an adequate solution of the problem of how to cheaply and quickly remove snow from the streets. The mere cost of coal for melting would probably not prove an insuperable obstacle, but the freezing of water resulting from the operation would be a greater evil than that sought to be remedied. The writer believed that melting the snow would be more economical than carting it away; but in orderto do this, thesnow must be swept from the street ways, either to the traveling' machine or to flxed pipes, previous to melting ; and the water must be conducted direct to the sewers to prevent the formation of ice in the streets. He knew of no means by which this could be accomplished, but expressed the opinion that improvements yet to be made will, in the future, make snow melting the most satisfactory method of cleaning city streets i

Combintion.

At a recent meeting of the Edinburgh and Leith Engineers Society, a paper on "Combustion" was read by Mr. Wm Allan Carter, C. E. He remarked that an ordinary sample of anthracite coal is found to contain the following constituents in something like the following proportions:-Carbon, $86 \cdot 32$ per cent; oxygen, $7 \cdot 21$ per cent; hydrogen, 3.75 per cent; nitrogen, 0.41 per cent. ; ash, $2 \cdot 21$ per cent; sulphur, $0 \cdot 10$ per cent. Butin ordinary bituminous coal, such as from Edinburgh, Glasgow, Newcastle, Lancashire, or Durham, we flnd the carbon ranging from 74 to 88 per cent, and the hydrogen from 5 to 6 per cent; and in bituminous coal, the amount of hydrogen is an important feature, as it is from this gas that flame is produced during combustion.

We will suppose some time has elapsed since fresh fuel has been thrown on the fire, and we find that the fuel on the bars presents to our view a glowing, incandescent mass, with no appearance of smoke and no flame, and we will suppose that the only access for the air necessary for supporting the incandescent fuel and finally away to the chimney; and it need scarcely be said that the supposed case is one of very common occurrence
The moment the air comes in contact with the incandescent fuel it is resolved into its constituents, nitrogen and oxygen, the nitrogen passes on to the chimney with no further change than increase of volume from increase of temperature; the oxygen, however, is arrested, and each atom of carbon seizes two atoms of it, and one atom or equivalent of carbonic acid is formed. If this carbonic acid got away to the chimney, nothing further could be desired, and complete combustion of the coke would be effected. But it is not destined to escape in this manner, for before the atom of carbonic acid has struggled through the mass of fuel and got free from it, it has taken up another atom of carbon, and now, instead of being carbonic acid, CO_{2}, it has been converted into $\mathrm{C}_{2} \mathrm{O}_{2}$, or two equivalents of carbonic oxide, and it is this gas which escapes to the chimney. Experiment has proved that car-
bonic acid is not combustible, but that carbonic oxide is, and it stands to reason, if anything of a combustible nature is escaping from the chimney, we cannot be having complete combustion in the furnace; but there are very few practical men who have any idea whatever as to the magnitude of the loss of heat when carbonic oxide is the result of combustion instead of carbonic acid; for we find from calorimetrical experiments that, in the former case, we only get three tenths of the evaporative power produced in the latter. Now in order to burn this carbonic oxide, we must supply each atom of carbon in it with another atom of oxygen while the carbon
is at a sufficiently high temperature; if the combination is effected, then our carbonic oxide is reconverted into carbonic acid, and has given out during its reconversion the seven tenths of heat which we noted were deficient in the formation of the oxide.
The next point considered was the gaseous portion of the coal, and it was pointed out how fuel might be lost, either by the.gas escaping wholly or by being only partially burned, the latter alternative causing the formation of smoke and soot. Mr. Carter showed how this latter alternative was generally attributable to the want of a proper supply of air admitted above the fire, or to the flame being brought into contact with the metal plates of the boiler, and so cooled down below the temperature necessary for ignition of the gas, and mentioned the following instance:
' Last winter I had a little stove in one of the rooms of my house; it is one of those commonly known as a gill stove; the whole of the air supporting the fire had to pass from beneath through the bars, and consequently through incandescent fuel, before reaching the flue. I was greatly disappointed with the performance of this little stove, as far as its heating power was concerned; eventually I took off the door and drilled a number of small holes in it so as to admit jets of air above the fire; the fire inside has been as bright
and as lively again since this surgical operation, and the quantity of soot collecting in the flue, which before proved a constant nuisance, is now almost reduced to nil. This is an instance of how easily a remedy may sometimes be applied."
After going through various calculations to show the quantity of air required above and below the fire for certain quantities of coal, and how smoke and soot were formed, Mr.
Carter concluded in the following terms:
"So long as popular errors prevail amongst that class of men who have the direct control of furnaces of all descrip-tions-I allude to the practical managers or foremen in manufacturing works-little will be done to prevent waste of fuel; and as a rule, when you begin to speak to them about carbonic acid and carbonic oxide, they look at you with an ncredulous smile, youat once lose caste with them and fall from the high position of a practical man to the pitiable status of a mere theorist. But I maintain that this is not
simply a matter of theory, but that the principles involved
are of an eminently practical nature, and if applied in practice may be turned to good account. We must impress on the practical man that air is required in certain quantities and delivered in certain methods; we must combat the idea that gas is smoke, or that gas and smoke are synonymous terms. We must point out that volumes of black smoke do not constitute the only indication of waste of fuel, for, as I have shown, the waste may be enormous although no vestige
of smoke is to be seen. We must challenge the idea that a furnace can consume its own smoke, that is simply impossible; we can construct a furnace to prevent the formation of smoke, but let smoke once be formed, and it cannot be consumed in the same furnace, its presence indicating that the furnace is wanting in those conditions essential for the completion of combustion.

