gusimess and extsonal. The Charyef for Insertion under this heaxi is 81 a Line

 Agricultural Implements. Farm Machinery, Seeds

 Patent Reports for Sale-1853 to 1869 . Box 135 ,
Ipswtch, Mass.

 number of papers cannot do better
with hem. $-[$ N.ew Tork observer,

 We want a small domestic patent ; must be good way, New, York.
Wanted-To secure a good Patent, small article preferred, to sell by territorial rights. The inventor of
first rave article will be liberally trated with by ad-
dressing Neely Box The Varishese and Japans. of the London Mrfig
Co. compare favorably y
In
 Diamonds and Carbon turned and shaped for
 Panaing Mill Machinery Wanted-Adderess, price
and terms, Hunter © Tlley, Berkley, Norrokk, va. For small size screw Cutting Enyine Iathesand Wanted-Official Patent Office Gazette, Volume 1,
for which a fair price will be pald. C. 0 . Thompson
 Genuine Concord A xles - Brown, Fisherville,N.H.

 st. Louls, Mo.

 drews Patent, instid pape.

 glving alarms, and varlousitit magnets, the electric light

 tisement. Adare
lithograp, $\&$.

 All Fruit-can Tools,
 Metai. E., yono, tmo ranad Street New York.

Corner
Orss
athe
atted wid

 Battery. F. C. Beach \& Co., 263 Broadway, New York,
Makers. Send for free illustrated Catalogue.
Temples and Oilcans. Draper, Hopedale, Mass.
For best Presses, Dies, and Fruit Can Tools, Bliss
\& Williams, cor. of Plymouth and Jay, Brooklyn, N. Y. Peck's Patent Drop Press. For circulars, address
Milo, Peck \& Co., New Haven, Conn. Engines and Boilers a Specialty-1st class: new
patterns; late patents; reduced prices. Plain and Cut-off patterns; late patents; reduced prices. Plain and Cut.ofl
Hor'l and Vert' Engines; Holsting Engines; the celebra-
ted Ames' Portable Engines; Boilers of all kinds; Climax rurbine ; and the best Saw Mill in the market. Large
stock always on hand. Hampson, Whitehill \& Co, 88 stock always on hand. Hampson, Whitehill \&
Cortlandt St., New Yorks Works at Newburgh,
Buy Boult's Paneling, Moulding, and Dove-tailing Ch'y Co., Battle Creek, Mich., Box 227.
Small Tools and Gear Wheels for Models. List
ree. Goodnow \& Wightman, 23 Cornhill, Boston, Mass. Hotchkiss Air Spring Forge Hammer, best in the
market. Prices low. D. Frisble \& Co., New Haven, Ct.

Sugar from Sorghum.

In reply to a correspondent who asked for the ize so as to make sugar, we give the following by iize so as to make sugar, we give the following by
Stewart: "At the close of the boiling, transfer the cooler to the crystalizing room. Heretwo modes of reatment are to be pursued to suit the kind of pro-
duct to be obtained. By the first method, a fair, yel low sugar, of a quality equal tothatof the ordinary brown sugar of commerce, is the result. By the second, white sugar, or any grade intervening beAs a pre-requisite to success by either method, the crystallizing and draining rooms should be uniformly heated to a temperature of not less than
80° Fah. To secure this, a close room is needed, opening by a door into another apartment instead of by an outside door. The crystallizing vessels
should be roughed along the sides and a stove placed in the center. Crystallization and drainage shou.d be performed in the same vessels, and their
form should be such as to conduce to both these form should be such as to conduce to both these
ends. 1. Crude sugar of good quality and large ends. 1. Crude sugar of good quality and large sirup of the proper density, at a temperature of
80° to 90° Fah.,by means of slow crystallization and natural drainage. The vessels should be shallow to admit of the speedy downward passage of the molasses through the crystallized mass, and their bottoms should be inclined sufficiently to secure
its rapid transmission to a common outlet. They should be of a uniform size, and, in order to secure a large grained crystallization, should be made moderately large. Vessels conforming to these re-
quirements may be of various forms; but for convenience and general efficiency I give the preference to a form of vessel which the experience of
nearly a century has not modified for the better. I refer to Dutrone's crystallizing box, thus de-
scribed by himself: ' Experience has proved to me that the quantity of matter which combines the greatest number of advantages in the crystallization of cane sugar is fifteen or sixteen cubic feet,
for which reason the dimensions given to the crysfor which reason the dimensions given to the crys-
tallizing vessels are five feet in length by three feet in breadth. The bottom is formed of two planes, inclined six inches, the intersection of which forms a groove in the middle. If this groove are twelve
or fifteen holes of an inch in diameter, to permit the sirup to flow out. The depth is nine inches at the sides and fifteen inches at the center. The vessels should be made of boards one inch thick, and
lined with lead' (or better, coated heavily with ined with lead' (or better, coated heavily with iron paint). 'Before lining it, the holes should be
bored in the groove, and burnt out with a hot iron from the inside, so as to form a small cavity sur drop of sirup will remain after draining.' Such vessels combine every possible advantage in crystallizing and purging with the requisite strength. The crystallizing vessels rest upon strips of wood re fastened to and supported by upright posts eight or ten inches high, at the distance, laterally of ten inches from the middle line. Troughs connecting with a cistern on a lower level receive the molasses as it drips from the sugar.' These vessels, about 75 gallons of sirup for granulation, weighing
nearly $1,000 \mathrm{lbs}$., of which one half, or 500 lbs ., will be good dry sugar. The depth of the crystallizing 3 inches at the sides, where the bottom is most elevated. and 9 inches in the center, when there is reason to apprehend any difficulty of drainage by reason of the presence of an undue amount of grape
sugar, or otherwise. After the molasses drained out, this depth will be much diminished, and the large surface of sugar exposed permits it to dry speedily. The number of these boxes that will be required will of course depend upon the time that must elapse beforethey can be refilled nd used again. Two weeks is as short a time as crystall ization and drainage. It will be found that one of these vessels will be required for each 450 or 500 gallons of juice delivered by the mill during
that period. Close the openings in the bottom of the box with long, smooth, wooden plugs, abruptly
pointed, which may be ald owed to project throngh
the holes into the inside of the box two or three inches. Range the boxes in order on the supporting rack, around the side of the room and over
the dripping troughs, which are so arranged as to convey the molasses into a pointed wooden or to troughs may be simply short open conductors of the same materials. In twenty-four hours after the thick sirup has been passed into the crystalliz-
ing box from the cooler, the formation of crysThey may then be seen along the edges of the yet liquid mass, but on the bottom of the box they de detached in the greatest abe surface at the shallow sides of the box, by means of a knife blade or the wooden scraper, which should always
be at hand. The last-named implement is simply a long paddle of ash or hickory wood, with a stou handle and thin blade. With this the fine crystals should be loosened from the bottom and sides and equally as possible through it that they may act as nuclei for the formation of larger crystals. Generally in twenty-four hours after this operation,and often in less time, the crystallization will have per-
vaded the entire mass. When this is found to be so, then gently withdraw the stoppers and permit the molasses to drain. The sugar will be dry in ten days or less thereafter. It may then be shoveled
into boxes or barrels, and the crystallizing boxes into boxed."

