Manufacture of Extract of Indigo.

To make what is generally called sour extract of indigo, mix 5 lbs. of best Bengal indigo in 30 lbs . of strong oil of vitriol. Let it stand five days; then put it in a tub and add 40 gallons of boiling water to it; then filter while hot through strong felt cloth. The filters are usually made this way: A frame like a table top, 8 yards long, 2 yards wide. This frame is divided into four filters. Pieces of wood across are put on the top and made to fit the holes wood across are put on the top and made to the holes
(the shape of bowls, with small holes periorated in them); (the shape of bowls, with small holes periorated in them);
then the felt cloth is put on the top, and the liquid is put on the filter and filtered through. 'The sediment at the top is used to color pottery molds; that which runs through is put in a tub, and 40 lbs . of common salt added. Digest for six hours; then put on the filters again for four or five days. That which drains through runs away into the sewers; that on the top of the filters is the extract. For these proportions the extract should weigh 80 lbs . This is sour extract of indigo of conmerce.

Free Extract.-To make free extract of indigo, put 100 lbs. of the sour extract in a tub, 12 gallons of water as well. Neutralise the acid in the extract with strong soda ash liquor until it is free from any sour taste; then put on the filters for six days. It should weigh 100 lbs. when it comes off. That is free extract of indigo of commerce.-Chemical Neics.

PUBLIC BUILDINGS IN BRUSSELS.

The Belgian capital contains, without doubt, more fine public buildings than any other city of its size: and its bright appearance, and the general aspect of brilliance and gaiety of its inhabitants, have gained for it the name of "the miniature Paris." A new boulevard, which traverses the city, is now completed; and the principal building situated on it, the new Exchange, was opened last year with a grand ball, at which the King and Queen and other celebrities were present, in all some 3,500 persons, so that, althoughthe floor of the great hall occupies some 4,000 superficial yards, the dancers were much cramped for room. M. Léon Suys is the architect of the building, which was begun in 1868. It is 300 feet long by 150 wide; it is rectangular shaped, and its principal façades open on the Boulevard Central and the Rue du Midi. The style is mixed, the architect has united the types of various ages, iron is found in complete harmony with stone, and the result is a splendid hall of commerce, a saloon which can at any time be converted into a theater, one of the most capacious concert rooms on the Continent, and a trophy of almost dramatic elegance. The sculptural ornamentation is very rich. The frontispiece of the great peristyle represents the city of Brussels, surrounded by groups of allegorical figures-Industry, Agriculture, Peace, Navigation, Painting, Free Trade, etc. Many other groups Navigation, Painting, Free Trade, etc. Many other groups
to sculpture decorate the outside of the building, which is
surrounded by a large dome, culminating in a gilt spire The immense cupola, says Harpers' Weekly, from which we extract the engraving, is supported by twelve Corinthian column in reddish gray stucco, while the galleries rest on columns imitating dark red porphyry. The foor is a masterpiece of mosaic work, executed by Italians. The sun burners, by which this magnificent structure is lighted, ar composed of 1,400 jets of gas

Solders and Soldering.

