and fixed by means of a bandage; catgut was used to tie any vessels requiring ligature. In those cases where the edges of the wound could not be accurately brought together, Dr Bose put in catgut sutures, and then filled the spaces between the edges with the salicylic solution by means of a small sy ringe, and applied the wadding over all. The greater num ber of the cases thus treated healed bs first intention, with out the formation of a drop of pus.
Dr. Bose concludes his paper by stating that he has as yet no experience of the value of the boro salicylic acid solution in dressing large wounds, and that he has not found it invariably successful in the case of small ones.-Medical Time and Gazette.

Corregimudemte.

Death by Strychnin Scientific American:

To the Editor of the Scientific American
On Saturday, July 24, Dr. J. O. Hill, of Ithaca, New York, in a hurry togo out, took thoughtlessly a drink of water from a graduated glass. in which he had previously dissolved some strychnin. He walked a quarter of a mile, and then felt dizzy, and this and an exhausted feeling seem to have
been the first effects of the poison. These increased, and they seem to have enfeebled his mind somewhat, but not serious ly. At the end of about a half mile walk, his lower extremi ties had become so affected that he could not move. It is not know what the exact form of this action of the poison was; but as seen by me a few moments later, it is probable that it was possibly numbness, and certainly spasm of the extremities, with quivering of the muscles on every attempt to use them; with congestion, or its opposite, anemia, of the brain, such as a ghastly pale face would show. In 5 or 8 minutes later, I saw him. His condition was that of constant spasms of the lower limbs, with occasional spasms of the arms; and in every half minute or minute, a spasmodic convulsion of the greater part of the involuntary muscles would take place. His mind was clear when no convulsion were on; but it was affected, but not suspended, during the convulsions. A death-like paleness preceded each general convulsion, with a stoppage of the pulse at the wrist, which soon took definite shape. In the brief intervals between the spasms or convulsions, he was able to speak, and to describe his case accurately. His vision was clear. He wa cool and accurate in verbal expressions, but had that excitement that underlies danger. Being of a hopeful and mirthful turn of mind, he at this moment had no fear of death; for he wished still to take the railroad train, and said: "I shal be over this soon." If I am correct, and I think I am, his case shows that, beginning with a serious impression on the brain, the poison begins its fatal action on the extremities, the hands and feet, and by degrees proceeds up the extremi ties of the body to the trunk. When he spoke to me, thi had reached the hips, pelvis, and shoulders, as was evidenced by his pointing to these parts and saying: "Iam sick; it is cramps here," that is, on the circumference of bowels and ribs, and in the hips and shoulders. A few minutes later he evidently felt that the poison was invading the involuntary muscles of the heart and lungs, as a sorrowful and al larmed expression evidently showed. A convulsion came on and was followed by his clear statement: "What I fear i that a clonic spasm of the heart and lungs will take place, and I shall go, go soon in it." And after the next general convul sion, he said: "Doctor, you know what I fear," meaning the clonic spasm of heart and lungs.

Next the tetanic or clonic spasm was evidenced by hi saying: "My jaws are becoming locked." The word "clonic," used by the dying doctor, means an irregula spasm. It is also used, probably without authority, as ne used it, for violent closing or locking spasm, suddenly coming on. Very soon after, he was unable to swallow camphor and water I offered to him, and the teeth were locked as in tetanus, though not so rigidly. Then follow the fifth and sisth general spasm or violent convulsion within twelve to fifteen minutes, during the brief intervals of which he spoke "I am gone," "it is over," "raise me up," " lift me up," and he turned purple or livid in the face; the clonic or closing tetanic spasm of the heart and lungs took place, and he who, forty-five moments before, had taken, into an empty stomach, a drink of water with the poison in it, was dead.