触ducs (4herins

H. C. S. will find directions for molding rubber on p. 283, vol. 29.-E. M. G. will find a re-
cipe for soldering brass on p. 364 , vol. 29.-F. W. Z. cipe for soldering brass on p. 364, vol. 29.-F. W. Z. can find a recipe for a copper dip for iron on p.
30 , vol. 31 .-C. C. can cement glass to tin by using the preparation described on p. 298, vol. 30.-J. B. mula given on p. 16, vol. 29, and by that on p. 54 vol. $30-$-R. H. H. can fasten rubber to rubber by using the cement described on p. 203, vol. 30.-J.J. F. will find directions for silvering glass on p. 234,
vil $30 .-$ M. W. H. will find a description of mica vol. 30.-M. W. H. will find a description of mica
on p. 88, vol. 24.-C. E. G. will find directions for tereotyping on p. 363, vol. 30--N. L. F. can remove paint from window panes by the method de-
scribed on p. 88 , vol. $32 .-$ T. J. C. can blue guns by the process given on p. 123, vol. 31.-F. W. Will find
directions for molding from living objects on 58, vol. 24.
(1) J.E.E.asks : What degree of heat will a to be destroyed at about 14° Wedgewood or $1,820^{\circ}$ Fahrenheit,but they vary in hardness. What would be the effect of a cherry red heat upon a very hard
diamond? Would it have a tendency to soften it? What heat will cause a diamond to crack and chip off on the outer surface? A. Heat would not soften a diamond,neither would the stone crystallize
atextremely high temperature. Heated intensely, atextremely high temperature. Heated intensely, gas, an exceedingly small residue being left behind.
(2) J. J. asks: Will a slit extending from top to bottom in the glass chimney of a lamp be a
preventive from breaking by partial rapid expansion or contraction? A.Yes. 2 Do you think a slit would impair combustion? A. No. 3. Does glas actory? A. Yes.
(3) A. A. F. says: I have tried your recipe for staining wood to a black walnut color, as fol-
lows: Water 1 gallon, washing soda $1 / 2$ oz., chromate of potash 14 oz . This will not make a stain. It settles at the bottom; and after standing a few moments the water becomes almost clear. A. We have tried this stain and had nodifficulty in obtaining a very fine stain, perfectly counterfeiting the color of black walnut. The settling or precipita-
tion of your solution is due probably to impurities in the chemicals or water used. Separate your wa ter into two portions, in one of which dissolve the soda and in the other the bichromate of potash. The solution of sodashould be perfectly clear; and
when added to the other solution, it should impart a bright yellow color to it. The wood should be steeped in this solution for a bout one hour, or un-
til the desired shade is obtained. A gentle heat
(4) M. H. K. asks: What is the kind and character of change that takes place in white of
egg when beaten from the shell into a stiff froth ? A. The continued beating causes the albumen to air bubbles.
How can I make a stamp or press, out of other ump of butter to fo quickly press and shape a Thereis no material, to our knowledge, that will answer the purpose so well as wood.