Continuing our remarks on this subject (see page 112), we havenow to speakof hard solders and of the methods employed to solder other metals than tin, lead, and zinc. Probably the most important of these methods is that known as brazing, that is, the process employed for uniting pieces of iron, steel, cop per, etc., by means of a solder consisting of brass, or an alloy of copper and zinc in different proportions. This solder is technically termed strong or hard solder. In workshop par lance,this is denominated spelter, a name which in commerce is used to designate the bars or ingots of cast zinc, as received by the metal merchant. Although this use of one name to indicate two very different things is at times confusing to the tyro, there is little fear that he will be misunderstood in the workshop or by tradesmen if he asks for his hard solder under the name of spelter. It is of far moreimportance, however, to remember that, for some kind of work, commercia spelter is not so well suited as other brasses; for it ordinarily consists of equal weights of zinc and copper, and in certain cases it is advisable to use a harder solder than is olstained by these proportions. The admixture of copper and zinc produces a series of alloys differing considerably in their qualities; and when tin is introduced, the increase or decrease of the zinc and tin produces a compound metal, the properties of which are widely different according to the relative quantities of the ingredients used in its production. Spelter when home made is best prepared by melting the copper and zinc in separate crucibles, the copper being in a crucible large enough to hold the zinc as well. When both metals are thoroughly melted, the zinc is poured into the copper crucible, the two being stirred well, so as to ensure thorough admixture, when the alloy is poured out on to a bundle of birch twigs or pieces of coarse basket work, supported over a tub of water, the object being to obtain the solder in form of fine grains with an irregular crystallization. If, when taken from the water, the spelter is not sufficiently uniform in size of grain, it is sifted through a sieve, and the large particles are crushed in a cast iron mortar or any suitable appliance, and again passed through the sieve, for fineness and uniformity of size are essential to the accom plishment of some examples of brazing in a thoroughly satis factory manner. The manufacturers of the hard solder however, usually cast it into ingots, delaying the cooling in order to develop as much as possible the crystalization, which
is found to facilitate the subsequent crushing and sifting of the spelter. The flux used in nearly all the operations per formed with hard solder is borax-the biborate of sodawhich not only prevents the surfaces of the metals from becoming oxidized, but also exercises the remarkable property of dissolving any oxide already there. In some cases the flux can be dispensed with, but the pieces to be joined must be filed perfectly bright and clean, and care taken to molt the solder as quickly as possible when heat is once applied The handiest way is, however, to dissolve the borax in wate and add the solder, forming a paste which can be easily spread on the surfaces of shapes to which the drier powder would not readily adhere. For many johs, however, it will be suf ficient to merely crush the borax, which contains in its un calcined state a considerable quantity of water; and for others it will be best to use merely a solution of borax.
The ordinary proportions of the constituents of hard solder are usually stated to be

Hardest.
 Hard (spelter)

Sof t
and softer still is no longer a brass, but an alloy of tin and antimony (2 to 1). By the rough and ready processes of th. manufactories, howe ver, these proportions are probably never very accurately observed; and a variation of a few parts per cent is, perhaps, of little moment, when copperand zinc alone enter into the allor. Thus, for solder for iren, the zinc may be present in the proportion of from 33 to 50 per cent, though the harder solder (that with least zinc) is to be preferred. For soldering brass and copper, the ordinary spelter will answer for common work; but where, as in the case of, say microscope tubes, it is desirable that the solder should be a nearly as possible of the same color as the brass, the propor tions of zinc must be increased or decreased, according to the paleness or yellowness of the metal to be soldered. In a sim ilar manner, it is often advantageous or advisable to study the hardness of the solder, and to keep the zinc as low as possible to secure fusibility, without running the risk of damaging the article to be soldered. Thus for brazing tubes of pure copper, the zinc may be as little as 25 per bent, or ven less; or a solder composed of copper $\tilde{\tau}$, aine 3 , and tin 2 , may be employed. For uniting brass tubes, that are to be afterward bent and hammered over the soldered por tions, an alloy of brass $77 \cdot 5$, zinc $29 \cdot 5$, will be found to yield better results than other hard solders; but if the tubers are thin, and have to be soldered to flanges or pirces of stouter substance, it will be advisable to add a little tin-from '" to 5 parts-in place of a similar quantity of zinc. Where, how ever, a large amount of work has to be done with the same kind of brass, the very best solder that can be had is to take the scraps of the metal itself, and add zinc in the proportion