The action of the poison was, as I have said, first on the brain and voluntary muscles, then on the ganglia of the voluntary muscles; and it ended in death as soon as the involuntary muscles of breathing became involved, the breast being the last involuntary muscular organ that stopped. The spasmsevidently were very painful, but not remarkably so. His mind was clear, so much so that he saw and spoke of what was best to do, and what was being done for and about him. Had not the celerity and the certainty of the progress of the poison been known (being absorbed by one in violent exercise, in water or solution, on an empty stomach), we might have well thought that such a self-possessed, strong,
of death
Thinking that these facts are of interest to the medical pro fession, I have sent them to you.
S. J. Parier. M.D

To the Editor of the Scientific American

I noticed in your issue of July 10, an article headed "Weighted Silks." It states that the increase is by means of salts of iron and astringents, and salts of tin and cyanide ; and that it cannot be too widely known that, by this adultertion, silk is rendered vory inflammable, and, under certain
ircumstances, spontaneously so. I admit that silk in the process of dyeing, and where heavily weighted, receives all of the material named. Iron is the base; cyanide of potassium forms with the iron Prussian blue, giving the blue round; it is then given a bath of tannin, which is precipi ated with tin salts, fixing the tan insolubly on the silk. The result of all this is: Silk being, like hide, an animal gela tin, having an affinity for tan, becomes leather, and is abou s inflammable.
I enclose a skein of black silk; one half of the weight is ilk, the other half iron, cyanide, tin salts, and astringents, used as I have named. It is true the weighting of silks is carried to the extent of ruining the fabric. Although the goods thus weighted appear firm and solid, they will no wear. This weighing process adds bulk, so that the weighted silk will make two yards, where the unweighted would onl make one. The silks will not last like those our mothers wore to redye them is out of the question; but they have a decen ppearance for a time, and I think no lady need fear spo Pittsield, Mass.

The Recent Wet Weather

To the Editor of the Scientific American:
Among the many probable causes to which the exceptiona ble weather of this year is attributed, there is one which have not yet seen mentioned in print, and which appears to be worthy of consideration. Advices from Europe tell us hat, over a very large area of the north of that continent quantities of ashes have fallen, having been wafted on the the winds from the Iceland volcanoes. This does not take into account the quantity which must have fallen unob erved on the intervening seas. I'o lift this immense mass f material to so great a hight requires an immense force nd an amount of the gaseous products of combustion terrile to think of. The question it would present to the m teorologist is: What effect would be produced on the atmos phere by this body of gas? Or if,as seams reasonable, there is an atmosphere of hydrogen above our atmosphere of com bined oxygen and nitrogen, what would be the effect on it and the resulting effect on the lower atmosphere?
Many years ago, Professor Epsy claimed that the atmo pheric disturbances caused by large fires produced rains but so far as I know, he did not assign a reason. If fire is wanted to bring rain, here is an amount of fire and heat to which the heat of the fires of Chicago and Boston combined ould be nothing, and an amount of matter raised high int the air that would make many such cities.
Louisville, Ky
N. B. G.

Useral Reclpes for the Shop, the Household, and the Farm.

The best remedy for currant and gooseberry worms is pow dered white hellebore, obtainable at any druggist's. Put the owder in a common tin cup, tying a piece of very fine musn over the mouch. Fasten the apparatus to the end of a short stick, and dust the powder through the muslin lightly pon the bushes. Do not work on a windy day, and stand to windward during the operation, as, if taken into the nostrils, he hellebore excites violent sneezing. The same material is good remedy for cucumber beetles.
Sawdust can be converted into a liquid wood, and after wards into a solid, flexible, and almost indestructible mass, which, when incorporated with animal matter, rolled, and dried, can be used for the most delicate impressions, as well as for the formation of solid and durable articles, in the fol owing manner: Immerse the dust of any kind of wood in diluted sulphuric acid, sufficiently strong to affect the fibers, or some days; the finer parts are then passed through a sieve, well stirred, and allowed to settle. Drain the liquid from the sediment, and mix the latter with a proportionate quantity of animal offal, similar to that used for glue. Rol quantity of animal offal, similar to that used for
The follow
The follow prove useful, as the present is the time for putting up such reserves for winter. The first figure after the name of the ruit refers to time of boiling in minutes, the second to unces of sugar to the quart: Cherries, 5,6 ; raspberries, 6,4 blackberries, 6, 6; gooseberries, 8, 8; currants, 6, 8; grapes 0, 8 ; plums, 10,8 ; peaches (whole), 15,4 ; peaches (halves), , 4; pears (whole), 30, 8; crab apples, 25, 8; quince sliced), 15,10 ; tomatoes, 30 , none; beans and peas, thre to four hours.
The following soluble glass is best adapted for coating rick and stone: Dry carbonate of potassium, 10 parts; pow dered quartz, 15 parts ; charcoal, 1 part. Sand, free from lumina and iron, may replace the quartz. Fuse togethe and dissolve in boiling water of 5 or 6 times the weight. ilter.
Handsome ornaments can be made by mounting fern leave n glass. The leaves must first be dyed or colored. They re then arranged on the mirror according to fancy. A but terfly or two may be added. Then a sheet of clear glass of he same size is placed on top, and the two sheets secured together at the edges and placed in a frame.