1. How can I polish a pearl, found A. Try rouge powder. 2. Have such pearls any value compared with others? A. They have no
(5) F. W. H. asks: Is rottenstone and lin
seed oil good for repolishing a piano? A. The rotseed oil good for repolishing a piano? A. The rottenstone is used as a polishing powder, the linseed
oil to cleanse the surface after having been poltogether.
How can I prepare glue, so as to use without
heating? A. Dissolve the best isinglass in the strongest (glacial) acetic acid.
(6) C. R. S. B. says : I curl my hair with a of no benefit, and probably of no more injury to the hair than the use of too much water, rendering the hair stiff and dry. 2. What is good to pre-
vent the hair from falling out? A. Sce p. 363, vent the hair from falling out? A. Sce p. 303
vol, 31 ,
(7) E. B. fays: I have some elder wine Thich last summer turned sour, but not sour
notough tor vinegr. 1 I added $1 / 2$ pint alcohol tothe enough for vinegar. 1 added 3 pint alcohol tothe
gallon when made. How can I make vinegar of it, it for the tate? A. Add to it a littie e east, or
mother of vinegar, which will hasten fermentamother
tion.
(8)
(8) W. C. says: I have a lot of molded
ndstone, saturated with coal
oil sandstone, saturated with coal oil. How shall I 1
take the oil out? A . Heating to a moderate temperature might be tried, if practicable. sometimes chalk and magnesia are used to absorb and ex(9) A. M. F.
(9) A. M. F. asks: How can a harmless subthe human system the positive or negative forces the human system the positive or negative forces,
so as to circulate in the blood and so through every part and atom of the body? A. There is not, to magnetic polarization that may be taken into the system in the way you describe.
(10) E. B. J. asks: 1. What can be added to tobacco that will cause the odor of the smoke to
smell sweet? A. Try lavender. 2. Can it be made pleasant by passingthe smoke through perfumed
(11) B. S. asks: What is the behavior of potassium and sodium, and similar metals, in abso-
lute or nearly absolute (95°) alcohol ? A. When sodium or potassium is added gradually to absolutc rises rapidly, and the metal is dissolved; while an extrication of pure hydrogen takes place, and a fusible, crystalizable, deliquescent compound is
formed, which has received the name of sodium alcohol (or potassium alcohol) or of ethylate of soda (or of potash].
(12) W. E. says: I have tried many recipes for tinning articles made of cast iron, some of which are malleable; the last I tried was: "Cover
the articles in a solution of sal ammoniac, then dip them in melted tin," but it would not work. A.
The nperation only succeeds well when the surface The nperation only succeeds well when the surface and when during the operation the oxidation of
the molten tin is prevented. The former requisite is attained by the use of dilute acids, rubbing and scouring with sand, pumicestone, etc. the latter condition,by the use of either rosin or sal ammoniac, both of which cause the reduction of any ox-
ide that may be formed. The objects intended to be that may be formed. The objects intended to of tin; they are then dipped into a vessel containing the molten metal, and rubbed with a piece of hemp over which some sal ammoniac is strewn.
Pins, hooks and eyes, small buttons, and similar objects are tinned by being boiled in a tinned boiler filled with water, granulated tin, and some cream of tartar. The tinned objects are dried by being rubbed with sawdust or bran. In the manufacture of tinned sheet iron, technically termed tin plate, the iron must first be thoroughly scoured, so as to in baths of molten tin covered by a layer of moltin baths of molten tin covered by a layer of moltOn being removed from the tin bath the sheets are immersed in a bath of molten tallow to remove any excess of tin, wiped with a brush made
hemp, next cleaned with bran, and packed.
(13) S. N. M. says, in reply to O. H., who asks: What is the force of blow of the pile of a
pile driver, whose weight is 100 lbs . falling 20 feet: "Force is any cause which moves or tends to move a body. Weight is the measure of the force of gravity. Momentum is the quantity of motion, the impetus, the force with which one body strikes an-
other, and is equal to the weight \times velocity." This other, and is equal to the weight \times velocity." This
must be the force of the blow of the pile driver. To find the time of falling, equal te $V \overline{20}$ feet $+16_{1} \frac{1}{2}=$ 1.115 seconds. To find the velccity $=1 \cdot 115 \times 32 \frac{1}{6}=$
$35 \cdot 861$ feet per second. Therefore, $35 \cdot 861 \times 100=3586.1$ lbs.=the force of theblow. If there be any demonstrable error in the above, I shall be pleased to learn
it. I conceive it possible that it may be said that the it. I conceive it possible that it may be said that the
momentum isnot the same as the force of the blow, estimated in pounds. A. The definition of momentum, given above, that it is the force with which one body strikes another, is incorrect; and indeed, this
definition isordinarilygiven incorrectly, in elementary works on mechanics. The force of the blow of a pile driver, as we understand it, is a certain weight which would produce, by steady pressure, the same
effect as the falling body. The amount of the weight can only be ascertained by experiment.
(14) C. J. L. asks: How can I electrotype from an iron solution instead of copper? A. Usc single battery cell, and an iron positive pole.
(15) J. C. C. asks: Have dispatches ever
been successfully transmitted on the same wire in hoth directions at the same time? A. Yes. The
Western Union Telegraph Company has been sucessfully using Stearns' method of sending two mesges over the sa eral years past.
(16) C. A. C. asks: Will you please explain
the process of electrotyping, and the kind of metal the process of electrotyping, and the kind of metal
used? A. An impression of the objects which you esire to reproduce is firsttaken in gutta percha or wax, which is then covered with plumbago by sthen attached by a wire to the zinc pole of a weakly charged Daniell cell, and a copper plate is attached by a wire to the copper pole of a battery. The impression and copper plate are then dipped copper of the solution will begin to deposit itself on the impression, first at the black-leaded surface the vicinity of the connecting wre; then it will tis usual to keep the imprescion in the solution for about 24 hours, when the copper deposited on it will have formed a tolerably strong plate, which can be easily removed from the wax. On the
ide of the plate next the matrix, will be found side of the plate next the matrix, will
a perfect copy of the original object.
(17) L.W asks: In a galvanic pile composed of copper and zinc plates, 4 inches square, how manypairs would ittake to produce a shock that
would be felt? A. One hundred pairs would prouce a perceptible shock.
(18) T. J. W. asks: Is it twelve o'clock when the clock strikes the first stroke, or when it strikes
the twelfth? A. As a general thing, a clock indithe twelfth? A. As a general thing, a cloc
cates the hour of twelve at the first stroke.
(19) R. K. asks: What is the objection to driving ferrules in boiler tubes, or to caulking the tubes, when the boiler is full of water? A. It can
not be ordinarily done with safety and conveni
(20) C. R. asks: Which is the most powerfullowheel, the overshot or the turbine? A. The following data may be accepted as generally correct
for the average performance of the different kinds of wheels: Percentage of the power of the water
that is utilized by the wheels: Overshot and breast wheels from 75 to 80 , undershot wheels from 40 t 40, turbines from 50 to 80 .
(21) E. E. E. asks: Will cast iron make a
safe head on which to put four cutters for a wood safe head on which to put four cutters for a wood
molding machine, the heads to be from 2 to 6 inches across and 6 inches square, with $13 / 4$ holes in center for shaft? The shaft is to revolve at the rate of
from four to six thousand per minute. A. Possifrom four to six thousand per minute. A. Possi-
bly, but wrought iron or steel would be preferable.
(22) W. H. F. asks: Can you give me the rule for determining the electromotive force neces-
sary to overcome a given resistance? For instance,
on a line of say 100 miles, having a resistance of about 1,500 ohms, how many Daniell's cells would be required to operate it satisfactorily? A. Much depends upon the size of the wire, its insulation and the delicacy of the receiving instruments used
Assuming the wire to be of No. 8 gage, the insulaAssuming the wire to be of No. 8 gage, the insula-
tion of the Kenosha pattern, and the instruments Morse relays of 150 ohms resistance, 50 cells would be sufficient.
(23) J. C. G. asks : What tools and materials would a person need to make small working planer, and a good vise bench, with hammer files planer, and a good vise bench, with
chisels, center punch, scribers, etc.
(24) W. P. says : I inclose some indicator cards from the compound engine that I run in a flour mill. What do you think of them
A. They appear to be very fair. We would be glad to receive from you a brief account of the performance of the engine, giving average power
exerted, consumption of fuel, water, oil, and any exerted, consumption of fuel, water, oil, and an
other matters of interest that you can furnish.
(25) S. B. H. says: You recommend heating
wire ropes. All the wire rope that I ever saw had wire ropes. All the wire rope that I ever saw had
a small piece of rope in the middle, for the pur pose of making it pliable. as I suppose. Would no the heating of the rope red hot injure the hemp
A. Wire rope is made with either a wire or hemp center, according to the wishes of the purchaser Our correspondent's question implied that his rope had an irou center.
(26) J. D. asks: Will it add to the power of 12 to 16 inches, and proportion all other parts to the increased length of cylinder, the number of the same as it did on the 12 inch cylinder? A. The power will be increased if the alteration is made. (27) R. M. R. says: On p. 27, vol. 32, I find gine, having 2 inches bore and $43 / 2$ inches stroke,
drive a boat 18 feet long, 5 feet wide, and drawing drive a boat 18 feet long, 5 feet wide, and drawing
6 inches of water? The engine will have 100 revolutions per minute and 5C lbs. steam." You reply "The engine would be entirely too small to give of steam and greater piston speed were employed." Would not such an engine have at least one man power under the conditions named? If so, the
engine ought to be able to do as much work as boy of fourteen could do $:$ pull such a boat with pair of oars at about 3 miles an hour. I have often
done this when I was about fourteen. If a screw loses so much of the power as to make the engin less powerful than a small boy, why did you not
advise F. C. R. to connect a long cylinder with a pair of oars, or construct a machine to work oars?
A. As you surmise, one man power applied to the A. As you surmise, one man power applied to the
screw of a small boat would be entirely too small on account of the loss from friction and slip. I you have any plan for a boat with steam oars,
which you have proved by experiment to be more which you have proved by experiment to be more
economical and satisfactory than the ordinary economical and satisfactory than the ordinary
modes of propulsion, we will be glad to hear from modes of p
you again.
(28) W. \& B. ask: Is tannate of soda safe to

