Pure Water.
From the days of the old Romans down to the present
time, political economists have sought for an abundant
supply of pure water as the first great need of any great
city, clty. The question, today, when ralliroads and manufac-
tures concentrate humanity at so many points, is of more 1mportance than when aettlements were made merely
wherenature hao provided a full supply of the true water of life. Our great cities are all seeking an additiona water supply, and in many the water now recesived is ex-
pensive and unsatisfactory in quality from the immense Waste and sad deterioration consequent on a fauly sys-
tem of piping. Many difterentmaterials have been used tem of piping. Many differentmaterials have been used
for the conveyance of water long distances. The old Ro. manaqueductsbrougatwater of only he purit or ordis,
nary streams. open to sun, anird dust, andike minor evis,
a style not feasible in this day or country. The first American aqueduct of which we have cognizance. that a Portsmouth, N. H., in operation in 1790, brought wate
through heavy pine logg, and so continued up to a year o two since. Lead has proved dangerous for piping, an
lined with tin has been found enormously expensive for doubtful result; while plain cast and wrought fron rus has been found impracticable, on account of a lack of elasticity; and galvanized iron, which it was hoped woul
solve the problem, has been found seriously affected by the various salts an
conve yed therein.
city or large town on a ain gle main of great size has been a cause of disaster from
any defect theresin, and the future water supply will be doubtless through a number of smaller mains, each inde-
pendent of the other, thereby precluding any possibility of Boston, Mass., and McKeesport, Penn,., seem to have
solved the problem as to a perfect pipe, furnishing a seamless lap-welded wrought. iron pipe, of from one half
to fourteen inches diameter, coated inside and out witb ng a pressure of 1,000 pounds to the square inch. The ing a pressure of 1,000 pounds to the square inch. The
coating resists all known corrosives, and is elastic enough
for all working purposes. while all the connections are made by a sleeve jolnt that prevents any leakage.-Bos-
ton Daily Globe.

3usiness and zersanah

Hoadley Portable Engines. R. H. Allen \& Co.,
New York, Sole Agents of this best of all patteras. Hotchkiss Air Spring Forge Hammer, vest in the
market. Prices low. D. Frisble \& Co.. New Haven. Ct. Owners of Steam Engines-We guarantee 25 per
cent extra power or an equal saving in fuel, by applying the Ransom Syphon Condenser. T. Sault, Consulting Hotchkiss \& Ball, West Meriden, Conn., Foun-
drymen and Workers of Sneet Me tal. Will manufacture on royalty Patented articles of mer
Gray Iron Castings made to order.
Advertising Agencies.-"It is a fact that all those trsing, and who from the mode of conducting it are able to arrive at a close approximation of the results produced the oplnion that better contracts can be secured through P. Rowell \& Co., New York, than canibe obtained from
publishers direct, no matter how famillar with rates and publishers direct, no matter how famillar with rates and
papers the advertiser may be. It stands to reason that an
agency, controlling patronage to the extent of from agency, controlling patronage to the extent of from fifty
t one hundred thousand dollars per month, should be
able to secure favors which would not be accorded to any able to secure favors which would not be accorded to any
mere individual, even if we omit entirely the benefts mere individual, even if we omit entirely the benefts
which they must derive from their extensive experi-
ence., Big pay, with little money-American Saw File
Gulde. New Tool. All mechanics use them. Manufac. tured by E. Roth \& Bro.,New Oxford, Pa. Circular free.
A young man wants a situation-Good refer-
ences. Address E. C. Fenn, Ware, Mass. Scroll Sa wyers-If you, want good Jig Saw Blades,
get them made by A. Coats, 108 Hester S., New York. Second Hand Steam Engine, 350 horse power-a
first class article-for sale by Waits, Campbell \& Co., Moulder Wanted-Must be fully competent to
take charge of Foundry for general machinery castingsmostly engine and mill work. References
Apply to P. O. Box 89, Galt. Ontario, Canada.
Makers of machines for splitting fire-wood, send
circular and price to Hoopes Bro. \& Darllngton, West
Water, Gas, and Steam Goods-New Catalogue
packed with frist order of goods, or mailed on receipt of packed with irst order of goods, or mailed on recele
elght stamps. Balley, Farrell \& Co., Pltesburgh, Pa.
 for sending messages, makng magnets the electric lignt, giving alarms, and various other purposes. Can be put in
operation by any lar. Includes battery, key, and wires.
Neatly packed and sent to all parts of the world on receipi operation by any lad. Includes battery, key, and wrires.
Neatly packed and sent to all parts of the world on recelpi
of price. F. C. Beach \& Co., 246 Canal St., New York Bolt Headers (both power and foot) and Power
Hammers a spectalty. Forsaith \& Co., Manchester, N.H. See N. F. Burnham's Turbine Water Wheel ad-
vertisement.next week, on page 141. Hand Fire Engines, Lift and Force Pumps for fire
Falls, N. Y., U. S. A.
$\$ 17$ Foot Lathes. Geo. F. Shedd, Waltham, Ms. Scale in Boilers Removed-No pay till the work
sdone. Send for 34 page pamphlet. George W. Lord, 1s done. Send for
Philadelphia, Pa.
1,2,\& 3 H.P. Engines. Geo.F.Shedd, Waltham,Ms. For Sale-Large lot second hand Machinists
Tools, cheap. Send for list. I. H. Shearman, 45 Cortandt Street, New York.
For Tri-nitroglycernn, Mica Blasting Powder,
Frictional Electric Batterles, Electric Fuses, Exploders Gutta Percha tusulated Leadng Wires, etc., etc., etc. resalt of seven years' experience at Hoosac Tunnel
address Geo. M. Mowbray, North Adams, Mass. For best Bolt Cutter, at greatly reduced prices
address "Lehigh"一For informationabout Emery Wheels American Metaline Co., 61 Warren St., N.Y.City 8mall Tools and Gear Wheels for Models. List
free. Goodnow \& Wightman, 28 Cornhlll, Boston, Mass.
Peck's Patent Drop Press. Still the best in use. free. Geoodnow \& Wigntman, 28 Corntill, Boston, Mas.
Peck' Patent Drop Pres. Still the best in use.
Address Millo Peck, New Haven. Conn $x^{2}=2$

