Pure Water.
From the days of the old Romans down to the present
time, political economists have sought for an abundan
supply of pure water as the first great time, political economists have sought for an abundant
Bupply of pure water as the first great need of any great
clty, clty. The question, today, when rallroads and manufac-
tures concentrate humanity at so many points, is of more
importance than when settlements were made merely where nature hat provided a full supply of the true wa-
ter of life. Our great citiesare all seeking an additional ter of hife. Our great citiesare all seeking an additiona
water supply, and fn many the water now received is ex water supply, and in many the water now received is ex-
pensive and unsatisfactory in quality from the immense pensive and unsatisfactory ind quady hrom a faulty sys-
waste and sad deterioration consequent on
tem of plping. Many differentmaterials have been used tem of piping. Mang difterentmaterials have been usec
for the conveyance of water long distances. The old Ro man aqueducts brought water of only the purity of ordi-
nary streams. open to sun, air. dust, anduke minor evilis,
a style not feasible in this day or country. The first American aqueduct of which we have cognizance. that at
Portsmouth, N. H., in operation in 1790, brought water through heavy pine logs, and so continued up to a year on
two since. Lead has proved dangerous for ppipig, an
tined with tin has been found enormously expensive for doubtful result ; whille plain cast and wrought fron rus has been found impracticable, on account of a lack of elasticity; and galvanized iron, which it was hoped would
solve the problem, has been found seriously affected by the various salts a
conveyed therein.
gle main of great size has been a cause of disaster from oubtless through a number of smaller mains, each inde endent of the other, thereby precluding any possibllity
of a general failure. The National Tube Works Company of Boston, Mass., and McKeesport, Penn., seem to have
solved the problem as to a perfect pipe, furnishing a
seamless lap-welded wroughtron seamless lap-welded wrought. iron pipe, of from one half
to fourteen inches diameter, coated inside and out witb ing a pressure of 1,000 pounds to the square inch. The coating resists all known corrosivees, and is is lastcic enough
for all working purposes, while all the connections are made by a sleeve jolnt that prevents any leakage.-Bos-
ton Daily Globe.

nusiness and zerscinah

Hoadley Portable Engines. R. H. Allen \& Co.,
New York, Sole Agents of this best of all patteras. Hotchakss Air Spring Forge Hammer, vest in the
market. Prices low. D. Frisble \& Co.. New Haven. Ct. Owners of Steam Engines-We guarantee 25 per
cent extra power or an equal saving in fuel, by applying the Ransom Syphon Condenser. T. Sault, Consulting Hotchkiss \& Ball, West Meriden, Conn., Foun-
drymen and Workers of Sheet Metal. Will manufacture on royalty Patented articles of mer.
Gray Iron Castings made to order.
Advertising Agencies.-"It is a fact that all those
persons doing a business which requires extensive persons doing a business which requires extensive adver-
tising, and who from the mode of conducting it are able to arrive at a close approximation of the results produced the oplnion that better contracts can secured through P. Rowell \& Co., NNew York, than canibe obtained from
publishers drect, no matter how famillar with rates and publishers direct, no matter how familiar with rates and
papers the advertiser may be. It stands to reason that an agency, controlling patronage to the extent of from fifty
t) one hundred thousand dollars per month, should be able to secure favors which would not be accorded to any
mere individual, even if we omit entirely the benefts which they must derive from their extensive experi-
ence.,
Big pay, with little money-American Saw File
Gulde. New Tool. All mechanics use them. Manufactured by E. Roth \& Bro., New Oxford, Pa. Circular free.
A young man wants a situation-Good refer-
ences. Address E. C. Fenn, Ware, Mass, Scroll Sa wyers-If you want good Jig Saw Blades,
get them made by A. Coats, 108 Hester St., New York. Second Hand Steam Engine, 350 horse power-a
first class article-for sale by Waits, Campbell \& Co., Moulder Wanted-Must be fully competent to
take charge of Foundry for general machinery castings mostly engine and mill work. References
Apply to P. O. Box 89, Galt. Ontario, Canada.
Makers of machines for splitting fire-wood, send
circular and price to Hoopes Bro. \& Darllngton, West
Water, Gas, and Steam Goods-New Catalogue
packed with first order of goods, or mailed on receipt of packed with Airst order of goods, or mailed on recelpt of
eight stamps. Bailey, Farrell \& Co., Pltesburgh, Pa.
 for sending messages, makng magnets the electric light, giving alarms, and various other purposes. Can be put in
operation by any lar. Includes battery, key, and wrres.
