevatia structure to meet an immediate want, with little reference to uitimate economy. Not what is really best and cheapest, but what is least expensive at first, seems likely to win. The question, therefore, is not so much which of the temporary devices to adopt, as where the road shall ve put.
All but two of the plans for elevated roads, faid before the Commissioners, propose to take possession of the public streets. Their projectors are no doubt able to demonstrate to their own satisfaction that such an occupation of the side walk or the roadway would be of signal advantage to ar street which should be chosen as the route of their road but can the occupants and property owners of any street be made to believe it?
If we are to have an extension of elevated rapid transit, which now seems quiteprobable, the public ought to insist that the new roads be put where they will do least injury to prope
The worst fallacy connected with this whole matter is the assumption that economy dictates a temporary structure of small capacity-a cheap affair to meet a pressing present need. The city of New York is in its infancy. Much as it needs rapid transit, and scarce as money is now, the metrop olis of the country cannot afford to begin ill-advisedly, how ever cheaply, in a matter which must largely determine its future prosperity and growth.
The example and experience of the great city of London would be a very safe one for New York to follow. Rapid transit is chiefly effected in London by underground railways, which ramify in all directions; but as they are placed below the level of the streets, out of sight, their operation disturbs no one, while their advantage to the public is so great that every year witnesses their extension.
Sir Edmund Watkin, a member of Parliament and President of the Metropolitan (London) Underground Railway, and of the London and Great Eastern Railway, is now in this country; and a few days ago, at the request of the New York Rapid Transit Commissioners, he addressed them, giving a number of interesting particulars concerning the present status and operation of the rapid transit railway system of London.

The London Underground Railroad Company, he said, already had about sixteen miles of road in operation, and in a few months they would have twenty miles of completed road. They were negotiating for a still further extension of their routes, and wouldin time burrow under the whole city of London. These roads had proved to be a greater convenience to the poorer classes than to wealthy persons. The average fare collected was five cents, and the rate per mile was reduced by a system of commutation to one penny Last year these roads carried 70,000,000 passengers. Heavy