Is superheating of steam any advantage in economy of fuel, and is it safe? A. This depends upon
the manner in which you are using your steam. It the manner in which you
is safe, if properly done
(29) A. F. A. asks: Has the coefficient expansion of hard rubber been determined? A. would be glad to hear from any of our
may have information on the subject.
(30) J. G. says: I have just set an 8 foot b 34 inches tubular steam boiler for running engine
and heating building. The inspector says that it and heating should be run with water within 6 inches of the top (over 3 solid gages, to save the tubes from un-
equal expansion; while I contend that there should be at least 16 inches steam space, $2 / 2 / 2$ gages
water, to have dry steam and work to the best adwater, to have dry steam and work to the best ad-
vantage. Which is right? A. It is common to carry water in such boilers from 2 to 4 inches above
the top row of tubes. the top row of tubes.
(31) C. S. D. asks: Does a column of water flowing to a hydraulic ram through a pipe twenty
feet long, inclined at an angle, with a vertical fall
of ten feet,give more fincre than flowing through a
ten foot pipe attached to the ram in a vertical poten foot pipe att
sition? A. No.
(32) J. H. P.
a chur. can ring it. A. says that if the bell be hung higher will strike it will ring more easily, and the tongue but ma'ntains that the tongue will strike with less power and consequently emit less sound. Which is correct? A. The question cannot be answered,
positively, without moredata. If the bell is raised positively, without moredata. If the bell is raised
in the yoke, it can be moved more easily, but it will be necessary to swing the yoke through a the same sound. Hence the ringer will have to work more quickly than before.
What should be the length and width of an iron wedge two inches thick, to be used for splitting
rood? If it be too long, it will bend in crooked grained wood. If too short, it will fly back when driven into frozen wood. If too wide, it will drive
hard. If too narrow, it will merely displace the hard. If too narrow, it will merely displace the
wood without splitting. Should the faces of the wedge be plane surfaces with sharp corners, or odal, like those of an ax with rounded corners?
A. It would seem to be better to have different wedges for the several kinds of wood. They are
commonly forged, not finished, with sharp cor.
(33) H. A. H. asks: Would a wire, cut or
rooved out like the threads of a bolt, cut wood grooved out like the threads of a bolt, cut wood
readily? A. Not unless it was tempered and had a cutter at the e
common auger.
(34) K. asks: If steam at 100 lbs. per inch be confined in a certain area and the area be
doubled, what will be the pressure in the enlarged rea? In other words, what is the elasticity of steam? A. The pressure varies nearly inversely
as the volume. You will find precise formulas,
which are somewhat complicated, in any good which are some
treatise on heat.
(35) T. E. L. says: I notice that you state reatest at the bottom of a boiler. This being the case, why is it that an injector will supply a boiler?
a. On account of the difference in area of the A. On account of the difference in area of the
steam pipe and orifice through which the water is orced, the velocity of the steam is greater than that of the water; so that steam at boller press a
ure, moving at a high velocity, can overcome a ess velocity. Similar action takes place in the case of a lever where a small weight moving fast
raises a large one moving slow. It can also be observed in au ordinary system of ropes and pulleys, and in numerous other instances, which will doubt-
(:36) W. C. R. asks: If I take a cylinder with an outlet and stopcock to it, and compress air put it on a small boat, and then open the stopcock, ing in the same direction, and at the same speed as ing in the same direction, and at the same speed as
that coming out of the cylinder, will it propel the boat? I say it will not, as there is no reaction. A A. Your friend.
(37) J. A. H. says : 1 T. L. maintains that he pump (if any be attached) and heat up to 130 lbs. pressure, all the water will be turned into
steam, in other words, there will be no water in the steam, in other words, there will be no water in the boler by the time it reaches 130 lbs. pressure. I say he water will be turned into steam, which steam ccupies that portion of the boiler not occupied by that if you take holow A.You are. 2.1. L. says of sufficient size to contain 1,000 gallons gas in a liquid state (not 1,000 gallons liquid), force gas into it under proper conditions until itis full of liquefled gas, then draw off 500 gallons gas, that the re-
maining 500 gallons (less the quantity evolved into maining 500 gallons (less the quantity evolved into and cannot be in the liquid state. I say it can be in the cannot be in the liquid state state under such conditions, and will be in such an instance,provided the exhaustion of 500 he pressure bas not reduced liquefies. Who is right? A. You are. 3. He further maintains that if you take any vessel, half fill it with fluid and raise the internal pressure to 150 lbs . per square
inch (either by heat, pumping in air, or the efforts of a liquefied gas to reassume the gaseous condiif you agitate or shake the vessel; in other words if you agitate or shake the vessel; in other words
that, if there beany fluid in such vessel under such pressure, it will not change position by turning the vessel upside down and other movements. I say
he is wrong. Who is right? A. You are.
(38) J. G. P. asks: Is there any invention to oundering of a vessel at sea? Could not a le or floating preserver be made and placed in the ship
with the treasure enclosed, and, when found necessary, be given to the waves with better hopes of recovery than if it wentdown with the ship? The idea is quite practicable, and is, we think,
tised. Your turbine device would not work.
(39) W. A. N. asks: How is linseed oil manufactured? A. By cold pressure in a mill. Some-
times the seed is roasted first to destroy a gummy watter in the outer envelopes. This frees the oil higher in color than the cold process, which, however, should be used in preparing oil for medicinal purposes. The
food for cattle.
(40) J. S. B. says: The following is a good saltpeter 1 oz., common salt 6 ozs., black oxide of manganese 1 oz ., prussiate of potash 1 oz.; pulver-
ize and mix with welding sand, 3 lbs . Use it in the ize and mix with welding sand, 3 lbs. Use it in the
ame way asyou would sand.
(41) C. F. asks: 1. From what substance is methylic ether made? A. Methylic ether or ox-
de of methyl is obtained by distilling 1 part ide of methyl is obtained by distilling 1 part of pyroxylic spirit and 4 parts of oil of vitriol; a coloredgas (homologous with ethylic ether) is accompanied with carbonic and sulphurous acids, which may be removed by allowing the gaseous mixture to stand 24 hours in contact with slacked lime. The gas is liquefiable at a tem
perature of -33°, and boils at -6° (Berthelot). perature of - 33°, and boils at -6° (Berthelot). 2
What ether is mostly used in the manufacture oo artificial ice? A.Ethylic or vinic ether, sometimes
(42) F. G. H. asks : 1 . What is nitroglycerin
aade of ? A. Nitroglycerin is a compound formed by the action of a mixture of highly concentrated glycerin. 2. Can the ingredients be mixed in one or two seconds, so as to be ready for use? A. No; the manuf
watching.
(43) J. H. asks: How can I make distilled water? A.By boil ing water and conin a tube or coil
of block tin pipe surrounded cold water.
other way
using the little device shown in the
engraving, in which the steam
the conical cover, and descends the same, being caught by a projecting gutter and conveyed to the top will facilitate the condensation.
(44) W. R. B. says: 1. In your issue of August 26, 1874,I see a description of a new light for photographers, which is produced by passing hy-
drogen through iodide of ethyl in which zinc has been digested. Will you explain what iodide of ethyl is? A. In order to prepare this ether, 100 parts of alcohol are placedin a retort, and a small
amount of iodine is introduced; phosphorus is amount of iodine is introduced; phosphorus is
added in small quantities until the liquid becomes colorless; a fresh portion of iodine is then added, and then a fresh quantity of phosphorus, untic
about 200 parts of iodine and 2 or 3 parts of phos phorus have been added. The mixture thus ob tained must be cooled by immersing the bulb of the retort after each addition in cold water, otherwise a large proportion of the phosphorus will become converted into the red variety, which is not susceptible of beingattacked by the iodine at low tem peratures. After the reaction has terminated, the liquid is distilled by the heat of a waterbath, ta king care that the iodine (as shown by its brown
color) is in slight excess. The distillate should be washed with water, digested on chloride of calci um, and redistilled. 2. Is metallic zinc meant? A. Yes. 3. Is there anything dangerous about
this light in careful hands? A. No.
(45) P. D. asks: Is there any process by which an amethyst can be restored to itsoriginal
color after being heated? A. Not if the color has
(46) E. B. G. says: In drilling into rock which forms the pavement of coal, I struck a vein of water, which soon turned to a deep red color,and
tasted strongly of alum. Is there probably alum in it? A. It was probably colored by suspended from the pyrites contained compounds derved contained in alum.
(47) A. T. asks: How can I take impres taina fine copper plate ink froma reputable maker dab on the (warm) plate with a rolled flannel, wipe the plate quickly with a soft leather and then with
the palm of the hand. The ink should be stiff enough to remain in the engraved lines, although the surface of plate is perfectly cleaned as de
scribed. Print by heavy pressure between rollers
(48) W. J. L. asks: Can carbon gas be liquefled by any known process, and what are the
means? A. Carbon gas is rather an indefinite means? A. Carbon gas is rather an indefinite carbonate of soda with water and place it in a strongwroughtiron bottle, together with a narrow
pot nearly full of sulphuric acid. The bottle is closed by a screw plug, and then agitated so as to shake the acid out of its pot, and bring it in con-
tact with the carbonate. The great pressure protact with the carbonate. The great pressure pro-
duced by the evolving gas condenses the carbonic acid to the liquid form. Carbonic oxide, however has resisted all efforts for its liquefaction. Marsh
gas ($\left(\mathrm{H}_{4}\right)$ a combination of carbon and hydrogen is, next to hydrogen, the lightest of known substances. It has resisted all efforts of cold and
