Business and edrsonal.

The Chare for Insertion under thie headi is 8 a Line.
Agriculturnl Implements, Farnn Machinery, Seeds,
Ferdilzers.

 Diamond Carbon, of atll sizes and shapes, for
dililug rock, saving stone. and turulug culury whecls.
 Planing Mill Machinery Wanted-Addrese, price
and terus, Huntci\& They, Hecrices, Norfok, Va. Whole or. Half Interest in Patent fors ale. Arti-
cle reatas for 23 c . I. C. Cowles, 3 Grintrer Block, Syriu
 Wanted, by a man of lurye experience and ae--
(uvainled with all modeth huproveunents for ceonomiazing

 Wanted-Oilicial Putent Onfice fazette, Volume 1 ,
for which a fir prle will he padd. e. O. Thompson,

 Uilers, 31 per (lozz, that are Reliable on all Machi-
nety
F. The Advertising: Agcency of Geo. P. Rowell \& Co.,

 Genuine Concord Axccs-lisown,Fisherville,N.H.

 Shect Metal Drawing Presege-For the best and
cleapest, address The Baatimore Sneet Metal Machnoe Spinning Rings of a ${ }^{\text {a }}$ Superior Quality-Whiting-
vile Spinning RIng Co., whitnosilie, Mass. Send for Mining, Wrecking, Pumping. Drainage, or Iriza-
Ing Mnchnnery, forsalc or rent. Sce davertsement. An. drews' Patent, , inslde Page.
Faughts Patent Hound Braided Belting-The
Hest

 Neatly packed and sent to oulp parts or the worlic on wecelpt
of price. F. ©. leach \& Co., 2rs Broad way, New York. Cast Iron Sinks, Wash Stands, Drain Pipe, and
sewer traps. Send for Price Llst. Balcy, Farrcil
Co.,

 For Solid Wroughtiron Beams, etc., see adver--
tisencent. Adurese Unlon Iron Mulis, Pittsburght, Pa., for Many New England Manufactories have Gas
Works, which 1 ght diem ac one fourth the cost of coat gars. For partctulars, sddreses Providence stearm and Gas
Pipe Coo., Providd nec, Hotchkiss Air Spring Forge Hammer, best in the
warket. Prices Iow. $\mathbf{D .}$. Frible \& Coo, New Haven, Ct. For Solid Emery Whels and Machinery, send to
the Unoon Stone $i=0 .$, Boston, Mass., for clrcular. 23 M Curanical Expert in Patent Cases. T. D. Stetson,
 All Fruit-can Tools, Ferracute, Bridgeton, N. J.
 Browns Coalyiud Ruarry aud cuntractor's Appa-
ratus for holstug and conreyng materills by ron cable.
 Corners Grouvtng Machlines, send to Λ. Davis, Lowell,
Mase.
The "Scientific American"

 Battery. F. C. Beach \& Co., 263 Broadway,
Makers. Send for ree llusustrated Catalogue.
For best Presses, Dies, and Fruit Can
 Peck's Pratent Drop Prose. For
suio, Peck \& Co., New Haven, Conn.

Enyines and Boilery a speciaity- Ist cless; new
patterns; late patents; reduced pricecs. Platan and cut or

Buy Boult's Paneling, Moulding, and Dove-tailing Sachine. Send for clrcular and sample of
luch'y Co., Battue Creck, Mlieh., Box 22 .
Small Tools and Gear Wheels for Models. List