OCEAN TELEGRAPHY.-THE FOREIGN CONNECTIONS OF NEW YORK CITY AND THE EXISTING RATES OF NEW YOR CHARGES.

Telegraphic communication between the United States and the West Indies is maintained over the following routes From Punta Rassa, Florida, via Key West to Havana by cables, thence by land lines to Batabano; thence by cable to Santiago de Cuba; thence by cable to Kingston, Jamaica. From Kingston a series of cables extend to Demarara, South America, touching at Porto Rico, St. Thomas, St. Kitt's, Antiguas Cuadaloupe, Dominica, Martinique, St. Lucia, St. Vincent, Barbadoes, Grenada, and Trinidad. A cable also extends from Jamaica to Aspinwall on the Isthmus of Panama.
A cable steamer is now on her way to Trinidad to lay a ca ble from Port of Spain, Trinidad, to Ponce, Porto Rico touching at St. Croix, after which she will proceed to lay a cable between Cienfuegos, Cuba. to Jamaica! When these are
completed, the United States and West Indies will be subcompleted, the United States and West Indies will be subof failure of any one of them, communication will not be interrupted. The shore ends of a cable to extend from Demarara, South America, to Cayenne, South America, were laid last month, and the cable steamer Hooper is now on her way this link is laid, there will be a complete line of telegraphic communication between the United States and Rio Janeiro, South America; and when another link is laid between Rio Grande do Sul and Maldonado, Uruguay, the United States will be in telegraphic communication with all of South America, bordering on the Atlantic ocean, north of Buenos Ayres, and with Chili on the Pacific. A singular fatality has thus farattended the laying of the cable between Rio Grande do Sul and Moldonado. The telegraph steamer Gamas was first wrecked in attempting to lay it, and more recently the La Plata was chartered to pursue the work and was wrecked
in the Bay of Biscay, the cable and all persons on board being in the
lost.
Until the cable is laid down between Cayenne and Demer-
ara, communication between the United States and other ble between Lisbon, Portugal, and Pernambuco, Brazil, fur nishing the cnly means of telegraphic intercourse.