Photography of Chilidren.

W. A. Nicholas, Australia, says; As nearly all children ar photographed in whitedresses. and the faces are a great dea tanned through exposure to the sun, I have found a useful help in a simple wax match. If I have been unable to ge full exposure through the restlessness of the little sitter in dull weather, by lighting a match and holding it just under the face only, so as to make that part of the plate hot during development, it is astonishing the increase of detail I get There is no danger of the plate aracking through uneven ex pansion.

PRAOTICAL MECHANIBM.

by jobhia rose.

number XIx.

cutters.

Cutters are steel bits, usually held in either a stock or bar, being fitted and keyed to the same; by this means, cutters of various shapes and sizes may be made to fit one stock or bar, thus obviating the necessity of having a multiplicity of these tools. Of cutter stocks, which are usually employed to cut ut holes of comparatively large diameter, as in the case of ube plates for boilers, there are two kinds, the simplest and easiest to be made being that shown in Fig. 119.

A is the stock, through
 which runs a slot or key. way into which the cutter, B, fits, being locked by the key, C. D is a pin to steady the tool while it is in operation. Holes of the size of the pin, D, are first drilled in the work. into which the pin fits. To obviate the neceasity of drilling these holes, some modern drill stocks have, in place of the pin, D, a conical-ended pia which acts as a center, and which fits into a center punch mark made in the center of the hole to be cut in the work. Most
f these devices are patented, and the principle upon which

they act will be understood from Fig. 121, A being the stock o which the cutters, B B, are bolted with one or more screws. C is a spiral spring working in a hole in the stock to receive it. Into the outer end of this hole fits, at a working fit, the center, D, which is prevented from being forced out (from the pressure of the spring, C) by the pin working in the re cess, as shown. E is the plate to be cut out, from which it will be observed that the center, D , is forced into the center punch mark in the plate by the spring, C , and thus serves as guide to steady the cutters and cause them to revolve in a rue circle, so that the necessity of first drilling a hole, as equirred in the employment of the form of stock shown in Fig. 119, is obviated. The cutters are broadest at the cutting end, which is necessary to give the point clearance in the roove. They are also, at the taper part (that is to say, th part projecting below the stock), made thinner behind than a he cutting edge, which is done to give the sides clearance It is obvious that, with suitable cutters, various sized hole may be cut with one stock.
In cutting out holes of a large diameter in sheet iron, stock and cutter such as shown in Fig. 120 is generally em ployed; but the grear distance of the cutting from the cut ting edge, that is to say, the extreme length of the cutter renders it very liable to spring, in which case these, and other ools having a slight body and broad outting edge, are almost sure to break, unless some provision is made so that the tool, n springing, will recede from and not advanceinso the cut To accomplish this end, we must shape the cutter as shown in Fig. 120, which will, at the very least, double the efficien y of the tool
In Fig. 120 the cutting edge, B, stands in the rear of the line, A, or fulcrum from
 which the springing takes place ; hence, whe the tool springs, it wil ecede from the work, C To avoid springing and for very large holes, the cutter may be a shor tool, held by a stout crossbar carried by the stock; but in any even the cutter should be made as shown above. Cutters of a standard size, and intended to the pin stock, shown in Fig. 119, should be re cessed as shown in Fig., 122, A being a fa cing or recessing cutter
shown in the stock, and B conntersink. outter out of the
stock, the recess being shown at C. In making these cut. ters they should be first fitted to the stock, and then turned up in the lathe, using the stock as a mandrel, the ends be ing then backed off to form the cutting edges. Those slight in substance should be tempered to a light straw at the cut ting edge, and left softer at the back part. Those above five