Neatly packed and sent to all parts of the world on receipi operation by any lad. Includes battery, key, and wires
Neatly pacced and sent to all parts of the world on recelp
of price. F. C. Beach \& Co., 246 Canal St., New York Bolt Headers (both power and foot) and Power
Hammers a speclalty. Forsaith \& Co., Manchester,N.H. See N. F. Burnam's Turbine Water Wheel ad-
vertisement, next ween, on page 141. Hand Fire Engines, Lift and Fo
Hand Fire Engines, Lift and Force Pumps for fire
and anl other purposes. Address Rumsey \& Co., Seneca
Falls, N. Y., U. S. A.
Falls, N. Y., U. S. A.
\$17 Foot Lathes. Geo. F. Shedd, Waltham, Ms Scale in Boilers Removed-No pay till the work
is done. Send for 34 page pamphlet. George W . Lord, Philadelphia, Pa.
For Sale-Large Geo.F.Shedd, Waltham, Ms For Sale-Large lot second hand Machinists'
Tooos, cheap. Send for 1 st . I. H. Shearman, 45 Cort-
andt Street, New York. andt Street, New York.
For Triinitrolycern, Mica Blasting Powder,
Frictional Electric Batterles, Electric Fuses, Exploders. Gutta Percha tnsulated Leading Wires, etc., etc., etc. resalt of seven years' experience at Hoosac Tunnel,
address Geo. M. Mowbray, North Adams, Mass.
For best Bolt Cutter, at greatly reduced prices, For best Bolt Cutter, at greatly reduced prices,
address H. B. Brown \& Co., New Haven Conn. "Lehigh"一For informationabout Emery Wheels
American Metaline Co., 61 Warren St., N.Y. City 8mal Tools and Gear Wheels for Models. Liss
free. Goodnow \& Wlgtiman, 28 Cornhlll, Boston. M Mass.
Peck's Patent Dro
 $x^{2}=2=2$
 Genuine Concord Δx Ies-Brown,Fisherville, N.H. Temples and Oilloans. Draper, Hopedale, Mase. For 13, 15, 16 and 18 inch Swing Engine Lathes
 For best Presses, Dies, and Fruit Can Tools, Blise

- Wlllams cor, of Plymouth and Jas, Brooklyn, N. $\mathbf{~}$.
 ithograph, \&c.
For sic - Tools, Ferracute W k 's,Bridgton, N. J. For Solid Emery. Wheels and Machingry, send to
the Un:on Stone Co., Boston, Mass,, for circular. Hydraulic Presses and Jacks, new and seoon
and Latioe and Machnery for Polishng and Buffng Metals. E Lyon 4\% arand street Nem York.
Barry Capping Machine for Canning Establish
ents. T. R. Balley \& Vall Lockport, N. The "Scientific American" Offce, New York, is
 ment. Coeap and eifective. splendid for shops, oftcees,
iwelitge. Works tor any distance. Price 88, with good

A. J. B. can harden screw plates and dies by the process given on p. 75, vol. 28.-A. K. will
 a good cheap telescope on p. 298, vol. 30.-F. J.will ind a recipe for a cement for millstones on p. 2211
vol. 1 ..-L. H. . . will find rules for proportioning safety valves on p. 330 , vol. 32 .-S. H. D. will find
rule for ascertaining the horse power of an en gine on p. 33, yol. 33.-B. J. F. will find rules for as certaining the required pressure of water in pipes on pp. 73 to 79 , Science Record for 1873.
(1) H. E. says: 1 . I have tried the recipe
for indelible inks, and cannot dissolve the prussifor indelible ink, and cannot dissolve the prussi-
ate of potash. I tried to dissolve it in benzine, to mix it with printer's ink; but it will not dissolve. I also tried aleohol: it would not mix with the
ink. What is the matter? A. What recipe do poin refer to? Yellow prussiate of potash is soluble in water. 2. Is there anysthing that will make print
ret er's ink indelible? A. Carbonaceous substances,
such as asphall, with prop solvents, have been such as asphall, with
used for this purpose.