Communication between the United States and England is maintained by land lines to Sydney, Cape Breton, thence by cables, to Placenta, Newfoundland, thence by land lines to
HeartsContent, Newfoundland, thence by three cables to Valentia, Ireland, thence by land lines to Wexford, Ireland, thence by cable to Haverfordwest, England, thence by land lines to London.
Communication between the United States and France is maintained by cable from Duxbury, Mass., to St. Pierre, and thence by cable to Brest, France. Communication between Great Britain and the various continental states is transmitted over two cables to Denmark; two to Germany ; two to Holland; two to Belgium; one to Norway; one two to Holland; two to Belgium; one to
to Portugal; two to Spain; and six to France.
There is one cable between France and Denmark; one between France and Spain; two between France and Algeria two between Portugal and Gibraltar; one between Gibraltar and Malta; one between Algeria and Malta; two between Sicily and Gibraltar; one between Malta and Alexandria; one between Italy and Alexandria, touching at Corfu, Zante, and Candia; one cable between Russia and Turkey, through the Black Sea; one between Norway and Denmark; one between Denmark and Sweden; one between Sweden and Rusia; one between Denmark and Russia; one between Sweden and Germany ; one between Egypt and India, through the Red Sea and Indian Ocean, touching at Aden; one between Persia and India, through the Persian Gulf, touching at Gwadar in Beloochistan; one from Madras, India, to Penang in the Strait of Malacca; one from Penang to Singapore: one
from Singapore to Saigon, Cochin China; one from Saigon to Hong Kong and Shanghai, China; one from Shanghai te Nagasaki, Japan: one from Nagasaki to Hiogo and Yokohama, Japan; one from Nagasaki to Wladivastok, Asiatic Russia; one from Singapore to Batavia, Java; one from Java to Aus Lralia; one from Australia to Tasmania or Van Diemen's
Land. The following cables are projected: From Australia to New Zealand; Ceylon to Australia; Singapore to Borneo Borneo to Luzon; Luzon to Hong Kong; Yokahama to Hokodadi ; Siberia, mouth of the Amoor, to Kamtchatka; Calcutta to Penang; Hong Kong, China, to San Francisco, touching Isthe Sandwich Islands; Havana to Vera Cruz; Aspinwall, to Buenaventura, New Grenada; Buenaventura ; Panama Lima; Callao to Valparaiso, Chili; England to Virginia, touching at the Azores and Bermudas; Portugal to New York, touching at the Azores; Scotland to Labrador, touch-
ing at the Faroe Islands, Iceland, and Greenland.

