MPROVED WATER MOTOR

Another contribution to the various devices, which have lately appeared for supplying a cheap and readily available power for general usage, will be found in the novel water motor represented in the annesed illustration. Its object is to drive organ bellows, coffee mills, and sewing machines, and to perform a variety of light work ordinarily done by hand. In brief, its special adaptation is to operations requiring less than a single horse power, although the apparatus may be built to perform much heavier work.
I'his device consists of a light but firmly construtted iron wheel, provided on its outer rim with buckets, and the whole enclosed in a watertight iron casing. Through the casing an ordinary water pipe is so inserted that a stream of water from the pipe, flowing downward, strikes the buckets at a right angle with the radius of the whect. 'the aperture at the end of the pipee is comparatively small, and on this account the water is forced through and against the buckets with a percussion-like effect, thus imparting a rapid and steady motion to the wheel.
In the illustration, the motor is shown attached to an organ bellows, the belt running from a small pulley on the motor to a large wheel on a crank shaft, to which the pitman from each feeder is attached. These feeders are shown at various stages, working alternately. In the supply pipe are two valves,one under the control of the organist, to admit or shut off the water, while the other is a regulator and works: automatically. 'Tostart the motor, the performer has only to pull up the lever which opens the throttle valve. When the main bellow, are full, the upper side, in rising, strikes a lever which is connectert with the regulating valre. hy wire cords and bell cranks as shown, che ing said valve and shutting off the water
'The inventor informs us that this arran ment is extromely sensitive this arrangethe keys of the instrument being followed the keys of the instrument being followed
instantly by a few revolutions of the motor, instantly by a few revolutions of the notor,
for a period just sufficient to replace the air expended. From testimonials sulmitted to us, it appears that the employment of the inrention upon organs has been successful, and that the amount of water used has been about one third the quantity necessitated by other devices. It is stated that there is no jerking or thumping, but an even, smooth, noiseless, steady motion ; while the apparatus is, besides, claimed to be simple, durable, and cheap, and to run for years without repairs. It is now in use on several organs of forty stops, doing the work with a pressure of water of twenty pounds per square inch, costing per annum, as
we understand the inventor to assert, from $\$ 12$ to $\$ 1.5$
The invention is also adapted for driving sewing machines, and, we are informed, can be applied to a single machine for domestic use so as to run at a cost of from $\$ 2.50$ to $\$ 3$ per annum. By regulating the water supply through a foot treadle, any speed may be attained from one stitch per seec ond to 1,000 per minute, as desired. The apparatus ram ise attached to the ordinary water pipes, and it is clained that a stream no larger than the head of a pin is sufticient to, drive a sewing machine. Generally, the device can lec used where the pressure is from twelve pounds upwards.
Among other practical applications of the motor may be mentioned its use for printing presses, turning lathes, jewelers' lathes, opticians' and lapidaries' wheels,grinding coffee and spices, cutting sausage, hoisting for stores and private residences, and, in fact, all light machinery requiring one horse power or less.

We understand that this motor is being used in Brookly and vicinity with much success, and at very chasil cost. Water sufficient for the purposes of a large organ can ordinarily be obtained for from $\$ 12$ to $\$ 15$ jer year, or for a sew ing machine for about $\$ 3.50$ for the same period.
The invention was by Mr. Oscar J. Backus, of Oakland, Cal. For further particulars address the manufacturers, Backus Bros., \& Co.. Wright street and Avenue A, Newark, N. J.

Progress in Spain.

I very practical sign of real progress and improvement in Spain is seen in the increased demand which is springring up there for scientific information. Sa, Gecete Inelustricel of Madrid, formerly an insignificant publication, now comes to us enlarged to sisteen quarto pages, and is published twice a month, illustrated with engravings. It has reached its oleventh year. It is a handsome periodical and is ably edited. In the number before us the editor, Mr. Alcover, has a very excellent article upon the Centennial Exposition to be held nest year at Philadelphia. He urges the authorities to provide liberally for a Spanish representation on that occasion, which, he says, is to commemorate the glorious anniversary of American liberty. It is to be a demonstration, he thinks, of the achievements of true liberty and independence, that can only be realized by labor, which is the secret of the prosperity of nations, and which has given to the North Americans such an astonishing preponderance.