(2) F. A. asks: 1. By what process can make a good nickel solution for nickel plating
A. Use a strong solution of the cyanide or doub A. Use a strong solution of the cyanide or double
sulphate of nickel and ammonia, obtained by dis solving the salts in hot water until the solvent is nearly saturated. 2. What is the proper quantity of cyanide of potassium? You mention प12 ozas. to
1 gallon. Would it not make a very walk solu 1gallon. Would it not make a very weak solu
tion? A. Use water 1 gallon, cyanide of potassi12 ozs., cyanide of silver 11/8 ozs.
(3) Y. P. asks: How long must I leave a
pistol cylinder ina gold solution, so that the coat pistol cylinder ina gold solution, so that the coat-
ing will last a year? A. About 24 hours will give ing will last a year? A. About 24 hours will give
a good deposit. It is not neessary to disturb it until finished. 2. Will an old watch case do ${ }^{\text {th}}$ made with a battery is a good one for the purpose.
(4) F. H. J. asks: 1. Would a $1 \frac{1}{2}$ inches
achromatic objoct glass, of 30 inches focus, and a plano-convex lens, of \bar{y} inch diameter and 1 inch focus, answer in constructing a telescope as de-
scribed on p. 7 of vol. 30 ?
A. The 11% inches obscribed on p. 7 of vol. 30 ? A. The $1 / / 2$ inches ob-
jective is rather small for 30 inches focus. The plano-convex lens of $1 / 3$ inch diameter and 1 inch
focus for an eyepiece will not answer very well The eyepiece should consist of two lenses, both plano-convex and with the flat side to the eye, one
of, say, 1 inch focus near the eye, and one of 2 of, say, 1 inch focus near the eye, and one of 2
inches focus at the distance of 3 inches from the first. 2. Which is the best for an eyepiece, a planoconvex or a double convex lens? A. Plano-con-
vex lenses are better than biconvex. 3. How can I make a terrestrial eyepiece and a celestial eyepiece? A. A celestial eyepiece consists of one set,
that is, two such lenses; a terrestrial eyepiece con sists of two such sets, a celestial eyepiece show inverted images. The additional pair of lenses in the terrestrial eyeyiece reverts the inverted image
toitsnatural position. 4.Would theabove telescope, if fitted properly, be powerful enough to see Jupiter's moons and Saturn's belts? A. If a good
one it may do to see the satellites of Jupiter, but not Saturn's belts. 5. What workon the telescope would you recommend, for an amateur without a teacher? A. There are many books on the micro
scope, but few or none on the telescope alone. In scope, but few or none on the telescope alone. In
some of the larker treatises on physics, such as Silliman's, Ganot's, etc., you may obtain some spe (5) H. L. G. says: The following question involves the principle of the hydrostatic paradox,
that the pressure of tuids is according to the hight and surface pressed upon, and not according to the quantity pressing. This is evident in case of water; but does it hold also in the case of ai either with or without forcing? Of course it
would require a vacuum opposite to make the would require a vacuum opposite to make the test. A. Yes.
(6) S. M. L. asks: What is the best mate
rial for belts to which slats three quarters of an inch in width are to be fastened, the belts to run
over rollers three and five inches in diameter, the larger being the driving roller? A. Try a flat chain.

1. What is compressed air? A. It is air, the vo
pressure. 2. Is it as elastic as steam, or more so It is more elastic at low temperatures. 3. It ticity? A. No.
Would a wheel that would start itself on an axle and keep on continually revolving, moved only by an eccentric weight of its
petual motion? A. Yes.
(7) L. W. says: I am coppering cast and anleable iron by dippingin a solution of sulphate of copper: but the copper does not attach itself a
permanently to the malleable iron as to the other What is the remedy? A. Clean the surface well by dipping in dilute oil of vitriol, and seouring with sand.
(8) D. B. T. says: I have long had a theory hat the absorption of air by water decreases it scientists. It is a well known fact that water ab sorbs about four per cent of air under one atmo-
sphere's pressure, and that the absorption goes on sphere's pressure, and that the absorption goes on
in the same ratio with every increase of pressure. in the same ratio with every increase of pressure,
It is easy to conceive of a condition of things when It is easy to conceive of a condition of things when
the air under an enormous pressure would penetrate theintermolecular spaces of the water, to an extent sufficient to dissociate its elements and probably forma new combination and produce a new gas. A. There is no doubt that the addition
of air to the water of a steam boiler, and even to of air to the water of a steam boiler, and even the steam itself, is effective in increasing pressure.
