No. 1, or hard sory rare that the tin exceeds the lead, and , of the shops, will, cis a rule, be found The common wipe joints in lead pipes-ching use for making three parts of lead and one of tin. Such a mixture as this melts at less than 500°, that is, considerably below the melting point of lead, and has the property of remaining semifluid for some little time, so that, with a thick pad anointed with grease, the plumber is able to mold it to any desired shape. To render the solder hard without increasing the proportion of tin, some makers add a little antimony or copper, which has the effect of raising the fusing point without affecting the other qualities of the alloy. Although we have spoken of hard and soft solder in regard to alloys of lead and tin, it is better to retain the names now employed in commerce, coarse, common, and fine; and when we wish to make solder, to confine ourselves to the proportions mentioned as nearly as possible, for accuracy is not material. The mechanic by "hard solder" understands an alloy for uniting metals that are difficult to melt-a compound of copper and zinc, sometimes with a little tin-a brass, in fact; hence the term brazing has been substituted for soldering.-English Mechanic.

Srientifir elmoriam.

MUNN \& CO., Editors and Proprietors. pubifished weeilly at
NO. 37 PARK ROW, NEW YORK.

bogus state laws concerning patent rights.

We have heretofore, on several occasions, called attention to the unconstitutionality of various State laws, by which local legislatures have attempted to regulate or prevent the sale of patent rights within their borders. In some of the States, laws have been passed by which patentees or their agents who offer patent rights for sale, without complying with certain State regulations, are made liable to fine and imprisonment.
We need hardly say that all such State laws are without binding force, and are in direct confliot with the laws of the United States; and any State judge or officer who should, under pretence of a State law, arrest or interfere with a pat entee or his agent in the sale of a patent right, would be liable for damages and punishment in the Courts of the United States.

This question was adjudicated by the United States Court in the case of John Robinson, agent for the Goodyear Rubber Dental Plates patent, who, on offering to sell a right under the patent, was arrested and imprisoned under a State law of Indiana. The law in question made it unlawful to sell a patent right in that State unless the patentee or seller first deposited a copy of the patent with the county clerk, and made affidavit that the copy was genuine, had not been re-
poked, and that he was authorized to sell, etc. A certifed
copy of the affidavit was also given to the patentee or seller, and he was further required to exhibit the same to any person who might demand to see it.
The United States Court held that this kind of legislation is unauthorized, that property in inventions exists by virtue of the laws of Congress, and that no State has a right to interfere with its enjoyment, or annex conditions to the grant. If the patentee complies with the laws of Congress on the subject, he has a right to go into the open market anywhere within the United States and sell his property. If this were not so, a State might nullify the laws of Congress and destroy the powers conferred by the constitution.
We believe there are some Western States that have not yet repealed their obnoxious patent laws; and for the convenience of district attorneys, lawyers, and patentees, we will state that the decision of the United States Circui: Court, above alluded to, may be found printed in full on page 137, Vol. XXV of the Scientific American, date of August 26, 1871.

metaline at the american institute.

Metaline is an alloy which, when applied to machinery, is alleged to obviate the necessity of oil or other lubricants But while we are told thatit runs on every thing from watch makers' tools to big steam engines, one of its most recent applications has proved far from beneficial-in fact, instead of making the constituent parts move nicely, it has set them to grinding, cutting, jarring, heating, and disaggregating in a manner really sad to contemplate. We allude to that
rather cumbrous machine known as the American Institute, the whole inner mechanism of which metaline has appar ently disorganized. At the late Fair, it failed to slide smoothly through the hands of the judges, managers, and directors, and it drove the Board of the last mentioned so (morally) out of true that Professor Chandler, because the Institute gave a silver medal to metaline instead of a gold one, deliberately cut both the Board and the Institute. He resigned-he waxed warm in the journals-daily ones-he said that parts of the Board were welding themselves into a conspiracy. The alleged conspirators then published a long effusion, denying the soft impeachment.
To make matters still worse, metaline turns up again as not clog the engines, but it a raty who supervised them. We hear of a protest to the results of the trials because the Superintendent of the Machinery, who made the calculations and had something-we know not what-to do in the way of supervision, was at the time engaged in negotiating with the successful competitor for a sale to the latter of metaline stock, and has since maintained business relations with him. Certainly no person acquainted with the gentleman will venture the assertion that he could be biased, even in prospect of a possible fat commission; but those who have denounced the tests to us, for reasons best known to themselves, as unfair, claim that such dealings on the part of an Institute official are sufficient, on their face, to invalidate the results of so very close a ccm. petition.

The award of silver instead of gold to metaline, and other equally important misdemeanors, form leading arguments against the present management by the opponents of the bill now before the New York Legislature, which the existing officers of the Institute want to have passed. This bill provides for a president and twelve trustees as substitutes for the unwieldy Boards of Managers and Directors now in esse. Both the metaline people and the Institute people include names which will be equally powerful in commanding the confidence of the public. The opponents of the bill assert that the measure has never been submitted to the Board of Direction or to the members generally, and that the present management attempted to rush it through the Legislature and have an election before a tithe of the members found out about it. A ring, it is alleged, would thus get themselves elected, and would be able to keep themselves in power indefinitely by exercising a right which the bill gives them to fill places among the trustees vacated by resignation, etc. This matter, however, appears to be a purely internecine war, and one which we have no doubt can be brought to a just conclusion by the exercise of good sense and moderation on both sides.

ACCURATE ALIGNMENTS.