stan
pressure to densed to a liquid by Faraday. Coal gas is a mix-
ture of gaseous compounds given off by coals. It consists of, in 100 parts: Hydrogen 45.58 (cannot b liquefied), marsh gas $34 \cdot 90$ (cannot be liquefied), $4: 08$ (can be liquefied), butylene $2 \cdot 38$ (can be liqueata pressure of 17 atmospheres) nitrogen $2 \cdot 46$ (can not be liquefied), carbonic acid 3.67 (can be lique fied). This analysis is of the gas supplied to the city of Manchester, England.
(49) O. L. asks: 1. Is aluminum worked
in this country? A. It is not. The metal which comes into this country is mostly manufactured in France. Therehave been several manufactories in France, namely, at Salyndres and Amfreville,
and one in England, at Washington, county Durham. 2. Can you give the process of extracting it ham. 2. Can you give the process of extracting it
from clay? A. The metal has not, as yet, been profitably extracted from ordinary clay (silicate of
aluminum); the nearest approach to it has been the process of Professor Rose, of Berlin, who first
used cryolite, which is a compound of the double used cryolite, which is a compound of the double
fluorides of aluminum and sodium. This mineral
being treated at a high temperature with sodium,
yields aluminum and fluoride of sodium, and the yields aluminum and fluoride of sodium, and the and fluoride of calcium. Aluminum is also obtained from bauxite, native hydrate of alumina, which, having been previously mixed with common salt and coal tar, is next heated in an iron retort with chlorine gas, the result being the form-
ation of carbonic oxide, and the double chloride of aluminum and sodium, which volatilizes, and is ndensed in a reservoir lined with glazed tiles. The salt so obtained contained iron, and consewith that metal. The double chloride of aluminum and sodium is converted into metallic aluminum by being heated in a reverberatory furnace with
sodium, while the aluminum is set free. A slag is formed, whe doulle salt with excess of chloride of sodium. 3. If aluminum can be readily worked, why is it not in common use? A. Aluminum is now not so much in use; when first
introduced, aluminum jewelry was much emloyed. The metal is atp, light tubes for optical instruments, and to some extent for surgical instruments. The price, however, of this metal
($\$ 1.50$ per oz.) is too high to admit of its extended
(50) W. G. C. asks: 1. What kind of ink is used for machine ruling? A. Any good fluidink
will do. Dilute with water to the required tint, will do. Dilute with water to the required tint,
and add ox gall to prevent the ink running, and to hasten drying. 2. What kind of pens are used? A. They are cut out of very thin brass by a tool onstructed for the purpose. en from the pens or points? A. No.
(51) P. O T. asks: What is the nature of xygen, 36% per cent, with metallic combanganation of 63.3 per cent. It usually occurs in deposits, being frequently associated with ores of iron. If the ore is good, it is fit for use directly. It is extensively mined in Thuringia, Moravia, and Prussia. It is ommon in Devonshire, Somersetshire, and Aber-
deenshire in Great Dritain. It is found in various eenshire in Great Britain. It is found in various parts or ermont, also in Massachusetts, ConnecBrunswick and Nova Scotia. The pure article is
(52) A. B. P. asks: How can I prepare pawlll ignite the powder without first opening the cartridge? A. Cartridges of this kind are made disks enclosing the fulminating powder between
(53) J. H. K. asks : How can mildew, stains, etc., be removed from gold lace? A. For this pur-
pose, no alkaline liquors are to be used; for while pose, no alkaline liquors are to be used; for while
hey clean the gold, they corrode the silk, and change or discharge its color. Soap also alters he shade, and even the species, of certain colors. danger of its injuring either color or quality, and, angany cases, proves as effectual for restoring the uster of the gold as the corrosive detergents. But though the spirit of wine is the mostinnocent ma-
terial employed for this purpose, it is not in all terial employed for this purpose, it is not in all
cases proper. Thegolden covering may be in some cases proper. The golden covering may be in some
places worn off, or the base metal, with which it places worn off, or the base metal, with which it
has been alloyed, may be corroded by the air, so as to have the particles of gold disunited, while the silver underneath, tarnished to a yellow hue, may ontinue of a tolerable color; so it is apparent that nd make the lace less like gold than it was before. (54) N. J. P. asks: What is bleaching powit is A. It is commonly called chloride of hened ime. It is a moist grayish powder, and is soluble in 10 parts of water, any excess of hydrate of lime emaining undissolved. it deteriorates by keeping; when freshly made, it may contain 30 per cent
of chlorine, but often has less than 10 per cent. It is decomposed by acids, yielding chlorine. It conm of hypochlorite of lime and chloride or calctbeaching, and as a disinfectant. Wedo not understand your other question.
(55) J. G. C. says: I doubt very much if A. W. B. ever kept cider sweet in the way he men-
ions. If the fermentation is not checked, it will nevitably turn to vinegar. I have been advised o strain the cider through sand, as it comes from the press into the barrel, so as to get it free from much impurity as possible; put the barrel in a cool place, taking care not to freeze it, leave the bung out a few days till the most violent of the ferbore a small gimlet hole near the bung, and put in a spile ; watch it closely, and once in three or four days draw the spile, so as to r elieve the pressure on the cask, otherwise it may burst. Judgment must be used in the matter, and the time must be lengthened gradually for giving vent; finally leave it
to itself; and in the following February, if you wish to bottle it, takea clear, cool day for the operation, use good strong bottles and the best of corks, and them with a cork squeezer By putting a moderte sized lump of the best white sugar into each ate sized lump of the best white sugar into each
bottle, it will tend to make it more sprightly. The bottled cider must be kept in a cool place. The
later in the year that cider is made, the better it will keep.
(56) A. K. says, in reply to J. C. \& Co., who rinding: There are several good reasons for this. The first reason is that it improves the quality of he flour and increases the yield. It also makes a or if you can make a broad bran, you will eviently have lessof itto contend with in your bolts. In fact, it puts the whole system of milling in a superior sondition for manufacturing a choice ar-
ticle of flour. Some millers object to steaming
on the ground that it requires more dressing of this their standpoint. In very dry and cold weath er, when there is trouble in keeping up the grade of flour, steaming scives instcad of rain or thaw. and damp.
(57i) W. T. B. says, in reply to H. D., who sect known to florists as red spider is usually of bright red color, though some are brown and others almost green. They seem to increase mos rapidly in a dry, hot atmosphere, and upon plants that are not growing well, or that have been al
lowed to suffer for lack of water at the roots They infest the under side of the leaves, and ap parently shun the light; but when very numerous,
they may be found upon all parts of the leaves and stem. The upper part of the leaf, opposite where the insects are at work, becomes light colored and dusty looking. In greenhouses, they are mos troublesomein the warmest part of the housc; but I have seen them in a house where the temrera-
ture was allowed to fall to 40° at night, and also on plants growing in the garden. I would suggest the following treatment: Syringe the plants freely the under side of the leaves. Keep the air of the room moist, by setting pans of water on the fiues heating pipes, or register; give all the lightpossible, and ventilate freely whenever the weather will permit. When the soil is dry, give sufficient water to moisten all the soil in the pot; and water no more until the surface is dry again. If plants seem stunted or sickly, re-pot them in fresh, rich rowth. The red spider is anything but an healthy insect, and will yield to the bydropathic treat ment, if it is persisted in.
(58) A. H. says: E. S. S. can season his cro over with linseed oil, then baking them in the oven (slowly at first) to get the oil into the pores of the wood, repeating the oil coating three or four times, and then storing them away for the oil to dry. This willnot only keep them from checking, but will make them waterproof and keep them from rotting. Last winter I made some plane diameter, those treated with oil stood the sun's rass without the least check; the others, not oiled, checked so as to make them uscless.
Minerals, etc.-Specimens have been reeived from the following correspondents,and examined, with the results stated:
H. D. P.-Having subjected your sample of pa-
per to the usual tests, we failed to discover the per to the usual tests, we falled to discover the presence of arsenic.-J. T.-Your box contained but one specimen, a piece of basaltic rock, the only
ralue of which would be in building.-W. M. I.Itis a fossil coral.-A. B. H.-It is galena, containIng 85 per cent of lead and 15 of sulphur.-S. M. It is quartz grains, yellow mica, black mica, and cragments of augite, which is a silicate of limf, magnesia, iron, and alumina, but is of no value in the arts.-P.B.-It is a superior red oxide of iron. We have known sereral specimens to contain as high as 00 per cent of iron. It will make red paint ore of iron-H. P. E.-No. 1 is quartz grams, col ored red with oxide of iron, and mixed with small orystals of black mica. No. 2 is the same as No. 1, but with yellowish mica also. No. 3 is quartz rock with yellow mica. No. 4 is the same as No. 2 ,
with more quartz. No. 5 is similar to No.3.-R. E.M. with more quartz. No. 5 is similar to No.3.-R. C.M. of its valuable qualities. It is a highly bituminous oils, and of being used as a paint. You have only to develop the deposit.-E. T. D.-It is garnet in mica schist.-N. S. S.-Itis garnet. The crystaline form is the rhombic dodecahedron, and belongs to the variety of garnet called the iron-alumina gar-
net, which is connmon.-A. J. R.- It is difficult to determine the value of stones from such small pecimens. If you will send us a stouc of the proper dimensions (3 inches thick), and finished on -No. 1 is a quartzrock containing scales of ycllow mica, of no value. No. 2 is quartz rock with some iron, but too little to be worth working. No. 3 is