Three Second Hand Norrns Locomotives, 18 tuns
ach $; 4$ tt. 8% inches gauge for sale by N. 0 . $\&$ C. R. R. Genuine Concord Axles-Brown,Fisherville,N.H. Temples and Oilcans. Draper, Hopedale, Mare. For 13, 15, 16 and 18 inch Swing Engine Lathes, Spinning Ringe., of a Superior Quality-Whiting-
nile Splnaing Ring Co., Whitinsville, Mass. For best Presses, Dies, and Fruit Can Tools, Blise
Willams cor. of Plymouth and Jay, Brooklyn, N. \mathbf{Y}. For Solid Wrought-iron Beams, etc., Bee adver-
alsement. Addresi Union Iron Mills, Plttaburgh, Pa. for all Fruit-can
For S-canTools, Ferracute W k's,Bridgton,N. J For Solid Emery Wheels and Machinery, send to
he Union Stone Co., Boston, Mass., for circular. Hydraulic Presses and Jacks, new and secon
and. Lathes and Machinery for Polishing and Baffn Metals. E Lyon 470 Orand Street New York.
Barry Capping Machine for Canning Establish
The "Scientific American" Offlce, New York, is
tted with the Miniature Electric Telegraph. By touching yted buttone on the derss of the managers signale are e sent
yo persons in the various departments of the establishment. Cheap and effective. Splendid for shops, ofllces,
dwellings. Works for any distance. Price $\$ 8$, with good Battery. F. C. Beach \& Co.. 246 Canal St.
Malkers. Sena for free illustratea Catalogue.

A. J. B. can harden screw plates and dies ind that imitation pearls are described on 250 vol. 30.-R. F. will find a recipe for liquid g. give on
p. 20, vol. $30 .-$ R. K. W. will find a description of p. 20, vol. 30.-R. K. W. will ind a description of
a good cheap telescope on p. 298, vol. 30.-F. J. will find a recipe for a cement for millstones on p. 251,
vol. 31.-L. H. R. will find rules for proportioning safety valves on p. 330, vol. 32.-S. H. D. will find gine on p. 33, vol. 33.-B. J. F. will find rules for as certaining the required pressure of water in pipes on pp. 73 to 79 , Science Record for 1873.
(1) H. E. says: 1. I have tried the recipe
for indelible ink, and cannot dissolve the prussiate of potash. I tried to dissolve it in benzine, to mix it with printer's ink; but it will not dissolve. I also tried alcohol: it would not mix with th
ink. What is the matter? A. What recipe do refer to? Yellow prussiate of potash is soluble in water. 2. Is there anything that will make print er's ink indelible? A. Carbonaceous substances,
such as asphall, with proper solvents, have been such as asphall, with
(2) F. A. asks: 1. By what process can make a good nickel solution for nickel plating A. Use a strong solution of the cyanide or double
sulphate of nickel and ammonia, obtained by dissolving the salts in hot water until the solvent is nearly saturated. 2. What is the proper quantit of cyanide of potassium? You mention 114 ozs. to
1 gallon. Would it not make a very weak sol 1 gallon. Would it not make a very weak solu
tion? A. Use water 1 galton, cyanide of potass 12 ozs, cyanide of silver $11 / 6 \mathrm{ozs}$.
(3) Y. P. asks: How long must I leave a
istol cylinder ina gold solution, so that the coat pistol cylinder ina gold solution, so that the coat-
ing will last a year? A. About 24 hours will give ing will last a year? A. About 24 hours wing it until finished. 2. Will an Yes A rold solution made with a battery is a good one for the purpose.
(4) F. H. J. asks: 1 . Would a $1 \frac{1}{2}$ inches
achromatic objoct glass, of 30 inches focus, and a plano-convex lens, of $1 / 2$ inch diameter and 1 inch focus, answer in constructing a telescope as de-
scribed on p. 7 of vol. 30 ?
A. The $1 / \frac{1}{2}$ inches obscribed on p. 7 of vol. 30 ? A. The $1 / 8$ inches ob-
jective is rather small for 30 inches focus. The focus for an eyepiece will not answer very well. The eyepiece should consist of two lenses, both plano-convex and with the flat side to the eye, one of, say, 1 inch focus near the eye, and one of 2
inches focus at the distance of 3 inches from the inches focus at the distance of 3 inches from the
frst. 2. Which is the best for an eyepiece, a planoconvex or a double convex lens? A. Plano-con
vex lenses are better than biconvex. 3. How can I make a terrestrial eyepiece and a celestial eyepiece? A. A celestial eyepiece consists of one set,
that is, two such lenses; a terrestrial eyepiece conthat is, two such lenses; a terrestrial eyepiece con-
sists of two such sets. A celestial eyepiece show inverted images. The additional pair of lenses in the terrestrial eyeyiece reverts the inverted image if fitted properly, be powerful enough to see Jupiter's moons and Saturn's belts? A. If a good one it may do to see the satellites of Jupiter, but
not Saturn's belts. 5 . What workon the telescope would you recommend, for an amateur without a teacher? A. There are many books on the micro scope, but few or none on the telescope alone. In
some of the larger treatises on physics, such as Silliman's, Ganot's, etc., you may obtain some special information on various points.
(5) H. L. G. says: The following question involves the principle of the hydrostatic paradox,
that the pressure of tuids is according to the hight and surface pressed upon, and not according to the quantity pressing. This is evident in case of water; but does it hold also in the case of ai either with or without forcing? Of course it test. A. Yes.
(6) S. M. L. asks: What is the best mate-
rial for belts to which slats three quarters of an inch in width are to be fastened, the belts to run over rollers three and five inches in diameter, the
larger being the driving roller? A. Try a flat larger hain.