Communication between England and India is mainly con. fined to the following routes: First, from Penzance on the southeastern coast of England to Lisbon, Portugal; thence to Gibraltar; thence to Malta; thence to Alexandria, Egypt; thence by land line to Suez, and thence by cable to Aden and Bombay. Second, by cable from Lowestoft, England, to Emden, Germany, thence by land line, via Berlin, Germany, Warsaw, Jitomer, Odessa, Kertsch and Tiflis, Russia; Tehe. ran, Bushire, Henjaum, and Jask, Persia; Gwadar, Beloo. chistan, and Kurrachee, India. This is known as the spec. ial Indo-European line, and is worked in one circuit from London to Teheran, a distance of six thousand miles. From Kurrachee and Bombay, land lines extend to Calcutta, Madras, and Paumben. From Paumben a cable extends to the Island of Ceylon. From Madras a cable extends to Penang and Singapore. From Singapore cables extend to Saigon, Cochin China, and thence to Hong Kong and Shang. hai in China and Nagasaki, Hiogo, and Yokohama, in Japan. From Nagasaki a cable extends to Wladivostok, the terminus of the Russian land lines in Siberia. From Singapore a cable extends to Batavia in the Dutch island of Java; from Java a cable extends to Port Darwin, Australia, and there connects with a land line extending to Victoria, Australia; from Victoria a cable connects with Tasmania or Van Diemens Land. Telegraphic communication exists between Victoria, British Columbia, and Hobart Town, Tasmania, embracing 273 degrees of longitude, and thus lacking but 87 degrees of encircling the globe; and when the projected cable from San Francisco to China is laid, the circle will be completed. When this latter enterprise is carried out, the telegraphic correspondence between North and South America and the West of Europe, with China, Japan, and Australia, will take this route, as it will be the shortest, cheapest, and most expeditious.
The telegraphs of the world, aerial and submarine, embrace 385,872 miles of line, 871,417 miles of wire, and 30,150 stations. The annual traffic amounts to about $80,000,000$ mes. sages.
The tariff upon telegraphic despatches from New York to other countries is as follows: Great Britain and Ireland $\$ 1$ per word, France $\$ 10$ for 10 words or less, Cuba $\$ 5.40$ for 10 words or less, Jamaica $\$ 7.75$, Porto Rico $\$ 11.50$, St. Thomas $\$ 11.88$, St. Kitt's $\$ 12.75$, Antigua $\$ 13.00$, Guadaloupe $\$ 13.38$, Dominica $\$ 13.75$, Martinique $\$ 14$, St. Lucia $\$ 14.25$, St. Vincent $\$ 14.50$, Grenada $\$ 15.00$, Barbadoes $\$ 15.13$, Trinidad $\$ 15.50$, Demarara $\$ 17.50$, Berbice $\$ 17.50$, Aspinwall $\$ 12.75$, Panama $\$ 13.75$, Aden, Arabia $\$ 20.00$, Port Darwin, Austra lia, $\$ 56.62$, New South Wales $\$ 57.88$, South Australia $\$ 56.62$, Victoria, Australia, $\$ 57.12$, Tasmania and Queensland $\$ 59.12$. Austria and Hungary $\$ 11.50$, Baden $\$ 11.50$, Belgium $\$ 10.84$, Channel Islands $\$ 11.66$, Denmark $\$ 11.40$, Germany $\$ 11.10$, Holland $\$ 11$, Norway $\$ 11.80$, Portugal $\$ 12$, Roumania $\$ 11.88$, Russia in Europe $\$ 12.50$, Servia $\$ 11.88$, Spain $\$ 12$, Sweden $\$ 11.75$, Switzerland $\$ 11.75$, Turkey in Eúrope $\$ 12.25$, Wurtemberg $\$ 11.50$.
Beloochistan $\$ 18$, Bushire, Persia, $\$ 16.12$, Ceylon $\$ 20.50$, Hong Kong, Amoy, and Shanghai, China, \$40, Saigon, Cochin China, $\$ 38.50$, Corfu $\$ 12.50$, Egypt $\$ 15.30$, Gibraltar $\$ 12.75$, Greece $\$ 12.75$, India $\$ 20$, Japan $\$ 50.38$ to Nagasaki and $\$ 52.62$ to Hiogo, Osaka, Simonosaki, Yeddo, or Yokohama. Java $\$ 40.62$ Madeira Islands $\$ 15.38$, Malta $\$ 12.50$, Penang $\$ 33.50$, Persia $\$ 16.12$, Russia in Asia from $\$ 13.12$ to $\$ 19.16$, Cape de Verde Islands $\$ 24.38$, Singapore $\$ 37.50$, South America: Buenos Ayres $\$ 68.75$, Chili $\$ 68.75$, Montevideo $\$ 68.75$, Pernambuco $\$ 40.50$, Bahia and Para $\$ 51.50$, Rio de Janeiro $\$ 56.50$, Santos $\$ 62.25$, Rio Grande do Sul $\$ 63.25$.

Machine Belts.