sixteenths of an inch in thickness may be hardened righ out, and not tempered at all.
Here it may be as well to describe a process for tempering cutters, which, as several very expert workmen have assured me , gives superior results. It is to heat the cutter to a cher ry red heat, and quench it in the water until it is cold, and to then reheat it until water dropped upon it will dry off in slight bubbles. If, ho wever, the reheating is rapidly performed, there will be no need to drop any water on it, since that which adheres to it after quenching will be sufficient I have no doubt but that for stout cutters, or even for slight ones which perform a light duty, this method is preferable to all others : but for light cutters performing a heavy duty I should judge that it would leave them too hard for their strength, and therefore liable to break.
Cutters for boring bars should be, if intended to be of standard size, recessed to fit the bar, as shown in Fig. 122 the barhaving a flat place filed around and beyond the edges of the hole, to form a broader bearing for the cutter to fit upon. But if the cutter is intended to vary the size of hole, it must be left plain, so that it may' be moved inwards or outwards to accommodate the size of bore required. Al cutters and bits should be used at a cutting speed of about 15 feet per minute, and with oil or soapy water for work in wroughtiron or steel ; and for use on those metals, the cutters, etc., may be given a little front rake by grinding away the metal of the front face, as shown by the dotted line in Fig. 119, at E.

REAMERS.

Reamers are cutting tools usually employed to finishholes requiring to be very true and smooth, and may be employed in a machine or lathe, or by hand. As reamers are general ly of a standard size, but little metal should be left to be cut out by the reamer, so that they will not, from excessive duty, become rapidly worn and hence reduced in size. Fig.
123 represents reamers for hand use, No. 1 being a taper reamer to be introduced first, and No. 2 a finishing one to make the hole parallel. It is obvious that the taper one, by

entering the hole a part of its length before its diameter be comes large enough to perform any cutting duty, is steadied during the operation. To steady the finishing reamer, it is usually made slightly taper at its cutting end for a length about equal to its diameter. To illustrate the indispensability of this tool, we will take the case of fitting an eccentric rod double eye to a link or quadrant. The faces of the lat er are planed, and the hole is bored as true and parallel a possible. The double eje may be planed, milled, or slotted, nd the holes in the eyes are bored as true as it is practicable o get them; nevertheless, when the double eye is fitted t the quadrant, it will be found that the holes in the eye and that through the quadrant are not true one with the other.
Theory would say that they must come true, but practice Theory would say that they must come true, but practice
proves that they never do; hence they are fitted together proves that they never do; hence they are fitted together,
and the reamer is applied to true them out and make them parallel. The reason for this want of truth is this: If the holes in the double eye are bored before the inside faces are cut out, the latter operation varies the form of the whole double eye, in consequence of freeing the tension which al ways exists on the onter surface of either forgings or cast ings, as has already been explained in former remarks. If on the other hand the faces of the double eye are turned out first, then boring the hole will have the same effect; hence the use of the reamer cannot be dispensed with for holes requiring to be practically true.
Reamers should be made as follows: Forge them of the very best steel, and to within one sisteenth inch of the fin shed size; then turn them up, taking care to properly cen terdrill and square the ends, and to rough them out all ove before finishing any one part, bearing in mind that the di ameter is sure to be a trifle increased by the process of har dening. Then cut out the flutes in a milling machine ; the number of flutes should increase with the diameter of the reamer, but a good proportion is five flutes to a reamer of an inch diameter. Let the flutes be deep and roomy, so as to allow the cuttings free egress and the oil freeingrese. An odd number of flutes is hetter than an even one, sincethey ren-
der the reamer less likely to follow any variation from round ness in the hole. Nor need the flutes be the same distanc part, a slight variation tending to steady the reamer when in operation. The form of flute is not arbitrary ; Fig. 124 shows, however, the forms usually employed, either of