1. W
2. What is compressed air? A. It is air, the vo
me of which has been considerably decreased
ressure. 2. Is it as elastic as steam, or more so . It is more elastic at low temperatures. 3. I
ompressed air be confined, would it lose its elas ticity? A. No.
Would a wheel that would start itself on an axle and keep on continually revolving, moved only by petual motion? A. Yes.
(7) L. W. says: I am coppering cast and oneableiron by dippingin a solution of sulphat of copper: but the copper does not attach itself a What is the remedy? A. Clean the surface well by dipping in dilute oil of vitriol, and scouring with sand.
(8) D. B. T. says: I have long had a theory that the absorption of air by water decreases it scientists. It is a well known fact that water absorbs about four per cent of air under one atmo-
sphere's pressure, and that the absorption goes on phere's pressure, and that the absorption goes on in the same ratio with every increase of pressure.
It is easy to conceive of a condition of things when the air under an enormous pressure would penetrate the intermolecular spaces of the water, to an extent sufficient to dissociate its elements and probably form a new combination and produce a new gas. A. There is no doubt that the addition
of air to the water of a steam boiler, and even to of air to the water of a steam boiler, and even to
the steam itself, is effective in increasing pressure the steam itself, is effective in increasing pressure.
This was verified by Professor Rogers of Philadelphia, Pa., who even made it a matter for a patent, and constructed an engine which illustrated the difference of admitting and excluding air. Bu
that air, under great pressure, would be able to penetrate the intermolecular space of the water o as to dissociate its elements and form a new
combination or gas, is a totally unsupported hycombination or gas, is a totally unsupporte we fear that your drawings for a enerator and engine to work this gas, if it exist
have been labor wasted.
(9) S. A. R. asks: What is the best mate Paris and alum, usually.
(10) C. H. M says: Your correspondent I. S.M. asks for a rule to find the size of hole in whic the following: Deduct from diameter of the screw $1 / 3$ times the pitch. Is not the following rule mor accurate? As most of the threads used in this country are cut on a 60° angle, by taking the cosine of $1 / 2$ the angle, that is, 08660 , and multiplying it by the pitch, then doubling the result, and deduct ing it from the diameter of the screw, you will
have the proper size for the hole. To illustrate the above rule: Let pitch be $0 \cdot 10^{\prime \prime}$, diameter of the screw $1^{\prime \prime}$; then $0.1^{\prime \prime} \times 0 \cdot 8660 \times 2=0.1732 ; 1^{\prime \prime}-0.1732=$ 0.8268 . By I. S. M.'s rule: $1-0.15=8500$, qiving a
difference in sze of hole of 00232 . A. Belcw are difference in size of hole of 00232 . A. Belew are the rules for proportioning the American standard outside diameter of screw. $\alpha=$ diameter of hole in the nut. $p=$ pitch of screw. $n=$ number of $\sqrt{16 \mathrm{D}+10-2 \cdot 909} . \quad n=\frac{1}{p}, \quad d=\mathrm{D}-1 \cdot 299 \times p=\mathrm{D}$ $\frac{1299}{n}$. If the thread is not flattened at top and ${ }^{n}$ bottom, $d=\mathrm{D}-1.732 \times p$. For a screw, not flattened pond bottom, with any angle, a, of thread, $=\mathrm{D}-$ cotangent $\frac{a}{a} \times p$.
(11) W. F. R. asks: Which will last long est in an upright boiler, cast
grates? A. Cast iron, generally.
(12) E P. says: In an article entitled Work for Arctic Explorers," you make the fol-
owing statement: "In longitude $112^{\circ} \mathrm{W}$. Greenwich, the explorers will have arrived between the north pole and the magnetic pole." do not understand how this can agree with a pre-
vious statement: "When 40° E. of Greenwich is vious statement: "When $40^{\circ} \mathrm{E}$. of Greenwich is
reached the north pole will lie between the reached the north pole will lie between the ex-
plorers and the magnetic pole." Has the magnetic pole magnitude, or was there a mistake in printThe magnetic pole in question has very considerable magnitude: it covers an area of many square miles. This, however, is not the sole cause of the
paradoxical compass bearings mentioned in our paradoxical compass bearings mentioned in our
article. You are doubtless a ware that there is anarticle. You are doubtless a ware that there is anthe geographical pole; and the lines of magnetic direction are still further, complicated by magnetic conditions which have not yet been fully made out. The statements of our article on this point werefounded as stated therein on the compass directions laid down on a provisional map construc-
ted, for the expedition lately sailed, by the hydrographer of the British Admiralty, showing the unexplored polar regions if the distribution of ter restrial magnetism based on the knowledge acquired up to the present time, and elaborated by Gauss, Sabine, and others, turns out to be correct. If the compass bearings of any puint could be pre-