of 20 per cent, thas producing an alloy whose fusion point is sufficiently removed from that of the metal to be soldered to avoid risk of damage; and yet it approaches so closely to it as to insure perfect union of the solder and the brass. A fine, hard solder, for joining small and thin pieces of copper or brass, consists of copper 86.5 , zinc $9 \cdot 5$, tin 4 . It is a light yellow in color, and is easily reduced to a fine grain, resembling filings; but it speedily oxidizes when heated, and should be well mixed with borax, unless it is completely surrounded by the fire. A solder for pure copper is made by mixing lead and copper, in proportions varying from 16 to 25 parts of the former to 100 of the latter. These are prepared by first melting the copper, and then the lead in a separate crucible. Add the lead as soon as melted, stir quickly, and pour out, either into ingot molds or on the bundle of birch twigs over the water tub. These solders cau be used without borax, for brazing copper.
Solders for gold necessarily vary with the quality of the gold they are required to join. For 18 -carat and upwards, the usual solder consists of gold (18-carat) 9 parts, silver 5 , copper 5 , and is best when made from filings of the compo nents, melted together. Gold solder, termed one fourth, consists of gold 3 , alloy 1 ; one third. of gold 2 , alloy 1 ; and one half, of gold 1 , alloy 1 . The alloy is gener illy composed of 2 parts of silver to 1 of copper; but in one half solder the silver and copper are in equal proportions. A solder for the commoner articles of gold is make by fusing gold 3 parts, silver 2 , copper $1 \frac{1}{2}$, together, and then adding $\frac{1}{2}$ a part of zinc. Stir and cool immediately. This solder will flow at a comparatively low temperature. A soft gold solder is composed of gold 4, silver 1, copper 1 . A solder for articles of 12 to 16 carats is made of gold 24 parts, silver 9 , copper 6 , and brass 3 , the latter being a more convenient way of adding a small quantity of zinc than by putting that metal in its uncombined state into the crucible containing the molten metals. The brass, however, should be added when the others are melted.
A hard solder for silver consists of silver 66, copper 23, zinc 10 ; and being more fusible than "middling hard" sol ders for copper, it does well for brazing the finer articles in hrass and steel. Silver solders are composed of 5, 3, and 2 parts of silver to 1 of brass, and are called respectively one sixth, one fourth, one third. The alloys should be melted several times in order to secure homogeneity, and are best when they are subsequently laminated into thin strips, which are granulated into spangles ready for mixing with the borax. A white solder for silver is made of equal parts of silver and tin. If an article of silver is to undergo sev eral soldering operations, it will be necessary to employ the richer or less fusible solders, first, so as to avoid displacement in the subsequent applications of heat. There are othersilver solders which are found useful in certain kinds of work. One of these is generally used for plated ware, and consists of silver 2 parts, bronze 1 ; another of silver 4 , bronze 3 , and rssenic 025 ; or equal parts of silver, bronze,and arsenic may be used. A solder consisting of silver 2, Dutch gold 1, and arsenic $0 \cdot 5$, is also found valuable; but in all these,the arsenic must be added after the fusion of the other metals. The button is to be drawn out under the hammer, or laminated and cut into shreds or spangles for more complete incorpor ation with the borax. A solder for German silver is easily made by melting scraps of the metal to be soldered, and adding an equal weight of molten zinc to them in the crucible but this alloy is more ductile the smaller the proportion of zinc is. For general purposes, however, 5 German silver to 4 zinc will be found best. This should be cast into plates, cut into pieces, and pulverized.
For articles of aluminum bronze, three solders may be tried; but the proportions vary with the nature of the work and the number of operations the article has to undergo. Λ hard solder for aluminum bronze is expensive, containing about 88 parts of gold, 6 of silver, and 6 of copper; a " middling hard," about 54 gold, 28 silver, and 18 copper; and a 'soft," 14 parts of gold, 57 silver, 15 copper, and 14 brassthe latter being added for the sake of the zinc it contains.
For soldering platinum, pure gold is generally used, bu sometimes about a half per cent of an alloy of platinum and ridium is added to it
It-should be remembered that all solders deteriorate by remelting; and though waste scraps may be added to a ne melting, if the work is of a particular kind, careshould be taken that none of the scrap metal has been previously re meltel. In some cases it is necessary to remelt alloys sev eral times, in order to secure homogeneity; but when once that result has been obtained, further remelting will only tend to destroy the properties of the solder. In a future number we will give a few details of the process known as auto genous soldering, or, in shop parlance, burning, which, in certain cases gives a superior appearance to that obtained by soldering, and, under special circumstances, is the only suit able method of uniting metallic surfaces.-English Mechunic.

Magnetic Rallway Rails.