Fig. $124 a$.

which will answer excellently for hand reamers, the only dif ference being that No. 2 is rather more difficult to sharpe (without softening it) on an emery wheel, while No. 1 is the most difficult to sharpen when it is softened, in consequenc f the file being liable to slip out of the grooveand take o he cutting edge.
After the flutes are cut, the rake is given to the cutting edge by easing off or filing away the metal behind the cutting edges, A, towards the point, B ; but this should be done by drawfiling to a very slight degree near the cutting edges, otherwise th redmer will be liable to wabble when cutting. In forms and 2 , the amount of the rake at the point, B , need not b more than the thicinness of a piece of thin writing paper but in No. 3, while near the cutting edge it may be very slight indeed, it must at the point, B , be considerable; hence save for rough work requiring an excess of cutting duty orm No. 3 is not so desirable as the others.
The best method of hardening such reamers, and in fact all others, is to heat them in molten lead. and to quench h $\in \mathrm{m}$ end wise in water; because, when heated in lead, the utside will become sufficiently heated before the inside me tal is red hot; and so, when the tool is quenched, the inside or central metal will remain sufficiently soft to permit of the tool being straightened should it warpin the hardening. The straightening should be performed by slightly warming the eamer and laying it upon a block of lead with the rounded ide upwards; then place a rod of copper or brass in the up permost lute, and strike the copper with a hammer. Theuse of the copper is to preventdamage to thetool by the hammer The object of dipping the tool end wise is to prevent the reame from warping in hardening. If great care is not taken in the hardening process, reamers and all tools having grooves o flutes in them are very apt to crack along the bottom of the Hutes, which cracking is due to the unequal contraction o he metal in being rapidly cooled by quenching. Those having deep flutes, or sharp corners at the bottoms of the flutes, re the most liable to flaw in hardening, so that, in this res pect, the flute shown in No. 1 is far preferable. To obviat the liability to flaw, the water in which the quenching is performed may be made sufficiently warm to be just beara ble to the hand; and if it is also made a little saline, its har dening value will not have been impaired by the warming
For light work, the hand reamer should be, if above $\frac{8}{4}$ inch in diameter, tempered to a light straw color. For sizes les than that, and for heavy duty, a deep brown will prove the most serviceable, being less likely to cause the tool to break 'I he whole value of a reamer depends upon its being true o straight, and it is therefore necessary to exercise great car in the re-sharpening, as well as in its manufacture.
Many attempts have at various times been made to pro duce adjustable hand reamers, that is to say, those formed of cutters held in a stock and adjustable as to diameter, the object being to make one reamer serve for several sizes o holes, and to render the manufacture less expensive by hav ing to simply remove the cutters to grind them when dull and to renew them when worn out. The difficulties in the way of producing such a tool are that, in the smaller sizes, there is not sufficient strength to permit of their being made in pieces, and that, in requiring to set the diameter of the ool, a slight deviation as to size is very apt to occur. The are also liable to wear out of truth
The best and truest method of making long fluted ream rs is the one instituted in the Grant Locomotive Works, of Paterson, N. J. It consists in turning the reamer from on ixty-fourth to one thirty-second inch too large in diameter hen, after cutting out the flutes and hardening, the straigh ning aud backing off is performed as follows: Upon the top of the slide rest, in the position usually occupied by the too post or clamp, there is fastened a small head carrying an mery wheel of say eight inches diameter, upon a spindle having a small pulley attached, speeded to run about 2,00 revolutions perminute. An overhead countershaft is provi ded to drive the same, the appearance of the device being a n Fig. 124. The belt is arranged to drive the emery whee in a direction opposite to that in which the lathe runs.