dicted from its geographical position, or its position from its compass beariug from a known point
such a map would be unnecessary, and the difficulsuch a map would be unnecessary, and the difficul
ties of arctic exploration would be greatly les sened; they are seriously complicated when the voyager has to rely so largely on the guidance of an instrument, the behavior of which he is unable
to predict with any certainty. The provisional maps supplied to the British expedition will doubt less prove of great assistance, though they lay down merely whatis probable.
(13) F. R. B. says: I have an achromatic microscope, powers from 20 to 100 diameters.
would like to construct with it an astronomica telescope. What sized objectglass would it require abjof what focus? Should it be achromatic? A beachromatic, and may be had of all sizeses and fo-
ter and 3 or 4 feet focus to those of
ameter and 30 , 40 , or more feet focus.
(14) G. W. P. says: 1. I require from a nagnetic engine as much power as a man would nger 60 times a minute. Can I get this much rom two Léclanché cells? A. Yes. 2. How many nd what sized, magnets should I use? A. Make our magnets so that the weight of the wire and periment. Two magnets are sufficient. 3. Can I periment. Two magnets are sufficient. 3. Can battery and more magnets? A. Make the core thin and the poles thicker and use more battery. (15) A.S. asks: Can a lamp wick be lit by
lectricity? A. Not unless surrounded with electr
gas.
(16) L. J. S. says : D. L. B. asks if a solid ar of steel or iron would sink in theoceanin the displaced equaled in weight the bar of iron. wish to say that the weight of a body, specific
otherwise, depends on its density. As water only slightly compressible, how could it be made as dense as iron? If it were so compressible that it could be made as dense as iron, it would be no
onger water but a solid. The pressure of wate longer water but a solid. The pressure of wate it A. We would be glad to know yo for this conclusion
its to instance, that the material of which the earth composed were several times lighter, would not the air bemuch more rarefied and reach much be (17) Present hight f. Yes.
(17) F. W. H asks: Is it practicable to make machine to run by a weight or spring, that will ake the place of a Grove battery in plating smal
(18)
(18) W. E. D. asks: 1. In an exhausted Leclanché battery, which needs replenishing, the
xide of manganese or the gas carbon? A. The oxide of manganese or the gas carbon? A. The
manganese. 2. Will not a sheet of lead or copper answer as well as carbon to put in the porous cell, to make the positive pole of the battery? A. No. 3. Is there any metal that will take the place of zinc or platinum for making the negative pole of
a battery? A. Nothing so good as zinc. Platinum forms the positive pole. Iron can be used in place of zinc, but it is not so good. 4. Will not a poranswer as well as the ones we buy? A. Yes. 5 . Cannot the a bove cells be made at any pottery, and should they be glazed or unglazed? A. If glazed they will not be porous. 6. What kind of pitch or
resin is used to seal Léclanché batteries, and is it resin is used to seal Léclanche batteries, and is it
necessary to seal them? Will they not work as well if left unsealed? A. Shoemaker's wax will do. The sealing is done to prevenc at long a time.
(19) W. P. asks: What is the smallest magnet I can use, and what are the amount and of a door? A. A magnet 1 inch long will answer with200 feet of No. 20 wire.
(20) F. W. R. says: In your article on the netability of the earth's surface, you state that rapid rate. This statement is certainly a very erroneous one. and I draw this conclusion from these facts: In 1841 I landed first in Texas, on Galveston Island. The place was but little elevated above
the waters of the bay, but the street called Strand lowed fter winds from certin quarters It has been filled up to a hight of several feet, and is now barely above high tides. Salt water was reached at a depth of four or five feet, and is, I think, still found at that depth. The tide reaches the town of Houston and marks about a similar point on the was rising: but so fer heard it said that our coast the rise must bevery slight during the last thirtyfour years. A. You must consider that the coast of Texas along the Gulf of Mexico is between 300 and 400 mileslong, and that the northeastern por-
tion, adjoining Louisiana, is of the nature of the latter State. It has not been asserted that Houston is rising; but 300 miles southwest of that place, ico; and the cond the Rio Grande, it adjoins Mex the strata partake more of the volcanic nature prevailing in Mexico. It has been repeatedly stated, by those who visited that region 40 years ago and recently, that it is rising. It is a very common occurrence that a coast line descends or is