M. Heyl, engineer of one of the German railways, in a re cent report upon the special section under his charge, calls attention, to the development of magnetism in the rails. He says: "I have observed that all the rails are transformed at their extremities, after they have been placed in position few days, into powerful magnets, capable of attracting and of retaining a key or even a heavier piece of metallic iron.
These rails preserve their magnetism even after they have been removed, but they lose it gradually. When in posi tion, however, the magnetism is latent, only becoming free when the chairs are removed and disappearing again when they are replaced. Hence it is necessary to assume that two
opposite poles come together at each junction, and that inces of Burgundy and Provence are the places of its cultieach rail is a magnet, the poles being alternately reversed vation. Throngs of women and children scour the country throughout the line. This production of magnetism in the rails examined is undoubtedly attributable to the running of the trains, and to the shocks, friction, etc., thereby produced. The hypothesis of electric currents, induced or direct, must be rejected, since it is negatived by experiments upon the subject made with suitable apparatus. Although the interest attaching to the fact above stated is at present purely scientific, it is not impossible, says the Franklin Jour. nal, that the magnetism thus developed may exercise an in. fiuence actually beneficial upon the stability of the roadway, increasing the adherence to the rails and the friction. It is possible, also, that the magnetic currents may be stronger at the moment of the passage of the trains, than either before or after. If this be so, the observations may acquire a still higher practical importance.

Pneumatic Tubes in London.

In addition to one line of $4 \frac{1}{2}$ feet pneumatic tubes for the ransmission of large packages, mail bags, etc., there is in London an extensive system of small tubes in operation, for the sending of telegraph messages. The small tubes are from $1 \frac{1}{2}$ to $2 \frac{1}{4}$ inches in diameter, are under the control of the Post Office department, they are divided into some twenty sections, and their aggregate length at the present time exceeds seventeen and a half miles. The messages are enclosed in carriers which are driven through the tu bes by an air exhaust or air pressure,produced by six air pumps worked by three fifty horse engines, located at the central station Where the length of the tube does not exceed one mile, the carrier goes through in about 3 minutes; but longer tubes require much more proportionate time.
Iron pipes, as well as lead, have been tried; but the result of experience is greatly in favor of lead. No deterioration is experienced in the lead pipes, and they are easy to maintain. With the iron pipes, however, the case is different oxidation of the iron takes place, and, the interior becoming rough, the carriers are rapidly destroyed. The maintenanc of an iron pipe is therefore found to be very expensive.
Provided duecare is exercised in the construction of the work, interruptions of the service are of very rare occurrence. When the carriers occasionally stick fast in the pipes and cannot be moved either by compressing or exhausting the air, it is necessary to flood the pipe with water, and so force the carrier past the obstruction by an increased pressure.
All tubes are now fitted with a small pipe, by which water may be admitted if necessary.
The lead tubes are manufactured in as long lengths as possible, the 24 inch tubes being in lengths of about 29 feet. Each length is laid in a wooden trough as soon as manufactured, so that it may be handled without fear of bending. A tightly fitting polished steel " mandril," attached to a strong chain, is then drawn through the entire length of the pipe. This operation insures the pipe being smooth, cylin mandril should be lubricated with soft soap, so that may not injure the pipe in passing through it.
When laid, the leaden tubes are protected bv being inclosed in ordinary cast iron pipes, so that the sinking of the ground, etc., may not injure them

The process of laying and jointing the tubes is as follows
The leaden tubes, drawn and gmoothed as already ex plained, are delivered from the wooden troughs to the treach prepared to receive them.
The iron pipes aro then drawn over the lead, leaving enough of the leaden pipe projecting to enable a " plumber's joint" to be made.
A strong chain is then passed through the length of tube o be joined on, and a polished iron mandril, similar to the chain, is pushed half its length into the end of the pipe.
The new length of tube is then forced over the projecting end of the mandril, and the leaden tubes (the ends of which have been already cut fiat by an apparatus madefor the purpose) then butt perfectly together, and a plumber's joint is made in the usual manner. By this means the tube
is perfectly airtight; and the mandril keeps the surface of the tube under the joint as smooth as at any other part of its length.