M. E. W. can remove frult stains by usin will flnd full directions for mounting maps on II, vol. 31.-T. A. R. must send a sample of the
paint, before we can tell him what it contains. W. S. V. will find directions for polishing shells on p. $1 ; 2$, vol.2i.- W. L. will find that we published a
recipe fora copper dip on p. 90 , vol. 31 .-G. W. E. recipe fora copper dip on p. w, voll
$3 r$ r. will find the formula for sufcty valves on p. 10T, rol. W1. For informution on small boilers, sec the sume page-Y. will find directions for mitering
frumes on p. 342 , vol. 30 . For polish for walnut wood, sec p. 315, vol. 30 . For fllling, see p.
34 , vol. 31 .-E. M. will find a recipe for coloring gold on p. 43, vol. $30 .-$ af. will find the necded information as to removing superfluous hair
on p. 22n, vol. 28.-G. R. will find recipes for on p. 22n, vol. 28.-G. R. will find recipes for
colored fircs on p. 219, wi. 31.-J. C. S. will find diections for making marine slue on p. 43, vol. 32 .-
G. G. will find descriptions of Puscher's and other methodsfor mainting on zinc on p. 11t, Science Recanl for 18it.-A. P. will find a recipe for boot black-
ing on p. 4;), vol. 31 . -W . L. D. will find directions or making cement for joining glass on p. 359 , vol. 31, and p. 90 , vol. 30 - - E. A. N. will find directions
for making molds for plaster casts on p . 58, vol. 24 . P. W. will find a formula will find a recipe for metal for models on p. 11 , vol. 31.-RI. V. T. will find a recipe for waterproof shoc
crease on p. 15i, vol. 26.-C. A. K. will find direc grease on p. 155, vol. 26.-C. A. K. will find direc-
tions fir nickel plating with a battery on p. 1 il vol. 30. Mucilake is described on p.203, vol. 31 . (1) C. W. M. asks: How can I make varnish for gilt work? A. Take gum lac125, dragon's blood
125, annatto 125 , saffron 32 parts. Dissolve each re\sin in 1,000 parts absolute alcohol; two separate mixtures must be made with the dragon's blood and annatto, in 1,000 parts of such alcohol; and a proper portion of each sh
gamboge to the varnish.
(2) M. H. K. says: I am putting up a short
inc of telegraph wire; on account of ditficulty in line of telegraph wire; on account of difficulty in getting a good ground connection, I think of using
two wires. Can you tell me how to join them, cuble two wires. Can you tell me how to join them, cuble
fashion, in some simpic and inexpensive way, so as fashion, in some simpic and inexpensive way, so as
to get the bencft of their united strength for some long stretches? I must secure insulation properly. wires, and you will have both strength and insulation. $\stackrel{3}{\sim}$ My hattery consists of carbons, porous cups, zincs, and containing vessels. What is the best and most lasting solution to use in them? A.
For your battery, use nitric acid in the porouscups, For your battery,use nitric acid in the porous cups,
and sulphuric acid diluted with ten parts of water for the solution containing the zine.
(3) A. F. asks: What metal would answer wastfor covering the frame of a bread-delivering ected? A. Metal would be unsuitable. Painted cloth is usually omployed for the tops of bread (4) J.C.C. asks: 1. If I start from New York
t noon of May 25, and travel westward, kcepat noon of
ing cxact pace with the sull, and I meet a man
cevery ten miles, where will I meet the first man very ten miles, where will I meet the first man situde 150° west from the place in which time or How is the diurnal revolution of the earth demonstrated by the vibration of a pendulum? A. If a pendulum is set swinging in a north andsonth piauc, at any place other than the equator, the
ilane of swing will be shifted.
(5) J. W. asks: When were surnames first used? A. Among the Romans, date unknown.
They werc used about A. D. 90 in France; and in They were used a bout A. D. 900 in
England in the time of Edward II.
England in the time of Edward II.
Why does plunging red hot stcel into water make it harder, when the same process makes
copper softer? A. It has never been satisfactorily explained.
What ivould be the length of the longest boand, 3 feet wide and square on the ends, that coufd be placed diagonally across the foor of a room 12×16 feet? A. In general, a problem of this kind can
best be solved by approximation. The solution ould occupy too much space for insertion herc.
(6) I. Z. asks: Can very thin sheet iron scraps be used for making iron bars by the usual
process for making bars with the common scrap? A. Yes.
(7) T. A. G. says: 1. I have a small engine,
$y \times 2$ inches stroke. Can it be made to run a sewY/x2 inches stroke. Can it be made to run a sewing machine? A. Yes. 2. How large a boiler would
it take to run it forshoursat a time, the boiler to be made like a kettle and hang down in a small
arch made on purpose? A. It should hold from 15 to 20 gallons of water. 3. What would be the best metal for such a boiler? A. Copper.
(8) S. J. says: I have a plan for the pur-