stationary in one part; while, at a distance of 300 , 0 , or even 100 miles, a gradual rising takes plac (21) S. K. L. says: A friend and I had a dispute as regards the ground wire of a telegraph.
Hesays the ground current takes a direct line from one point in the earth to the other. I say it takes the course of the line wire. Which is right? A It takes the course of a direct wire having no re-
(22) W. M. D. says: I wish to construct an electro-magnet and get as much force as possible
with a given amount of material. Will 200 feet of No. 20 wire wound on 4 soft iron cores of U shape each weighing $1 / 4 \mathrm{lb}$. and each having so feet o wire; be as effective as 200 feet of No. 20 wire
wound on 1 core weighing 1 lb . or as much as all the 4 small ones put together, the battery to be the same for the large one that is used for all 4 of the others at one time? A. Yes.
(23) F. R. says : I have a plating shop, and ad great trouble with batteries. I was thinking of getting a friction battery to dogold, silver, and
nickel platingwith. How could I make a cheap one, to go by steam? A. You can buy magneto electric machines for the purpose. You could
(24) I. H. R. asks: Can you tell me how to y? A. We cannot.
(25) W. R. B. says : Is there any method in heavy weight acting through a system of clockwork \% A. Yes. A weight of $7,000 \mathrm{lbs}$. with a fall of 30 feet, and proper gears, will drive the bellows of an ordinary church organ for half an hour.
(26) C. E. J. says: 1. I have made an induc ion coil, 12 inches long and 6 inches in diameter in the following manner: I took a piece of hard
rubber tubing, 154 inches in diameter and 13 inches long; I put in 7 inch heads, $1 / 2$ inch thick, of dry varnished walnut. I wound 4 layers of No. 16 cot ton-covered copper wire for the primary coil, I then wrapped around the primary coil two thicknesses of manilla paper, thoroughly saturated in
white parafin, to insulate it from the secondary coil; my secondary coil was composed of between or 8 miles of fine insulated green silk-covered lay wire; and between each layer of wire, I wrap a sheet of paraffined paper. Ms core consisted of a umber of small iron wires soldered together and consisted of 24 sheets of 12 inches square tin foil each sheet separated by a sheet of paraffined paper
the alternate sheets of foil being connected together. I have connected the condenser with the coil in three different ways, with about equal results; the longest spark tbat I ever got out of it
was $1 /$ of a inch. Please tell me the defects of this machine. A. For full particulars regarding th construction of induction coils, see page 115, vol. 33. The principal faults in your machine consist
in the soldering of the wires formingthe core, and in the construction of your condensers. The bundle of wires forming the coreshould neither be soldered together, nor surrounded with a metallic
substance. Ove side of the condenser should be connected to each side of the break piece in the primary circuit,-the object being to furnish a reservoir for the extra currents to flow into when
the primary circuit is interrupted, and thus prevent the spark. You should use a Bunsen battery instead of a Smee. 2. If made properly, how long a spark ougbt it to give? A. The length of your
spark will depend upon the size of your battery. (27) G. E. G. says: 1. Is it practicable to al-
low for the expansion of shafting of 23% inches diameter and 220 feet long, running at 82 revolutions, when the temperature is from 65° to 70°,
there being on the line two sets of bevel gears there being on the line two sets of bevel gear ning shafting at right angles? A. Yes. 2. What should be the angle of gears containing 30 and 36 teeth, of 334 inches pitch? A. About 40°.
(28) C. H. says: A friend claims that four persons, holding their breath, may lift, with one finger each, a ifth person from the floor, he also holding his breath. I have tried it without success, but my friend says that he has seen it done at va ment? A. We have told all we know about this matter (and it is very little) several times before. We have never seen the feat performed, but we bave heard about it so often that we are inclined to think it may be true. As we have remarked before, however, it is certain that the person who is breath, neither do the lifters gain any strength by
(29) W. J. B. asks:In heating a room, would it require more fuel to do it by ordinary steam, or to take ordinary steam and superheat it?
In other words, would it be more expensive to continue to generate ordinary steam for a given number of hours, and use this for heating a room, or to convert ordinary steam into superheated
steam, estimating the cost of the superheated ram from the time you first place? A. The second plan would be the most economical.