In a recent paper read by John W. Sutton, M. E., before the New York Society of Practical Engineers, the author made the following observations:
Although the use of belts for the transmission of power is not, strictly speaking, an American invention, the great improvements made in this country have caused it to be known in Europe as the American system. In Europe the greater part of the power is transmitted by cog wheels, but
in this country 99 per cent is transmitted by belting. The in this country 99 per cent is transmitted by belting. The latter is used everywhere, from the sewing machine to the 500 horse power engine of the largest factory. Belts can be run in any way, at any angle, of any length, and at any speed, and can be put up by any one of ordinary skill. They can be made of any flexible material-leather, rubber, gutta percha, cloth, paper, raw hide, cord, or wire-and they may be either round or flat; and the last novelty is a sheet iron belt, and it is said to work well. Every one uses them. While so handy and so popular, they have one fault. They are not positive. If you start from the motor with a certain number of revolutions, you lose a portion of them with every belt used. This is the only fault of the system. It is noiseless, yielding, and regular. but, unlike cog wheels, it is not positive. Thenumber of revolutions that are lost may, and do, vary continually by changes of the load or of the atmos phere. It is upon these peculiar changes of our favorite sys em that I propose to speak to night. Belts derive their power to transmit motion from the friction between the sur-
face of the belt and the pulley, and from nothing else, and are governed by the same laws as friction between flat sur faces. The friction increases regularly with the pressure. The lecturer then gave the results of some experiments with belts and pulleys to prove this. He found that there was a great difference in the friction of belts, and it was due to their elasticity of surface, that is, the more elastic the surface, the greater the friction. He made experiments with a pulley and belt. moved by a lever and spring balance, to show the difference in the actual friction between the grain and flesh sides of a leather belt in contact with a
smooth cast iron pulley. He said that the old rule, "that D. C., was recently put into service, and the comet was seen the number of inches in contact, multiplied by one half through this superb instrument by Professor Holden and the velocity of the belt in feet per minute, and divided by Paymaster Tuttle of the U. S. N. Its distance rendered the 33,000 , would give the horse power," might give it once in a hundred times, but not oftener. The rule is that a belt holds upon a pulley as the tension (pressure) and as the square of the degrees of wrap. A belt wrapped one quarter around a pulley has only one fourth the power of a belt wrap
half around the same pulley with the same tension.
A line around a post will give a good illustration of this. One half a turn, and a man's weight is doubled: while a full turn, and his weight is nearly enough to stop a heavy boat, and two turns and his weight will stop the boat, or the line will part.
Belts always run to the high part of a pulley when the shafts are parallel; but when they are not, the belt will always run toward the ends of the shafts that are nearest together, and this tendency is much stronger than to run to the highest part of the pulley. If you have a belt that gives trouble in this way, you can see if it is the fault of your shafting by drawing a line across the edges of the two pulleys. Sometimes the bearings may be in line; but the tension of your belt is so great as to spring the shaft, so as to throw the pulleys out of line. A stiffer shaft or another bearing is the remedy. Leather and rubber belts each have
their advocates, and each party say theirs is very much better; but each kind is better in its place. Where the belt is clear, a rubber belt will transmit 20 per cent more power with the same tension, and will last as long and run perfectly straight. It can be made of any length or width, of exactly the same thickness in every part, perfectly smooth on its surface; and when in use,every part will come in contact with the face of the pulley. The greater tractile power of a rubber belt is due to its surface elasticity.
Leather helts have to be made from pieces, and, as the leather is not perfectly flat, a perfectly flat belt cannot be made from it. If a belt is cut from the back of a hide, the edges are not so firm as the center, and upon a crowned pulley they will not hug as well as if they were of the same firmness as the center. If the belt is cut from one side of the back, theo one edge will be less firm than the other,and the belt will be crooked, and one side will have more tension than the other. Leather belts are usuallyf riveted at the joints. Now, if a rivet head touches the pulley, the friction is less than if the leather touched. If the head is above the surface of the belt,then a portion of the belt is not in contact with the pulley ; and if the head is below the surface of the pulley; then of course there is no contact. Now every rivet in a belt is in one or the other of those positions, and leather belts would be improved by using something else in their place. Double leather belts are used more than single ones; but it is clearly a mistake, as a single leather one will transmit more of the power than a double one. If you look at the face of a leather belt, you will see when it has been dark, showing how much of the surface of the belt has been in contact with the pulley. If an average of one inch of width has not touched, then you have paid for one inch of belt that is of no use, but is really a detriment. Double leather belts run straighter than single ones, as the flank side of one part can be put against the back of the others. A double belt will stand a greater tension than a single one, but a single one will stand all that should be put upon any belt.