This was verifed by Professor Rogers of Philadelphia, Pa., who even made it a matter for a patent and constructed an engine which illustrated the difference of admitting and excluding air. Bu
that air, under great pressure, would be able to penetrate the intermolecular space of the water,
so as to dissociate its elements and form a new so as to dissociate its elements and form a new
combination or gas, is a totally unsupported hy combination or gas, is a a totall y ussupported ay
pothesis ; and we fear that your drawings for senerator and engine to
have been labor wasted.
(9) S. A. R. asks: What is the best mate Paris and alum, usually.
(10) C. H. M says: Your correepondent I. S.M. asks for a rule to find the size of hole in whic the following: Deduct from diameter of the screv 1% times the pitch. Is not the following rule more accurate? As most of the threads used in this
country are cut on a 60° angle, by taking the cos ine ofys the angle, that is, 88660 , and multiplying it by the pitch, then doubling the result, and deduct ing it from the diameter of the screw, you will above rule: Let pitch be 0.1010 , diameter of the screw $1^{\prime \prime}$; then $0 \cdot 1^{11} \times 0 \cdot 8660 \times 2=0.1732 ; 1^{\prime \prime}-0.1732=$ 0.8288 . By I. S. M.'s rule: $1-0 \cdot 15=-8500$, kiving a
difference in szze of hole of 0 ozase. A. Belcw ar the rules for proportioning the American standar screw, which is flattened at top and bottom. $D=$ outside diameter of screw. $\alpha=$ diameter of hol
in the nut. $p=$ pitch of screw. $n=$ number threads per inch. (Alldimensions in inches.) $\sqrt{\frac{16 \mathrm{D}+10}{16 \cdot 2 \cdot} \cdot 999} . \quad n=\frac{1}{p} \quad d=\mathrm{D}-1 \cdot 299 \times p=\mathrm{D}$
$\frac{1 \cdot 299}{n}$. If the thread is not flattened at top and n
bottom, $d=\mathrm{D}-1^{1} 732 \times p$. For a screw, not flattened top and bottom, with any angle, a, of thread, $=\mathrm{D}-$ cotangent $\frac{a}{\frac{a}{2} \times p}$
(11) W. F. R. asks: Which will last long est in an upright boiler, cast or wrought iron
grates? A. Cast iron, generally. (12) E P. says: In an article enticled owing statement: "In longitude $112^{\circ} \mathrm{W}$. Green wich, the explorers will have arrived be tween the north pole and the magnetic pole."
do not understand how this can agree with a pr do not understand how this can agree with a pre-
vious statement: "When 40° E. of Greenwich is vious statement:" When 4i E . of Greenwich is
reached the north pole will lie between the exreached the north pole win lie between the ex
plorers and the magnetic pole." Has the magnetic pole magnitude, or was there a mistake in print The magnetic pole in question has very considera ble magnitude: it covers an area of many square miles. This, however, is not the sole cause of the paradoxical compass bearings mentioned in our
article. You are doubtless a ware that there is another north magnetic pole on the siberian side of the geographical pole ; and the lines of magnetic direction are still further, complicated by magnetic conditions which have not yet been fully made out. The statements of our article on this point werefounded as stated therein on the compass directions laid down on a provisional map construc-
ted, for the expedition lately sailed, by the hydro grapher of the British Admiralty, showing the magnetic conditions which may be expected in all unexplored polar regions if the distribution of ter-
restrial magnetism based on the knowledge acrestrial magnetism based on the knowledge ac-
quired up to the present time, and elaborated by quired up to the present time, and elaborated by
Gauss, Sabine, and others, turns out to be correct. Guass, Sa aine, and others, turss out o be cores
If the compass bearingsof any puint could be preicted from its geographical position, or its posisuch a map would be unnecessary, and the difficul ties of arctic exploration would be greatly les-
sened; they are seriously complicated when the sened; they are seriously complicated when the
voyager has to rely so largely on the guidance of voyager has to rely so largely on the guidance of
an instrument, the behavior of which he is unable to predict with any certainty. The provisiona maps supplied to the British expedition will doubt down merely whatis probable.
(13) F. R. B. says: I have an achromatic microscope, powers from 20 to 100 diameters.
would like to construct with it an astronomica elescope. What sized objectg lass would it require not of what focus? Should it be achromatic ? A beachromatic, and may be had of all sizees and fo
ter and 3 or 4 feet focus to those of
ameter and 30,40 , or more feet focus.