COMMUNICATIONS RECEIVED.

 The Editor of the SCIENTIFIC American acknowledges, with much pleasure, the receipt oforiginal papers and contributions upon the followoriginal papers
On Paris Green, and on the Keely Motor. By G W. P.
On R

On Repairing Bells. By C.
On Bee Culture. By E. C.
On Large and Small Axles. By F. W. D Alsoinquiries and answers from the following :
A. J. K.-N. B.-E. T. H.-B. W.-W. R. P.-N. K.
-R. E. B.-F. J. W.-J. C. т.-H. T.-J. K.-T.W.

HIN'IS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear
hould repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them. The address of the witer should always be given.
Enquiriesrelating to patents, or to the patentability of inventions, aesignments, etc., will not be
published here. All such questions, when initials only are given, are thrown into the waste basket, as it would flll half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogous to the Hundreds of inquiries analogous to the following
are sent: "Who sells telescope lenses? Who makes machinery for grinding lenses? Whose is the best vertical boiler? Who makesa good flocking machine? Who sells the best plow for use on haavy lands?" All such personal inquiries are printed, as will be observed, in the column of
"Business and Personal," which is specially set "Business and Personal," which is specially set
apart for that purpose, subject to the charge mentioned at the head of that way be expe ditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS
Letiers Fatent of the United States were Granted in the Week ending August 3, 1875 ,
AND EACE BEARING THAT DATE.
Air brake, W. D. Jones.
Air brakes, H.
Amargamator, E. J. Fraser..
Annunolators, E. A. Hill (r)

Annunclator, electric, G. W. Shawk (r)........575, 6,576, 6,577
Auger, S. w. Higgins.
Auger, earth, O. Rust ...
Axle skein, J. D. Smith.
Bule tie. H. J. Wright
Barrels, bung for, F. W. Kuenne
Basin faucet, w. c. Bussey
Basket. J. Meyer
Bath, shower, A.
Bath, shower, A. Macqueen, Jr.
Bearings, material for, S. Cohne
Bed lounge, A. Morr
Bellows, J. Baylis