After the soldering process has been completed, the mandril is drawn out by the chain attached to it; the next length is drawn on, and the process repeated
Where it is necessary to deviate from the straight line it is essential that the tubes be laid in a circular arc, whos radius shall not be less than 12 feet. The same careis necessary in entering the various stations, otherwise undue fric
ion will arise, and curves would be introduced which might cause the carrier to stick fast

Snall Culture in France.

Frogs, horses, and snails-the first are an odd but tooth. some dainty, which epicures, in this country as well as else where, dearly prize ; but horses, and especially snails-these re articles of diet which the enlightened American republic has yet to be educated to relish. Hippophagy, we have re peatedly explained, is as common in Paris, or nearly so, as
the eating of beef; and the worn-out steed finds his way to the abattoir as readily as the milkless cow or stall fed ox. Hence, as a mere bonne bouche he has palled on the Gallic roes; a new dainty has been sought for, found, and the basis of the new industry which the production has developed is snails. There is nothing peculiar aboutthe mollusc. It is th gardens, vineyards, and woods. Switzerland and the prove
collecting the snails in immense numbers, and depositing them in little tracts of land, enclosed with simply a trail of sawdust. This last the snail despises; he cannot cross it, and avoids its vicinity as a matter of preference. Therefore, for his confinement it is as good as a stone wall. Afterin. carceration for two or three days, he is permitted to starve and then the plot is laid out in patches of turf intersected by paths of sand. Above boardsare hung to serve as shelter for the snails, which instinctively gather in large groups. The food provided consists in aromatic plants, such as mint or lettuce and fragments of vegetables. This is fed to them three times a day in enormous quantities. At the end of ight days, the snails become quite obese, and besides have attained a very succulent flavor. Then comes another period of starvation for several days, after which transmission to market follows.
Gourmands, it is said, prefer the snail when taken wild, so long as the capture is made at a particular period. After the eggs are laid in May, the molluscs conceal themeelve under stones to avoid the autumn frosts. There they be come perfectly free from excretions, and, drawing themselves nto their shells, close up for the winter. It is when they are ollected in this state that their flavor is said to be best.

Waste of Stock.

We quote the following from our excellent cotemporary The Carviage Monthly; it contains, not only good advice to carriage manufacturers, but hints equally applicable to nearly all branches of trade
In all manufacturing operations there is a liability of waste to a greater or less extent, and the profits of business are in creased or diminished with the care and judginent exercised in the use of the materials employed in the articles manufac ured. It is the same whether the article which we consum is high or low priced. To the carriage manufacturer this item of waste is a serious thing, calling for the greatest scru. tiny upon his part. He has four departments to look after, a practical man to only one; if he be a smith or a painter, he can see where to save in his branch much better than in the branches he is not familiar with, and he has, therefore, to trust to his employee, or foreman of the department. Wher is the greatest waste, may be asked: is it in the wood shop paint shop, or trimming shop? The waste may be larger in quantity in the first named, as in this department much waste arises from want either of skill or care, or both, in se lecting planks or panels, from which to cut pieces for a given purpose. The lumber itself may not be in such a shape as to cut to advantaga, or in such position that a proper selec tion cannot be made without great waste of time. Pieces lef after cutting from a board or plank, which are not wanted at that time, are thrown to one side or in the waste corner t_{1} be cut up for firewood; and when small pieces are wanted for a given purpose, a whole plank or board is cut into, and thereby possibly spoiled for larger work to which it was adapted. The person who has the marking out of the wood work should have a place for small pieces, so that, when re quired, they can be easily procured without waste of time Small savings help to make large profits. In the smith de partment, a great saving can be made, as in coal: using care in cleaning off the forge, to select all the good coal from the cinders. In separating the scraps of iron, keep each class of iron scrap by itself. The care of loose screws, bolts, nuts rivets, washers, etc,, (which, in a factory running a hal dozen fires, would, in the course of a year, make a very start ling amount) greatly adds to the profits.
We come now to the paint shop, where the materials are very expensive and deteriorate very fast. In this department is to be found the greatest waste; the employee seems to give no thought that every ounce of paint wasted is so much money out of his employer's pocket. How often is the most expensive paint thrown away? A spoke, or we may say a wheel, has been repaired and painted over, and is to be striped with a carmine stripe; color is mixed up, which, in quantity, is sufficient to stripe a dozen wheels; when the wheel is striped,the color is laid on the shelf or bench, where it soon becomes dry and unfit for use, and it finds its place in the slush tub. Did you ever take a thought as to bow many dollars that slush tub costs you? It is a mixture of all kinds of paints, from the expensive carnine to the cheapest venetian red; also,there is varnish of every grade, japan,oil. turpentine, and time. Can you form an estimate of its cost? I trow not; if you could, it would startle you; you would not believe that hundreds of dollars are wasted yearly in this tub. We now stop and look at the trimming shop, for there is waste here as well as in the other departments. Wo see cloth piled up on the shelves, varying in price, and leather of all kinds necessary. You may say there is no waste here: look under the bench; we see pieces of top and dash leather thrown together, pleces of cloth thrown in any place except the bench. These pieces can often be used up to advantage. P. Aste, in his articles on buggy tops, tells us where to put our pieces of enameled leather; other pieces can be used for curtain straps; and of what cannot be used in the shop, part, an find a ready sale to the manufacturers of infants' and children's shoes, and the other can be ased by the manufacturers of Prussian blue.
These facts are worthy of the thoughts of the manufac turer, and the foreman of each department. Look well to the small pieces, for they are like the small opening in the hour glass; but a grain of sand passes at a time, yet it is but a short time ere the last grain has passed through. We may not notice the small drippings from a barrel ; yet if allowed to drip, it will soon be empty. It is not what we waste to-