The cost of belting isincreasing every year,and it is well to look out for the belt of the future. My impression is that it will be made of low steel of greattensile strength,and will run upon pulleys, with an elastic surface to give greater friction. The instance I mentioned, of a sheet iron belt running upon cast iron pulleys, is, I believe, in Pittsburgh. But we have a hundred instances of the steel belt upon an elastic surface pulley in this city, in the band saw, and one of a large sawmill sawing logs with a band saw about three inches wide. Now a band saw is a belt, and the power to do work is all derived from the friction between the band saw and the lower pulley. In the case of the sawmill spoken of, it amounts to from 10 to 15 horse power, and this is all transmitted by the saw itself. It may be said that we cannot get belts of steel wide enough to take the place of our large belts.
Whenever such belts are wanted, they will be made of any width and length asked for.
Belts of the present make are run with a strain of one fifth their strength; and as the strength of low steels is over 100,000 pounds to the square inch, a belt one foot wide and one eighth of an inch thick would have a strength of 150,000 pounds or more. One fifth of that would give us 30,000 pounds ; this strain, upon an elastic surface pulley of, say, 16 feet,running at a speed of 2,000 feet per minute, would give us a belt with the power to transmit over 1,800 horse
power. If the belt were power. If the belt were one sixteenth of an inch thick, it would be able to transmit 900 horse power. We have no
belts now capable of anything like this. How will this belt be joined? When the band saw first came out, that was looked upon as the stumbling block in its way, but to-day they are joined without a thought, and in about the same time that it would take to join a belt of leather. The steel belt would be joined in the same way. Whether this steel belt is the belt of the future or not, there will be wanted a better and cheaper one than we now have, and it is to the practical engineers that we are to look for it.

Encke's Comet.

The return of Encke's comet to our heavens has been for some time expected, but its immense distance (182,000,000 miles) rendered all search with ordinary instruments useless. The large equatorial at the Naval Observatory, Washington,
use of the micrometer impossible, and it will scarcely be observable under ordinary conditions for several weeks.
It is known to our readers that the equatorial telescope above mentioned is one of the finest in the world. It is Alvan Clark's masterpiece, and has an objective 26 inches in diameter. Its power is now demonstrated in a remarkable

THE POST OFFICE A CARRIER OF MERCHANDISE.

Since the adoption of postal cards for cheap communic tion by mail, there has been no modification of our postal laws which so greatly accommodates the public as the one permitting the sending through the mails of nearly all classes of merchandise, in packages not exceeding four pounds in weight, at the low price of one cent for every two ounces. The following are some of the articles officially named as belonging to the class of merchandise that can be mailed at this low rate
We copy from the Post Offlce Guide, which gives this prosion of the law
Rates of postage on third class matter: Mailable matter of the third class embraces all pamphlets, occasional publications, transient newspapers, magazines, handbills, posters, unsealed circulars, prospectuses, books, book manuscript, ings, blanks, flexible patterns, articles of merchandise ple cards, phonographic paper, letter envelopes, postal envelopes and wrappers, cards, plain and ornamental paper photographic representations of different types, seeds, cuttings, bulbs, roots, scions, and all other articles not above the weight prescribed by law, which are not, from their form or nature, liable to destroy, deface, or otherwise injure the contents of the mail bag or the person of any one engaged in the postal service.
or enveloped, with open sides or ends, so that their contents may be readily and thoroughly examined by postmasters without destroying the wrappers; but seeds and other ar-
ticles liable, from their form or nature, to loss or damage un less specially protected, may be inclosed in unsealed bags or boxes which can readily be opened for examination of the contents and reclosed; or closed bags, made of material sufficiently transparent to show the cont
opening, may be used for such matter.
No writing will be permitted on ar
their wrappers or envelopes, except the address of destina tion. Any other writing in or upon any package or article of this class will subject it to letter rates of postage
Matter of the third class inclosed in sealed envelopes notched at the ends or side, or with the corners cut off, cannot be mailed except at letter postage rates.
The foliowing, and some other articles unnecessary to specify, are unmailable: Packages containing liquids, poisons, glass, explosive chemicals, live animals, sharp pointed instruments, sugar, flour, or any other matter liable to deface or destroy the contents of the mail, or injure the person of any one connected with the service.
Persons living at a distance can send small models much cheaper by mail than by any other means; and if properly packed, they usually arrive at their destination in good condition. We receive a number of models from various parts of the country by every mail; and the only trouble we have with packages so sent arises from the sender not following the official rule, which requires that the package shall not be sealed, and shall not contain any writing; and that the full postage on the package shall be prepaid. When the sender does not observe these requirements, we are obliged to pa full letter postage, which makes the cost by mail greater By observing
By observing the law's requirement, inventors can avail themselves of the mail, for transmitting their models from distant places to this office, to great advantage. But one
thing which we would forcibly impress upon our clients is that, by the same mail in which they forward the model they should announce the sending in a separate letter, giving description of the invention, time of sending model, name of post office and State, and full name of inventor. Observng these rules will save us much trouble, and insure prompt answer to the sender.