Bowler, water tube, J. Warner..
Bohlers, fire tube for steam, H. Balley.
Book-backing machite, J\&Armatrong
Book-sewing machine, J. Armstrong. Bottle necks, A. N. Nishingeneman
W. Lang well. Bottle stopper, G. E. Keed....
Box fastening, E. W. Bride.
Bridge splice plate,
Brush, dust, H. B. Co
Bugs upon plants, destroying, R...............
Butter for mule carriages, J. W. Whitehead
Butter package, c. B. Sheldon.................
Butter package, c. B.
Button, w. Hornich.
Button hole cutter, D. A. Lehman
Can holder, preserve, c. D. How
Candestick, J. B. Gribble.
Candestick, 2.
Cap, M. Marks.
Car axie box bearing, T.
Car brake, S . Doubleday.
Car brake.hydraulic, T. McBride
Car coupling, J. Q. A. \& J. D. Young.
Car, dumping, B. Sluser...............
car, refrigerator, J. H. Cant
Cars, folding seat for horse, c.
Cars, heating and ventilating rallo
Cars, heating and ventilating railiroad, w. Sa
Cars, safety runner for rallroad, L. O. Root..
Carbureter, automatic rotary, T. A. Stombs .
Carpet sweeper, J. Kauper.
Carpet sweeper, A. H. Spenc....,
Carpet sweeper, A. W. Stewart.
Carpets, show rack for, J. Craws
Carriage, chlld 's, F. W. Whit
Castanet, J. A. Crandall..
Chain, J. W. Bonta............................ 166,
Chalns, making, G. Trinks.
Chair backs, shaping,
Cill, W. J. Welling.............
Churn dasher, H. A. Stearns.
harn dasher, I. J. Whitlatch.
Cloek dial, s. E. Root (r)...........
Cloth testing machine, W. Hebdo
Clothes pounder, D. . . . Rawson.
Clothes pounder, O. F. Stedman.
Coal from slate, etc., separating, H. Bradford.
Colors on fabrics, etc., fixing,
Confectionery, etc.,. E. Hawker.....
Cord, rubber-coated, H. Schlarbaum
Cord, rubber-coated, H. Sch larbaum
Cultivator, E. Nauman....
Cultvator. wheel, G. W. Schenck..............
Cup for effervescing drinks, w. c. Dodge Curry comb, R. P. Van Horne. Dental mallet, automatic, I. A. Salmon Derrick, M. Gray
Dish stand, wire, w. F. Colliter Doffer eombs, operating, J.
Door check, H. B. Church...
Drawingframe stop, D. W. Hayden
Drills, buffer for rock, J. C. Githens Egg beater. J. F. Rote
Egg box, O. Sutphen...
Electroplating, nickel. Hermann \& Taylor
Engine, electro-magnetic, A. Tittman... Eyeglags, C. C. Parker
Fabric, Imitation quilted, W. E. Corwin. Faucet, E. M. Fasoldt.
Feed-cutting machine, L. Evans. Fence, H. \& B. F. Bea Fire plug, c. E. Gray..
Fire plug and automati Fish.preserving Seltc pump, w. W. Harding Fish.preserving, Sellman, Re essing,
Fish calture, apparatus for, J. Roth
Fiting rods, reel for, Fishing rods, reel for,
Frge for blacksmiths, A. Benac
Frult dryer, J. Johnson
Fruit gatherer, M. Smith
Furace, ari-heating, J. M. Wilison
Furnace for blanks, J. W. Bonta.. Furnace for heating tubes, W. L. McNair........... Gurnace grate, Little \& E
Game bara, I. Darceare.....
Game board, I. . Forrester.
Garbage vault, Shepard $\&$ Bed
Gas generator, J. c. Mitchell...
Gas lighting apparatus, electric, F. Sandford.
Gas, mak1ng, A. C. Rand...............
Generator, steam, G. T. McLauthlin
Grave, J. Foullion.
Grain decorticator, w...........
Graintalley, W. D. Wile
 Heater, ,fire place. P. Rollhaus,
Hotsting machne, N. P. Otis....
Hop grubs, etc., destrosing Hop grubs, etc., destroying, O. M. Knox.
Horse power, J.R. Gray............. Horseshoe, J. Russell... Horseshoe blank bar, J. Wike. Horseshoe blank bars, plle for, J. Russell
Hydrant, J. E. Mooney........... Hydrant, J. E. Mooney.........
Hydrant, water, J. W. Douglas. Index, M. N. Lovell.....
Inkstand, s. Darling (r)
 Latch for cupboards, etc., C.
Latch, reversible, A. F. Whiting....
Letter block apparatus, B. Irrgang. Lock, time, J. Burge
Measure, tailor's, J. s. Charch. Meat pounder, Black \& Truax...
Meat tenderer, G. R. Comatock.
Meat tenderer, A. G. W. Foster. Meat tenderer, A. G. W. Foster......
Medical composition, T. Biedenfeld. Mill, cider, J. Bowen...................
Mill spindles, bush for, N. B. Lewis. Millstone dress, G. T. Smith...........
Molding concrete pipe, T. E. Dantels. Mop head. C. B. clark.............
Motion, converting, D. C. Burson. Motor, J. H. Bean...........................
Neede blanks, trimming, P. M. Beers
Needle eyes, Organ, reed, H. K. White...................
Organ stop action, McMahel and Tracy Organ stop action, reed, L.
Pavement, A. B. Dean (r) Peg wood, pointing ribbon, B. F. Sturtev
Photographic camera, J. and J. Stock....
Pianos, etc., tuning pin for, J. M. Branig. Pipe, device for bending metal, M. L. Or
Pipe, self-acting blow, J. M. Hancock... Plane, bench, D. F. Williams......
Plauing machine, L. S. Woodbury Planter, etc., cotton,Brseol and Searcy
Plating, anodes for nickel, E. Weston Plow, H. Krog, sr...
Plow, corn, A. Bind
Plow, steam, T. C. Stark
Post hole borer, o. Love.....
Printing presses, feed guide
Power, motive, P. B. Greene
 Railway electric signals, F.
Rallway frog, J. brahn (r). Railway rog, J. braln
Rail jolnt, H. Allen..
Rall Jintrastening, Hipking and Rigeby
Rall jolnt fasening, A. Spencer...
Railway switch, D. \boldsymbol{F}. Cavanaugh Rallway ticket, complex coupon,
Railway time signal, Dinkey et al...
Range, cooking, W. P. Abendroth.. Range, cooking, W. P. Abendroth.
Refrigerator car, J. H. Canfletd.... Resawing machine, J. First.....
Roll, skelp-forming, J. c. Getz. Roofs, securing fiexible roofing to, J. Perry. Rowlock, F. E. Davil Ruler, parallel, J. M. Taylor........
Sad Iron, reversible, T. T. Smother Sand paper roll, O. Gllmore.
Sash balance, E. H. Hannum Sash balance, E. .. Hannum
Saw gummer, M. O. Smith.. Sawmill head block, Perry and
Screw tap, J.E. Sweet........
Screw wo
\qquad
\qquad Sewing machine, T. A. Weber...............
Seetug machine bobbin, G. W. H. Curtis. Sewing machine feeding device, I. M. Rose..
Sewing machine looper, Byrom and Clewley. Shelving for stores, H. T. Bestor Shirt, F. A. Richardson...
Shirt: bosom, F. L. Pickett
\qquad Shovel blade die, P. B. Cunningham
Shutter, window, W. o. Connor.. Sletgh bell, R. and H. Marbach.: Sole-fastening webs, severing, B. F. St
Spinning frames, building, J. M. Stone. Stalk cutter, Gaylord and Ayers
till. otl, J. C. Dickey Stlll. oll, J. C. Dickey...............
Stone, compound for artifolal, T. E. Dantels Stool, R. W. Myers....
Straw cutter, L. Schell