February 27, 1875.
Srientific Aurcrican.

zerent Gurcrican and forcign zatents.

Improved Fastening for Railroad Rails.

John L. Stewart, Elilicott city, Md.-The object of this invention is to provide a fastening for railroad rails, in which the use of the
ordinary spikes is dispensed with, and the devices so constructed ordinary spikes is dispensed with, and the devices so constructed
that, the greater the pressure upon the ralls, the tighter they are clamped. It consists in a grooved base plate attached to the tie engaging with undercut ledges in the sald base plate. The said boxes contain pivoted hooks having a horizontal groove in the lower part, in which rests a bearing plate which supports the rail. Bencath said bearing plate is a cushion of rubber, so arranged that, when compressed by the bearing plate from the weight of the train on the

Improved Machine for Making Fence Pickets.
isaac Levy, Ellavile, Fla.-The invention is an improvement in the class of machines whereln revolving and vertically adjustable The improvement relates particularly to the construction of the sliding or reciprocating table and an attachment thereof, for sup-

Improved Door Mat

Orrin Rice, A holes, and the tufts of corn husks are inserted through them, one end of each tuft being drawn through oneof a pair of holes, and the other end through the contiguous hole, so that the free end portions of the middli prity ill oppost or middle portion will project on the hack of the plate. The ends of
the several tuft. are then cut to a uniform length, and the mat is

Improved Cherry Pitter

Willinm B. Knapp, Tecumseh, Mich., assignor to himself and Frunk Bumann, of same place.-Thischerry pitter is formed of a tube, open at both ends, having a knob placed at one end, and teeth
formed upon its other end. The toothed end of the tube, which causes the pit to drop through tha

Improved Handle for Child's Carriage.

Charles F. Lauer, Pittsburgh, Pa.-This is a metal handle for chilIren's carriages, having a concave T-shaped plece for attaching it to so contrived that it applies to the cross plece and one of the shafts at their junction, and also serves to re-enforce and strengthen them. besides attaching the handle, thus uniting two pleces in one, and saving labor and material in the making.

Improved Atomizer.
Charles E. Robinson, Brooklyn, N. Y.-This invention relates to certain improvements in burners or atomizers for oil-burning furnaces. It consists in the combination of a tubular valve, a stem structed and arranged that the jets of steam and combustible liquid issuing therefrom form two hollow cones intersecting and inverted with respect to each other, so as to insure the thorough mixture of with the said valves and valve stems of their respective foed pipea, and also in the adjustment of the valves.