Aheel, B the erner wheel, B the head carrying the spindle,
and C the pulley, D being a lug to bolt the appliance to the top o the slide rest of the
lathe. The reameris, latho. The reameris, after being hardened, driven in the lathe at a fast speed; the re nd travery whee o true the reamer to a dead true and, by proper adjustment o the requisite diametor. The backing off is performed thus: The lathe is stopped in such a position that the emery
wheel will make contact with the reamer just behind the cutting edge, as shown in Fig. 125, A being a section of the reamer, and B a section of the emery wheel, C being a cut ing edge of the reamer. The position being adjusted, the lathe is locked, so that it cannot move, by locking the back gear or in any other convenient manner. The revolving eme ry wheel is then brought into contact with the reamer, and traversed from end to end of its length of flute, thus per forming the backing off, the reamerbeing turned a little fur

ther round and the grinding operation repeated until the backing off is completed upon that flute; the other fiutes are hen similarly treated, the whole process producing a true and sharp reamer, unequaled by any other methed of manu acture. It is obvious that, by adjustment of the back head of the lathe, any desired degree of taper may be given to he reamer. The journals of the hardened spindles for athes may be, and in factare, in many cases, made trueand round by the application of the same device.

Professor Winlock.

Joseph Winlock was born February 6, 1826, in Shelby county, Kentucky. Graduating in 1845, at Shelby College, he afterwards held the professorship of mathematics and stronomy in that institution until 1852. The remainder o his life was passed chiefly at Cambridge, Mass. ; but he pent some months at the United States Naval Observator t Washington, and for more than a year was at the head of he mathematical department of the United States Naval Academy at Annapolis. He was twice made superintendent of the American Ephemeris, finally quitting this office in 1866 to take the post of Pbiliips Professor of Astronomy a Harvard University, and in that capacity to serve as Direc or of the Observatory. He held this office at the time of tor of the Observatory. He held this office at the time d
is death, June 11, 1875. His last illness was short, and did his death, June 11, 1875 . His last illness was short, and did not ap

Professor Winlock was an excellent mathematician and stronomer, and had a remarkably retentive memory, not only or facts relating to his branch of science, but for the source f information concerning those facts. The originality of of his mind, however, was chiefly shown in his suggestion or the improvement of astronomical instruments. These inventions were singularly simple and effective. Four among hem deserve special notice in this place.
(1) The mounting of large meridian circles in such a man ner as to allow the piers to be shortened, so that the graduated circles are wholly above the piers, and the steadiness of the whole instrument is increased. The theoretical ad vantage of thisarrangement cannot here be discussed; it has been tested by five years' experience at Harvard College Ob ervatory with very gratifying results; it has been adopted in other observatories, and will probably come into general in oth
use.
(2) The application of a diagonal eyepiece, moved by a rack and pinion, to any large telescope, in such a manner a o dispense with the customary finder, and to enable the principal object glass to be used in finding faint objects which are to be examined with the spectroscope or otherwise. This invention has also been for some years in use in Har vard College Observatory.
(3) A method of registering speetroscopic observations by marking lines upon a silver plate without requiring the re moval of the eye from the spectroscope, or the use of artifi cial light. Professor Winlock registered in this manner his bservations of the solar eclipse of December, 1870, which e observed in $S p a i n$
(4) The use of a lens of long focus and of a plane mirro n making photographs of the snn. Apparatus of this kind was brought into daily use in July, 1870, at Harvard College Observatory. Priority in this invention is claimed by som ther astronomers; but it does not appear that any one actu ally used the combination of the mirror with the lens of long focus until some years after Professor Winlock. It should also be noticed that in 1869 Professor Winlock first photographed the solar corona without enlarging the image by an eyepiese.
During his connection with the Observatory, Professor Win lock greatly increased its ins trumental equipment, and aiso its pecuniary resources, by the aid of contributions from neighboring friends of Science. In particular, the system adopted for furnishing electric signals from one of the clocks at the Observatory, to various points in Boston and elsewhere, has been profitable alike to the Observatory and to the pub lic. It illustrates Professor Winlock's practical good sense, that, instead of introducing new clocks, controlled by that at the Observatory, at the places where the signals are received, he provided simple telegraphic apparatus for the reception of the signals every two seconds : a method much cheaper than the other, and in practice equally satisfactory
In private life, Professor Winlock's amiable though re n the American Journal of S'cience and Arts.