COMMUNICATIONS EECEIVED.

The Editor of the Scientific American ac Iginal papers and contributions upon the following

On Canal Towage. By R. B. C., and by W. K. W On Filling Teeth. By A. H. B., and by J. C. C. On Springs as Motors. By M. W. P. On the Patent Office. ByO. P. S. On Furnaces and Flues. By H. M. S. On a New Lamp. By D. D. N. On a New Bridge. By J. A. P.
On Spiritualism. By H. M., and by F. S.
On Lacing Belts. By R. G.
J. P. W.-N. C. P.-J. H. Fom the foll J. P. W.-N. C. P.-J. H. K.-J. S. B.-W. X. Y.-
H.M.-T.F.M.-J.S.E.-T.-W. S. D. - H. -F. G.S
-E. A.-S.-J. E.E.-W.C. B.-S. D.

HINTS TO CORRESPONDENTS
Correspondents whose inquuries fail to appear
should repeat them. If not then published, the may conclude that, for good reasons, the Editor de clines them. The address of the writer should alwayo be given.
Enqziries relating to patents, or to the patentapublished here. All such questions, when initials only are given, are thrown into the waste basket, as it would fll half of our paper to print them all but we generally take pleasure in answe
by mail, if the writer's address is given.

Hundreds of enquiries analogous to the following
re sent: "Who makes steam cracker-making machinery? Who deals in old coins? Who makes ample trunks? Who publishes works on the contruction of lights for lighthouses? Wherc are
the best carpenter's tools to be obtained?" the best carpenter's tools to be obtained?" Al observed, in the column of "Business and Personl." which is specially set apart for that purpose, ubject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS

cetters 1

Granted in the Week ending January 5, 1875,
AND EACH BEARING THAT DATE.

Ale, etc., aerating, Lajoic \& Poncelet.
Amalgamator, E.J. Fraser..... Animals, gag for, A. Kurrus Bed bottom, S. Pearsson

```
Bit stock, C. B. Rose (r)
Blind stop, E. S. Shroc
```