Improved Oil-Burning Apparatus.

Charles E. Robinson, Brooklyn, N. Y.-The object of this invention is to provide a means for supplying petroleum or other liquid hydroprovided with a steam heating coil, a feed pipe extending below the surface of the oil, and a pipe for admitting direct steam pressure upon the oil for forcing it out, in combination with an oil reyervoir communicating therewith by means of a valve, and provided with a
level gage and inlet pipes for the oil and steam.

Improved Book of Letter Sheets.
Henry S. Jackson, New York city.-The object of this invention is to provide convenient means for leaving memorandum in the ay in writing notes on various occasions; and it consigts in a book having the leaves gummed for sealing, with perforations ucross the leaves to allow each leaf to be easily torn off.

Improved Lamp Burner.

James Curzon, Darien, Conn.-This is a burner of two wicks, har throughout their entirelength, and so arranged as to form a star or similar shaped light.
mproved Bed Pipes for Lead-Corroding Houses Peter H. Decker, Morsston, N. Y.-Thisinvention has for its object to furnish ventilat'ng or bed pipes for causing a uniform circuof all the tiers of the stack. The invention consists in pipes madt tapering and provided with blocks in the interior of their lower parts, with holes in the lower and upper parts of their sides, and
with caps at their uprer ends. By this construction the passake of the vapors from the lower to the upper pipes induces a draft from each tier of pots.

Improved Fire Box Attachment to Steam Boilers.

 John Lee, Hazleton, Pa.-The object is to protect the rivet joint from the direct impingement of heat, so as to avoid the wealsening by a seamless hollow custing, having projecting tubes which may b forced through and held tightly in holes of the boiler, while they may be readily removed by driving a punch passed through the
Improved Thread-Winding Guide.

Eugene L. Manchester and John A. Bolen, Springield, Mass.-This relates to the thread-winding guide used in thread mills for guiding the thread and laying it on the spools. It consists of a wheel in that part of on the spool The object is to lubstitute rolling for slidina friction, and thereby economize in the cost of guides by largely les sening the wear.

Improved RuAlier.

James McCullough, Aspinwall, Neb.-The essential feature of this invention consists of the rutting pawl or plate, mounted so as to work on a pivot, and connected to the bell crank, by which it is worked in such manner that the friction due to sliding in ways is
voided. It is so actuated that, in pushing the cloth forward, it. presses harder as the resistance increases, and in drawing back it isesoff the cloth and moves back easily; and it also acts as a guide out of the ruffler.

Improved Self-Closing Hatchway,

Samuel Lawrence, New York city.-The covers of theseveral floors secured to counterpoised levers. This construction throws the levers back when the covers are raised, so that they will be out of the way of the carriage. To the inner ends of the levers are attached the hoisting rope, and its lower end is attached to the carriage. To he cord, at suitable distances apart, are attached rings, throug Which the hoisting rope passes, so that, when the carriage is raised is raised, the weights raise the covers, so that the carriage does not come in contact with said covers. As the carriage in its descent cords, draws down the levers, and raises the weight tightens the covers to close gradually by their own wetght.

Improved Bottle Stopper.

Charles De Quillfeldt, New York city.- Λ stopper-carrying yoke is pivoted at some distance from the ends of a wire lever rame, swinging in eyes of a wire band attached to the neck of the ortical shank, perforated for the passage of the yoke, and is tyight secured to the bottle by a sleeve-shaped and flanged cap piece. closing of the stopper is performed by guiding the base part into position on the mouth, and swinging the lever frame down.

Improved Sewing Machine Caster.

John H. Plank, Bloomfield, Iowa.-This invention consists in com sewing machine legs. Sald lever is pivoted and otherwise so arranged that, by a movement thereof, the casters of one end of the socke may be lifted off the floor and the support of the machine trans ferred to the legs, to hold the machine firmly against shifting about
while being used.