Stump puller, , . O. Johnoson

Sugar, pressing, J. W. Jarboo................
Sugar-sawing machine, G. P. Ockershausen.
Table, folding, P. S. Crawford...
Table slide, extension, Holland a
Telegraphic circuit, w. E. Sawyer.
Toy hoop or trundle, W. W. Wilcex
Trace carrier, W. H. Townsend.
Track circuit connector, w . Roblinson
Trap, fly, H. L. Ferris.
Tube-smoothing die, P. Brown.
Tubing mandrel, M. Li Orum
Turn buckles, making, M. Merrill Type, A. M. Howard
Umbrella tips. etc., casting, A. Li............
Under clothing for women, s. T. Convers
Valve, globe, F. Lunkenhetm
Vehicle hub. J. H. Lindsay
Venticle hub. J. H. Lindsay
Vhicle spring, C. Nelioso
Vehicle wheel, F. H. Green...............
Veneer cutting machine, C. T. Fairchid Vessels, attaching handles to, G. W. Hartwel
Wagonrack, J. Bolt..
Wagon-weighing apparatus, J. J. D.
Wingsbury
Washing machine, J. H. Carron.
Washing machine, s. L. Denney.
Washing machine, J. M. Oakley..
Water closets, pan for, E. A. Leland.........
Water wheel, current, W. W. Cleveland.
Water wheel, turbine
Water wheel, turbine, G.
Well, petroleum, E. . . Ste
Well, petroleum, L. Stewa
Woodwork, carving, M. T. Bou
Wrench, plpe, H. C. Stoufter
DESIGNS PATENTED.

166,381
$166,29]$

 8,558.-STove KNob -J. F. Quimbs, Troy, N. N.8.559.-TYPE.-J. K. Rogers, Brookline, Mass.

SCERDULE OF PATENT FEES

CANADIAN PATENTS.
August 7, 1875.
,039.-J. G. E
August 7, 1875.
$040 .-\mathrm{M}$.
5,040.-M. McCall et al., Buffalo, N. X., U. S. Cutting attachment to lead pencills, August 7, 1815 .
5,011-A. B. Drake, Painesville, Ohio, U. Fence post base. August7, 1875.
$5,042 .-$ W. H. Lotz, Cbicago, August 7, 1875.
S.043.-J. Kedey, New York ctty,
roses to doors. August 7,1875 . roses to do 0 , Pruning shears. August 7, 1875.
,015.-A. Berry, Waterloo, P. 1045.
5, $0.06 .-J$.
rup. rup. August 7, 1875.
5,047.-S. P. Littlefield, Lynn, Mass .. U. s. Station indi cator for rallway carriages. Auguat 7, 1875 .
5,044.-H. A. Schandevyl, East Sangus, Mass., U. S.
Corset. August 1

TALJE OF PAREITMS
 And How to Obtain Them.
 Practical Eints to Invertoros.

ROBABLY no investment of a small sum of money brings a greater return
than the expense incurred in obtaining a than the expense incurred in obtaining small one. Large inventions are found to pay correspondingly well. The names son, Howe, McCormick, Hoe, and others, who have amassed immense fortunes
from their inventions, are well known. And large sums from their patents.
large sums from their patent
More than FIFTY ThoUSAND inventors have
valled themselves of the services of MUNN \& Co during the TWENTY-sIX years theyhaveacted as can. Thev stand at the head in this class of business; and ther large corps of assistants, mostly se-
lected from the ranks of the Patent Office: men ca* pable of rendering the best service to the inventor, aminers in the Patent Office: enables MUNN \& Co. to do everything appertaining to patents BETTER HOW TO obraineatents. closing in-
quiry in
nearly evthis office. A positive answer can only be had by presenting a complete application for a patent to
the Commissioner of Patents. An application conthe Commissioner of Patents. An appilication con-
sists of a Model, Drawings, Petition, Oath, and full
Specifleation. Various ofticial rules and formalities must also be observed. The efforts of the inventor out success. After great perplexity and delay, he is usually glad to seek the aid of persons experi-
enced in patent business, and have all the work done over again. The best plan is to solicit proper are honorable men, the inventor may safelv conflde his adeas to them ; they will advise whetherthe improvement is probably patentable, and will give
him all the directions needful to protect his right. How Can I Best Secure My Invention? This is an inquiry which one inventor naturally
asks another, who has had some experience in obtaining patents. His answer generally is as follows, and correct
Construct
mension-smaller if prepaid, addressed to MUNN \& Co., 37 Park Row, together with a description of its operation and
merits. On receipt thereof, they will examine the invention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, as good a pen and ink sketch of the improvement prospect of a patent will be received, usually by return of mail. It is sometimes best to have a
search made at the Patent Office; such a measure search made at the Patent Office; such a measure
often saves the cost of an application for a patent. Preliminary Examination.
In order to have such search, make out a written
description of the invention, in your own words, description of the invention, in your own words,
and ix pencil, or pen and ink, sketch. Send these,
with the fee of $\$ 5$, by mail, addressed to MUNN \& Co., 37 - Park Row, and in due time you will receive
an acknowledgment thereof, followed by a written report in regard to the patentability of your im-
provement. This special search is made with great provement. This special search is made with great
care, among the models and patents at W ashington, care, among the models and patents at washington,
to ascertain whether the improvement presented is to ascertain
To Make an Application for a Patent. of his inventi in if susceptible of one, or if the in-