Boat, torpedo, H. F. Knapp
Boiler attachment, wash, w. J. Bennet
Bolt-heading die, E. Gracey. Bolt-heading machine, R. Gracey....
Book of letter sheets, H. S. Jackson. Boot heel counters, trimming,. . R. Mooflt Bottle stopper, C. De Quillfeld Brick machine, E. F. Andrews
brush and mop holder, J. O. Montignani.
rush, feather dusting, A. D. Griswold.
Brush for cleaning castings.
Brush, scrubbing, M. Biglin.
Buckle, J. Adair.
Buckle, suspension, E. J. Fraser.
Bureau, looking glass attachment, J. A. Canal boats, propelling wheel for,
Car axle bearing, H. L. Stdman..
Car axle box, T. H. Burrid
Car brake, N. N. Horton
Car brake, M. Madden..
Car coupling, G. W. Call.
Car coupling, H. Dutche
Car coupling, P. L. Menk
Car coupling, W. S. Peck.
Car coupling, F. Screct
ar couppling, F. Street
C. Tread
r, passenger, D. Price.
Car spring', B. A. Clooney.
Cars, construction of rallway, J. E. Leeper
Card fle, Prentice, Behel, \&
Carpet sweeper, G. S. Norris.
Carpet sweeper, G. S. Norris..............
Cart ridge care, metallic, B. B. Hotehkiss
Chair, tilting, S. Hoffman..
Cheese cutter, M. M. Millips..
Cherry pitter, W.
Cherry pitter, W. B. Knapp...
Churn, J. E. Finles....
Cigar mold, W., A., \& A. Osen briic
Cigar mold, J. Prentice (r)....
Clamp, rubber dam, F. Hickman.
Clasp, tickert, M. L. Shattuck....
othes and hat rack, R. R. Do
Clothes wringer, o. F. Glidden
oal screen and chute, M. R. Roberts
Coal scutt
coffee filte
Colter, A
Colter, A. P. Webber
otton seraner
Cultivator, shovel, T. J. Houston
Cultivator teeth, R. P. . odell, JI...
Curling iron. Feder \& Rosenteln.
Curling iron. Feder \& Rosensteln.
Dental finishing tool, F. Hickman
Dental $\begin{aligned} & \text { nishing tool, F. Hickman } \\ & \text { Drawer, J. A. Knight.................. }\end{aligned}$.
Drawer and folding desk, J. A. Knight
Eaves trough hanger, E. Ki
Elevator, hay, C. s. Kershaw.
Engine, air vacuum, A. K. Hider.............
Engine, reciprocating steam, M. v. Nobles,
Engine cylnder head, J. F. Holloway
Fence, barbed stock, E. T. Wilson...
Fire shield, Babson \& Mulford
Flour bolt, L. V. Rathbun.
Fruit dryer, E. A. \& C. W. Jones
Furnace and heater, Blazicek \& Bauer.................
Furnace doors, opening and closing, S.L.Denne
Furnace doors, opening a
Garter, L. F. McDonald
Gas condenser, P. Munzinger
Gas repulator, A. Parsons....
Gas regulator, S. C. Sallsbury
Gas retort, S. P. Parham
Gate. M. S. McS
lue dry
Grate, E. Stimson.
rate, J. W. Williams
Grate frame, H. M. Creamer.............
Hame bells attachment, M. F. Boland. Harrow, revolving and, drag, J. T. Henderson Harventer cutter, Blood and Hager............. Harvester frames, Journal for, W. A. Wo
Harvester grain binding, S. D. Carpenter. Harvester track clearer, O. Du Bois (r) Heater and filter, feed water, E. P. Fenn
Heater, feed water, Brown and Foskett. Heater, feed water, Brown and
Heater, steam, A. Van Horn. Heating drum, J. N. Kneeland Hinge, F. J. Hattorf
Hoe, s. Green..................................
Hoes, dif for maktag, F. J. Fischer.

Hog ring blank, W. D. Brow Holdback, J. B. Goidsmth..

Horse tail protector, G. R. Wilmot................... 1588,55
Horse checking device, W. T. and J. B. Burton 159,5
Horseshoeing apparatus, ©. Schnoor.......
Hose, leak stopper for, W. W. Whitcomb...
Jack, liftling, E. E. Banning.
Knife, shoemaking skiving, Reynolds \& Newhall. 158,4
Lamp pendant, F. R.
Lamp, street, C. B. Boyle............
Locomotive smoke stack. E. Cleary
Log sllde, roller, Jackson and Humphriey........
Loom shedding mechanism, Crompton \& Wym
Loom shedding mechanism, H. Wyman....
Loom shuttle box mechanism, H. Wyman..
Mat, door, O. Rice.
Mill, smut, J. Richmond
Mowing machine, G. H. W
Ox shoe, J. E. Davis.

Paper making machine, J. Butler.....
Paper tube machine, A. G. Batcielde
Paper tube machine, A. G.
Pavement, w. w. Hubbell.
Pinch bar, W. Werts.....

Pipe for lead corroding, bed,
 Planter, corn, H. Bagley...

Planter, corn, J. Elverud
Planter, corn, M. Greeg.
Planter, corn, H. P. Hall.
Planter, corn, H. P. Hall. ..
Planter, corn, H. Moore....
Planter, corn, O. P. William
Planter, corn, o. P. Williams....
Planter, hand corn, E. S. Turner
Planter, hand corn, E. S. Turner
Planter, seed, w. c. Reynolds.
Planter, seed, J. F. Warner.
Plow, J. Yocorr......... ..
Plow, gang, C. Myers....
Plow rotary w. H. Foye
Plow, rotary, W. H. Foye e.
Plow, stump, v. M. Chafee.
Press, cotton, Crenshaw and
Press, cotton, T. J. M. Jewell
Printer's quoin, B. F. Allen ...
Press, cotton, T. J. M. Jewe
Printer's quoin, B. F. Allen.
Propelling wheelforcanalbo
Pulley block, J. Weir.........
Pump, Goodwin and West.
Pump, Goodwin and West....
Pump, rotary, G. s. Follensbe
Pump, sirup, L. J. Knowles
Pump, steam, F. Trump....
Pump, steam, F. Trump................
Pumps, bucket for chain, J. D. Shoot
Purifier, middlings, E. W. Joh
Railway tie, Porter and Peck..
Ralway tie, Porter and Peck..
Rake, horse hay, A. W. Coates
Rake, horse hay, A. T. Hays..
Rake, horse hay, R. Wilson (r)
Roller, land, , J. Woolridge.................
Rope snd cordage machine, L. E. Higby
Rutter, J. McCullough....
Ruler, parallel, H. Andrev
Sad irons, uniting handles to, W. J. Reagan
Sash holder, R. B. Hugunin
Saw flimp, machine, J. Clevel
Saw handle, cross, cut, w. K. Stansbury
Saw mill heall block, J. R. Jackson.
Saw sharpener, J. and.J. A Crook..
Saw sharpener, J. and.J. A C
Seeding machine, S. Dixson.
Seeding machine, S. Dixson.
Separator. grain, P. Warner
Sewing machine caster. .J. H.
Sheep shears, F. Riedling..
Shirt.bosom, T. M. and E. Denham
Shovel, tire, Edgar and Barell
Shovel, tire, Edgar and Bardell.
Show case, A. and C. Lange....
Sifter, tlour, A. W. Smith..
Slate frame, C. J. Shields..
Sled, S. E. Foster
Soda water and sirup cock,
Soda water and sirup cock, w.
Sower, grass seed, H. Moore.
Spinning, traverse mechanism, J. Scott..........
Spooling, bobbin holder for, T. A. Mathewson.
Spring, torsion, R. Dudley.
Spring, torsional, c. W. S. Saladee (r)....
Stalk cutter, plow, and seeder, S. Dix
Starch strainer, w. Graham..
Stenclı trap, J. P. Schmitz......
Stereoscope, M. A. E. Whitner
Stereoscope, M. A. E. Whitner.
Stone dressing hammer, W. W. C
Stool, store, A. L. Bobo.................
Stoves, base burning, J. Spear (r)....
Stove 11d, W. Weaver................................
Sugar into blocks, A.F.W. Partz (r)........ 20
Tag, c. B. Sheldon............
Tanning apparatus, H. Recd.
Telegraphy, automatic chemical, w. E. Sawye
Thill coupling, A. M. Troy..
Thread winding guide, Manchester and Bole
Towel rack and wash stand, R. P. Buttles.
Towel rack and wash stand, R.
Toy bubble pipe, F. W. Pease..
Toy bubble pipe, F. W. Pease
Toy, mechanical, H. Mencke
Tyre heating apparatus, S. G. Reed.
Vegetable slicer, N. Sweetland.....
Vehicle shaft tip,J. B. Goldsmith
Vehicles, propulsion of, G. B. Dc Boucherville. .
Washing and wringing machine, Maughlin $e t$ al
Washing machine, J. H. Malone..
Washing machine, H. D. Starr (r)
Washing machine, J. H. VanDe Wate
Water works, reservoir for, W.
Wells, lining, D. L. Newcomb.