(14) G. W. P. says: 1. I require froma magnetic engine as much power as a man would finger 60 times a minute. Can I get this much rom two Léclanché cells? A. Yes. 2. How many nd what sized, magnets should 1 use? A. Make he iron are periment. Two magnets are sufficient. 3. Can I eriment. Two magnets are sufficient. 3. Can
ain more power by using more battery, or by les battery and more magnets? A. Make the cores thin and the poles thicker and use more battery.
(15) A. S. asks: Can a lamp wick be lit by
dectricity? A. Not unless surrounded with (16) L. J. S. says: D. L. B. asks if a solid eepest part, or float when the mount of in the displaced equaled in weight the bar of iron. wish to say that the weight of a body, specific
therwise, depends on its density. As only slightly compressible, how could it be made as dense as iron? If it were so compressible that it could be made as dense as iron, it would be no longer water but a solid. The pressure of water has nothing to do with bodies floating and sinking
in it. A. We would be glad toknow your reasons or this conclusion.
to it expand the air beyond its present limnstance, that the material of which the earth composed were several times lighter, would no the air be much more raretied and reach much be yond its present hight? A. Yes,
(17) F. W. H asks : Is it practicable to make a machine to run by a weight or spring, that will
take the place of a Grove battery in plating small aticles, such as watch cases spoons, etc.
(18) W. E. D. asks: 1. In an exhausted Léclanché battery, which needs replenishing, the
oxide of manganese or the gas carbon? A, The manganese. 2 . Will not a sheet of lead or copper
mand answer as well as carbon to put in the porous cell, o make the positive pole of the battery? A. No. inc or platinu metal that will take the battery? A. Nothing so good as zinc. Platinum forms the positive pole. Iron can be used in place
of zinc, but it is not so good. 4. Will not a porous cell made of common stoneware (unglazed) answer as well as the ones we buy? A. Yes. 5 . Cannot the a bove cells be made at any pottery, and
 resin is used to seal Léclanché batteries, and is it necessary to seal them? Will they not work a
well if do. The sealing is done to prevent evaporation. They will work if not sealed, though not for so loug a time.
(19) W. P. asks: What is the smallest magnet I can use, and what are the amount and of a door? A. A magnet 1 inch long will answer
(20) F. W. R. says: In your article on the instability of the earth's surface, you state that the coast of Texas was rising at a comparatively rapid rate. This statement is certainly a very er-
roneous one. and I draw this conclusion from these facts: In 1841 I landed first in Texas, on Galveston
 the waters of the bay, but the street called Strand flowed after winds from certain quarters. It has been filled up to a hight of several feet, and is now barely above high tides. Salt water was reached
at a depth of four or five feet, and is, I think, stlll found at that depth. The tide reaches the town of Houston and marks about a similar yoint on the wharf. I have often heard it said that our coast the rise must bevery slight during the last thirtyfour years. A. You must consider that the coast of Texas along the Gulf of Mexico is between 300 and 400 mileslong, and that the northeastern por-
tion, ajjoining Louisiana, is of the nature of the latter State. It has not been asserted that Houston is rising; but 300 miles southwest of that place, near the mouth of the Rio Grande, it adjoins Mex-
ico; the strata partake more of the volcanic nature prevailing in Mexico. It has been repeatedly stated, by those who visited that region 40 years ago and recently, that it is rising. It is a very common occurrence that a coast line descends or is
stationary in one part; while, at a distance of 300 , or even 100 miles, a gradual rising takes place (21) S. K. L. says: A friend and I had a dispute as regards the ground wire of a telegraph.
Hesays the ground current takes a direct line from one point in the earth to the other. I say it takes the course of the line wire. Which is right? A
It takes the course of a direct wire having no reIt takes
(22) W. M. D. says: I wish to construct an electro-magnet and get as much force as possible
with a given amount of material. Will 200 feet of No. 20 wire wound on 4 soft iron cores of U shape wire'; be wire; be as effective as 200 feet of No. 20 wire
wound on 1 core weighing 1 lb . or as much as all the 4 small ones put together, the battery to be the same for the large one that is used for all 4 of the others at one time? A. Yes.
(23) F. R. says: I have a plating shop, and find great trouble with batteries. I was thinksing
of getting a friction battery to dogold, silver, and nickel platingwith. How could I make a cheap one, to go by steam? A. You can buy magneto-
electric machines for the purpose. You could electric machines for the purpose. You could