Fourteen Thousand miles or Ice

The Hudson river ice crop for 1875 has now been harvested, and is one of the largest and finest ever gathered. The blocks average 14 inches in thickness, and the total quantity secured is about $2,000,000$ of tuns, or seventy millions of
cubic feet. If this mass of ice were arranged in a single distance. For very distant mountains, an adaptation of tri line or beam, 12 inches square, it would have a total length linear surveying has been employed. From the station of of about fourteen thousand miles, and would reach more than the barometer, the angles between any three of the surroundhalf way around the world. To transport the entire quantity ing peaks, whose positions I have before found trigonometriabove named simultaneously, in ice carts, each carrying two cally, are measured, and afterward, by three point problem tuns, drawn by two horses, driven by one man, would require (usually graphically upon the survey map) the distance is an army of a million men, two millions of horses, and a mil. obtainea and the proper allowance made for curvature and lion vehicles.
This enormous supply of ice will be chietly consumed in the city of Sew York. It is brought down the Hud. son river from the great ice houses, which are lo- rate
cated at the water's edge, in large barges, towed by steim. The practical application of this method to the work of It is delivered directly from the barges inw the ice carts, the survey is well shown by the illustration, which repreand in them convered to the duors of private dwell-, sents a survey party engaged in leveling observations with ings. For a quarter to halt a tun a month is a common sup- mountain barometers, at the levels of the different peaks ply for a small family. The price charged is lion sio to seen in the distance. At A is seen the transit, by whicht the

BACKUS' IMPROVED WATER MOTOR.

$\$ 30$ a tun for families, according to the scarcity or almudance of the supply. Large consumers, such as market men and hotel a
price.

MEASURING MOUNTAINS.

Mr. Verplanck Colvin, i_{1} lis report on the topographical urver of the fdirondack wildemess, elucidates some new

theories on the subject of mountain measurement, and decribes one method as follows
" For short distances, I carefully measure on the mountain side a base line with steel tape, and from its extremities take side a base line with steel tape, and fromits extremities take
the angular position of the object, afterward computing the horizontal angular distances letween three of the distant peaks are measured in order to obtain the data for correction for curvature and refraction. Below. on the same same mountain side, at e, e, and e , are stations of harometers at the apparent levels of the peaks by the lines of sight level.
At the foot of the meuntain is the bark camp, and the assistant observing on larometor at lower station: a guide ncar by is cutting night wood for camp.
T'he sight lines, or lines of apparent level (e - to -e e), are taken from points on thr mountain side, which are really lower than the distant peaks; for. following to the left the curve of the earth from the harometer station (h.... to h), it will be seell to descend below the level of the peaks in proportion to their dis'ance-the true level of the distant peaks being the curved dotted line of equal hight-above sea level, evidently considerably higher than the stations of their apparent level. 'The effect of refraction is not shown in the illustration. In practice, the observer on harometer at the lower station takes observations upon his instrument and the attached and letached thermometers wery tive minutes; and (whenever possible) similar observations are taken on the summit of the peak above the intermediate leveling stations, affording looth a lower and an upper station when weil determined. The observations, therefore, taken at any five minutes, will be synchronous with those taken on the mountain sides, at leveling stations, or on the peak above; they can then be computed as usual, by the upper or lower station re. cords, and, by the tri-linear measurement-, the proper corrections for curvature, etc.

SCIENTIFIC AND PRACTICAL INFORMATION.

It mav perhaps be unnecessary to assure our devouter eaclers that Virginia City, Nev., is not the much longed for "New Jerusalem, the city of the Saints," notwithstanding its streets are paved with precious metals. It is true, nevertheless, that the demizens of that unsaintly city boast that the very mud of their streets is rich in silver and gold. It happens that the principal streets of the city were macadamized with refuse cre taken from the mines in early days; and since then, they have been steadily dusted with rich ore sifted down upon them from passing ore wagons, making a surface *o precious that an ounce or two of mud (taken from the bol wion todecide a warer) proved on assay to contain, to the tun, silver, 87.54; gold, $\mathrm{B}_{2} .32$; total $\$ 9.86$. "Aftain, to the tun, siver, sution; gold,
ter this," exults the Enterprise of that richly paved city. " we may put on airs, even though our streets are villanous. Ir muldy occasionally, for the very mud on our boots cot tains. both silver and gold."

new las for mineral oilh

In a late number of the Australian Medicul. uriat, Dr. John Day maintains that certain of the mineral nils, gasoline especially, are of great use as disinfectants, their value depending, he believes, on the fact that they are rich in peroxike of hydrogen. He employs the gasoline in various waysas a disinfectant, applying it to walls, to articles of furniture, and to clothing; also as a wash for the hands after treating infectious diseases, allowing the moistened hands to dry in the open air. A peculiar and valuable property of these oils as disinfectants is their continuous action, while they improve and gather force lye exposure to the air.

the martlal seas

M. Meunier has recently advanced the theory that the planet Mars is much older than the earth, hecause of the rarification of its atmosphere and the small extent of its seas. The form of the latter, he savs, is exactly that which the terrestrial oceuns would assume after partial absorptiod by the earth's crust. If, for example, the Atlantic were absorbed so that only that portion included in the contour made by the uniform depth of 12,000 feet were left, the shape would be exactly similar to that of some of the scas recogrnized in Mars.

LEMON JULCE in Dhiftheria.
Dr. Revillout states that lemon juice, used as a gargle, is an efficacious specific against diphtheria and similar throat roubles. He has successfully thus employed it for over eighteen years.