DESIGNS PATENTED

$i, 985 .-C$ C.rpet.-C. W. Swapp, Lowell, Ma
$i, 986 .-C a r p e t .-R$. Allan, Yonkers, N. Y,

7,989 to 7,991 -Carrerss - E. Petit, Paris, France.
7,992.-Norsivg Bortis.-V.H.Smith, Philadelphia, Pa
TRADE MARKS REGISTERED.
2,150.- Yast Cakes.-Amer. Y. Co., FondDuLac, W
2,151.-Crans.- Freedman \& Co., Detroit, Mich.
2,152.-NEckTizs.-Hellenberg et al., New York city.
2,153.-OIL. - W. E. Jervey, New Orleans, La.
2,154.-Tob Acco Porcres.-Novelts Co., New York cits
2,155.-Cimars.-S. Lowenthal \& Co., Cincinnati, Ohio.
156.-PIA PiNe CARDs.-V. E. Mauger, New York city

2,157.-Frlon Cure.-W. H. Puffer, Athol. Mass.
?,15s.-Shirts.-Bmilock Man. Co., Bridgeport, Con
SCHEDULE OF PATENT FEES.
on each Caveat.......
m fling each application for a Patent (17............................. on insulng each orlginal Patent. In appeal to Examiners-in-Chief....... on application for Reissuc.

In application for Design (τ years)
CANADIAN PATENTS.

ist of patents Gramted in Ca

Jandary 7 to January 8, 1874.

217.-H. .3. Wattles, Toronto City, Onc. lmprove ments on a machine for washing

ments on a machine for washing vegetables, called
"Wattles' Vegetable washer.". Janc $7,18 i 5$.
counties, Ont. Improvements on clothes wringers.
 L, 219.-C. A. Terrey, Southwark. Surrey county, Englind.
Improvements on setting diamoads in drills and cunting Improvements on setting diamonds in drills and cunt
tools, calle do ${ }^{\circ}$ Terrcy's Diamonit Cap." Jan. $\tau, 18 \pi$. ,220.-.J. I. Stock well, Lynn, Essex county, Mass., U. S. S
Improvements on boots and sloes, called "Stockwell's Combined Toe Guard and Half sole for Boots and Shocs. . . J. and C. J. Sturgeon, Eric, Erie county, Pa. ralled "Sturgcon's Improved Lawn Mower and Har-
rester.: Jan. 7 , 1875 .
,2!2.-J. Lennerton, Princeport, Colchester county, Nova
 the external application of croton oll, etc.. called $\cdots \mathrm{Fl}-$
liott's Counter-Irritant." Jan. \bar{i}, 187 T . liott's Counter-Irritant." Jan. ${ }^{\text {th }}$, 187π.
,24.-J. Vessot and S . Vessot, J., Joliette, Joliet county. P. Q. Améliorations an sémoir et herse co
binés, dits "Le sémoir, herse, et rouleau combinç J. \& S. Vessot." Jan. 5, 1875. Improvement in combined S.5.-R. B. Anderson and M. Andersun, Sackville, New Brunswick, Canada. Improvement on ventleman's
Rearf, ealled "Anderson's Improved Scarf or Xe:ktie Holder." Jan. 7, 1875.
,226.-G. W. McNeil, Akron, Summit county, Ohio.U.S.
Improvements on wheat scourers, called "McMcil? Wheat Scourer.", Jan. it, 1875.
225.-R. Cobleigh, Chestcr, Windsor county, Vt.,
Improvements in carriages for children, called leigh's Improved Children's Carriage.". Jan. $7,18 \%$, 18 .
,22gs.-J. Telfer, Toronto City,
Ont. Improvements con lamp-holding attachment to sewing machines, called
"Telfer's Lamp Holding Attaclument to Sewing Machincs." Jan. T, 1875.
292.-E. Mercier, Springfield, Hampden county, Mass.
M. Lanctot, Jersey City, Hudson county, N. J., D. H.
 2in.-Wm. S. Wooton, J. G. Blake, and H. H. Fulton,
all of Indianapolis, Marion county, Ind., U. S. Im provements on secretarles, called " Wooton's Secre-
tary." Jan. $\bar{\tau}, 18 i 5$. 231.- K. M. Wianzer, Hamiltoin county, assignee of J.
Jamison, same place. Improvements in sewing ma clines, called " The Wanzer B." Jan, τ, 1850.
,232.-Wm. Cochrane, Li Fayette, Tippecanoe count called "Cochrane's Harvestar." Jan. $\tau, 18 \pi 5$.
,23.-s. Paling, Woostoek, Oxford count, Ont. 1 st
, witension, No. 599 on " The Ontario Balanced Win. extension, No. 599, on "The Outario Balanced Win-
dow Blind." Jan. 7,1875 . 234.-S. Paling, Woodstock, Oxford county, Ont. $2 \mathrm{~d} \times \mathrm{x}-$
tension, No.598, on "The Ontario Balanced Wint: Hind.'. Jan. $9,1875$.
.23.-H. A. Diekes. New York cits, N. Y.. C.S. I
provements in hanging aut operating bells, call provements in hanging atcd operating bells, called
"Dierke's Improvements in Hanging and Operatiug
 county, Ill., U. S. Improvements in the shingling of
roofs, called "Schramn \& sons' Improvement in the Shingling of Roots. ' Jan. S. $18 \% 5$. Improvenents in heaters, called "Massic's Improved
Heater." .lan. s, 18 T. Heater. M. Miller, Buffalo, Erie county, N. Y., U. Improved Wooden Pavement." Jan. 8, 18%.
 Improvements in water filters,
sior Tiater Filter.
. Jan. s. 1875.
I. S. Improvement on rakes, ealled "Powers' lake.

Jin. 8, 15 i5. provements on apparatus for cleaning boiler tubes ly
steam, called " W. Von Essen's Steam Boiler Tube ?ti.- \mathbb{W}. A. Martin, London, Englancl. Improvements
on furnaces and furnace doors, called " Martin's Im provements on Furnace and Furnace Doors." .Jan.

Buluttismants.

Back Page
Inside Page
$\$ 1.00$ a line.
$\boldsymbol{\gamma} 5$ cents a line.
nyravings may head advertiscments at thesame rate per line, hy measurement, as the lotter press. Adver-
tisements must be received at publication office aì carly as Friday morning to appear in next issue.

A Woman in Armor.

Planing \& Matching,