We have a slip from a Philadelphia paper, giving some particulars of the tunnel through the Musconetcong Mountain, on the line of the Easton and Amboy Railroad. The length of the tunnel is about 5,000 feet, through a mountain some 450 feet above grade. In making a tunnel, as our readers doubtless know, we have given a hill in which a hole is to be bored, the position of the ends of the hole, and the grade at which it is to be run; and as two headings are run at once, one from each end, it is very desirable that they should be on the same line, and should conform to grade, so that they will meet in the middle of the hill. The length, direction, and grade of the headings must then be calculated from outside measurements; and it becomes an interesting matter, after the work is completed, to see how closely the lines, as actually run, conform to the requirements. In the case of the Musconetcong Tunnel, the statements are made that the length, as ascertained by chaining over the mounthe headings were completed, by six and four tenths inches, that the center lines of the two headings were only out of line about one three-hundredth of an inch where the headings met, and that the grades of the two headings, where They met, coincided to within one eight-hundredth of an inch.
The measurements were made with ordinary instruments;
and if the results are reported correctly, the work reflects great credit upon the engineers having it in charge.
In this connection, we may mention a statement, in a Virginia paper, that an engineer, in the employ of the Belcher Mining Company, in joining two drifts by a short tunnel, $128 \frac{1}{2}$ feet in length, could not detect any error in the alignment, after the two headings were connected.
The Hoosac tunnel, it may be remembered, is 25,031 feet long, and there is an ascending grade of twenty-six and four tenths feet to the mile, from each end to the central shaft. On testing the work, after the completion of the tunnel, it was found that the error in alignment was nine sixteenths of an inch, and the difference of level, between the two headings, at the central shaft, one inch and a half.
While upon the subject of "great bores," some reference to the Mont Cenis Tunnel may not be out of place. This is about 40,000 feet in length; the level in the Italian side is about 435 feet above that of the French side, and the leve] at the summit, where the two headings meet, is about ten feet above the level at the Italian end of thetunnel ; so that the two headings run to meet each other on very different ascending grades. On testing the work, after the two headings were joined, it was found that the heading from the French end was about twenty-four inches too high, and the error of alignment was about eighteen inches.

FLYING MACHINES.

We have recently perus?d a very interesting paper by Dr. Barnard, of Columbia College, in which the writer, in his charming style, discourses of "Aerial Navigation," giving both his own views and the results of the researches of M. Bruignac, a French mathematician. As many of our readers are devising plans for sailing in the air, we think it well to give a brief resumé of Dr. Barnard's article.
As birds fly with wings, it occurred to man to employ the same device-but only to meet with failure. The reason of this is obvious. A bird has sufficient strength to fly, and man has not. Hence the conclusion that, if a man wishes to fly, he must use some artficial motor to drive the necessary mechanism. In regard to this mechanism, it appears that a revolving wheel, such as a propeller, is better than a pair of wings, since the latter have an intermittent motion, and it is more difficult to construct them of the requisite strength and still have them light. At this stage of the inquiry, it becomes necessary to determine, by experiment, the effect of a revolving wheel in propelling a machine through the air. If the wind strikes against a plane surface, it creates a certain amount of pressure, depending upon its velocity ; and inversely, if a surface is made to revolve at a high velocity, it encounters a resistance according to the velocity. M. Bruignac's experiments upon the pressure of the wind give the following results:

Velocity of the Wind.		Pribbita.	
Infeet per second.	In milles per hour.	In pounds per sqr. foot.	In pounds per sqr inch.
33	$22 \cdot 495$	$2 \cdot 75$	0.0191
49	$83 \cdot 406$	$6 \cdot 17$	0.0428
65	$44 \cdot 319$	11.00	0.0764
98	66.815	24.50	0.1701
147	$100 \cdot 243$	55.50	0.3854

Instead of making the aerial vessel with a flat end, it can have a conical form, by which the pressure of the air, or the resistance that it must overcome, can be reduced to about $\frac{1}{8}$ of the amount required in the case of a flat surface of the same cross section. It is to be expected that the machine cannot always sail in a calm; and on the supposition that it is to carry only one man, and is to advance at the rate of 20 miles an hour against a wind of the same velocity, it must have a motor capable of exerting about 5 horse power. The method of moving the aerial vessel, however, does not present so many difficulties as the means to be provided for keeping it in the air, and enabling it to rise or descend, at the pleasure of the navigator. It can be kept up by having a balloon attached to it, in which case, as the moving surface is largely increased, it must have a more powerful motor; or either vertical propellers, or an immovable plane, can be employed. A kite is sustained in the air by the pressure of the wind against it, provided the direction of the wind is oblique to its surface; and it is easy to see that, if the kite were moved through calm air at the same velocity as the wind has, it would be sustained in exactly the same manner, and a fixed plane surface on the aerial ship, in an inclined position, will sustain the vessel when it is put in motion This fixed surface seems to be the simplest mechanism that can be devised for the flying machine, in connection with two propeller wheels, turning in opposite directions, so as to keep the machine in an upright position. The best angle of inclination of the fixed plane, that is, the angle in which the least amount of surface is required, is $54^{\circ} 10^{\prime}$ with a horizontal line; but the power required for motion in this case is very great. By reducing the angle between the fixed surface and a horizontal line, the power required for propulsion is diminished; but it is necessary to give the machine a much higher velocity, in order that it may be sustained in the air; or if the original velocity is retained, the area of the fixed surface must be largely increased, which will of course add to the weight. It must be remembered, also, that the machine will not be sustained unless it is in motion, so that it cannot rise from the ground, but must be launched from an elevation.
M. Bruignac finds, from a number of calculations, that, by ttaching balloons to flying machines, they can be propelled by the aid of less power than in the case where a sustaining by the aid of less power than in the case where a sustaining
plane surface is used. The best form of balloon is that of a