Spiritualism to be Medically Considered.
Dr..G.M. Beard lately read before the Medical Society o the County of New York an extensive paper on " The Relation of the Medical Profession to Popular Delusions, Spirit ualism, Mind-Reading, Clairvoyance and Animal Magnet ism." He reviewed the many delusions which have appeared in this country on this subject. He looked upon them as a species of epidewics which from time to time immemorial have periodically made their appearance.
A committee of five, consisting of the following gentlemen, Dr. J. C. Peters, Dr. Fordyce Barker, Dr. Ellsworth Eliot, Dr. Austin Flint, and Dr. A. B. Crosby, was appointed to consider, and report on, the following questions

1. Is the state or condition of mind known generally as he mesmeric state a reality or a deception?
2. If it is a real physiological state, what are the conditions necessary to its production, and what the phenomena ttending it?
3. Is it a sta
. Is a state to which one mind can subject another, or by the individual?
4. Is it possible, while in this so-called mesmeric trance, or at any other time, or in any other condition known to man in his mundane experience, for one person to divine what i passing in the mind of another, except through the medium of signs?
5. Is th
6. Is there any such faculty known to our race as perceiv
ing, by some mysterious second sight, what is transpiring in
places far beyond the reach of ordinary human vision, or what is written on a paper when an opaque object lies be. ween it and the person attempting to read?
7. Is there any evidence that the well known law of grav itation is ever overcome by a force hitherto unrecognized by scientists?

The members of the committee are all of them eminent physicians in this city, and will doubtless be glad to receive statements of evidence and experience from all who can sup ply such information.

In no case in general practice should the pressure, on even the slowest moving journals, be allowed to exceed 1,000 pounds per square inch of longitudinal section with steel journals, or about 600 on iron, in well-worn boxes.
Appies should be stored in cellars where there is a thor ough circulation of air.

DECISIONS OF THE PATENT OFFICE.

new patent rell concerning rejected cases.

NEW BOOKS AND PUBLICATIONS.

digest of Patents relating to breech Loading and magazine Small Arms (except Revolvers), granted in the United States
from 1836 to 1873 , inclusive, Classiffed according to the Movefrom 1836 to 1873, inclusive, Classified according to the Movebridge, Examiner in the U. S. Patent Office (Class of Fire Arms). Price $\$ 25$. Washington, D. C
The author, in undertaking a work requiring very labortous and patlen t patents are here fully described and illustrated, forming a complete history of the art duringnearly 40 y ears. The illustrations are very clear and elaborate, and the work is sure to he much referred to by inventors and patent so-
licitors. The author states, with apparent justice, that the high price of his work is Justifed by the limted sale which such a production can attain. Ceport of the Topographical Survey of the adirondack any, N Y. Wor the fear 1873. By Verplanct Colvin. Al bany, N. Y. : Weed, Parsons, \& Co.
region covers nearly 5,000 square miles, and was commenced by Mr. Colvin at his own expense; but it was
found to be so Important that State ald was, in 1872, granted for the extension ad continuation of the work. It is not possible here to describe the scenes grandeur and the picturesque traveled, or the many raluabie results in cteorology and topography achleved, by the investigators; but if any o repay them for the trouble of perusal.
The British Journal Photographic Almanac and Photo Grapher's Danly Companion. Edited by J. Traill Taylor New York city : E. \& H. T. Anthony \&Co., 591 Broadway