pose of propelling a balloon. How much weight will a cubic foot of gas, such as is used for the purpose, raise? A. A cubic foot of gas will not raise any weight; butif it weighs less than the air, the latter will exerta lifting force equal to the dif-
ference of weight between equal bulks of the air ference
and sad.
(9) R. A. B. says: In No. 18 you recommend good heater and frequentblowing. What do you onsider frequent blowing? A. It will depend upon the duality of thewater, and
steams. In ordinary cases, twice a day will an stean.
swn
 $\boldsymbol{V}_{\mathfrak{F}}^{\mathrm{h}}$ I cannot read the fraction with certainty please put it in words. A. Divide the linght: 1 and multiply it by :c-1)?:
(10) Cr. S. asks: What is power? A. Th mount of work done in a given time.
(11) J. (t. A. asks: What is a good mecthod for curmer and drying flys to be put up in boxes? 1. In the East, th
sionally in ovens.
ionally in ovens.
With what can
With what can I varnish a paper balloon, so that
will hold hydrogen gas? A. lsoiled linsced oill (12) E. P. C. says: I um running a high pressure propeller with a cylinder ${ }^{30} x^{23}$ inches The main valve has 38 inch lead and $9 /$ inch lap on the steam side; but when the valve is in the center
of its stroke, the exhanst port opens into both of its stroke, the exhanst port opens into bot
steam ports $\$ / 8$ of an inch. 1oo vou think that, if put two strips in the exhaust port of the valve to to the cngine? If, so, how much would you ad'ise me to put in? The engine makes 106 revolution with 80 lbs . of steam, foilowing half strokc. .
Put in enough to kecp the exhaust open forabou Put in enough to
$1 / 4$ of the stroke.
(13) (G. B. asks: 1 . How is roofing tar pre-
pared, to be used with paper and gravel? the specifications of patented processes. 2. For what purpose is the gravel put on? A. To Hive
(14) E. A. asks: Would the draft of a street carbe increased by connecting the whiffletrec at
24 inches from the front of the car, instead of at 24 inchea from the front of the car, instead of at
$12 ? ~ A . ~ I f ~ t h e ~ l i n e ~ o f ~ d r a f t ~ w e r e ~ p a r a l l e l ~ t o ~ t h e ~$ $12 ?$ A. If the line of draft were parallel to the
plane of the rails, in the two cases, there would be no difference. If this line were oblicque to the plane of the rails, the draft would be easier for
that position which had the greatest componcnt of force resolved in a direction parallel to the plane
(1i) D. N. asks: How can I calculate the extra pressure of stcam above the pressure in the
water cylinder of a steam pump? I want a steam water cylinder of a stcam pump? I want a stcam
pump to throw waterat 180 lbs. pressure per square inch; and if the water cylinder is 14 inches in di
ameter (area nearly 154 inches), $154 \times 140=2 \pi, 20$, tal pressure in pump; and if the stcam cylinder is 24 inches in diameter, and the steam 62 Ibs., the area is $45 \cdot 2 \times 62=23,024$, which is a little over the to the pump would stand still. How can I calculate how much extra pressure it will require to drive it at50 or 101 strokesper minute? A. It is a matterthat
can only bedetermined by experiment,and thecontants will vary for different linds of pumps. The simplest way to make the experiment is to takein dicator diagrams from the steam and water cylin ders of the pump.
(16) G. A. M. says: We bought an engine out using steam power high enough to makei dangerous. The boiler is upright, with one flue inches in diameter; while the diameter of the shell is 23 inches, and hight 5 feet from ash pan to top of
dome. The thickness of shell is $3-16$, and the shell is of very purciron. The boiler leaks with 80 lbs base. The cylinder is of 3 inches diameter $X t$ inches stroke, making 200 revolutions per minute, with a plain slide valve, cutting off at about $7 /$ stroke. Engine exhausts into smoke pipe. I cannot make this nearly 3 horse power by any rule you have
ever given. A. We scarcely think that the engine is working up to 3 horse power.
(17) I). K. says: D. S. T. says that he has been running for 18 months an engine with 10×16 face plate to the steam chest and the cylinder hear are being cutaway as if by acid. You reply that it was probably caused by water being carried
over with the steam. I have been running 8 and 10 over with the steam. I have been running 8 and 10
inch engines for the last 12 years. I have had coninch engines for the last 12 years. I have had con-
siderable trouble of the same kind, but I do not think that it is caused altogether by wet steam. I firstengine isin the same house as the boiler, and has a short steam connection. A bout 18 months ago. I coramenced using tallow as a lubricant in the cylinder; and after using it about six months, the pistons began to leak steam. On taking of the
cylinder head, I found that the rings on the piston did not fill the cylinder, being too small in diamethat the bolts were half euten away on the part that passed through the follower; and the whole
surface of the inside arm, the outside ring, together with the whole inside surface of the piston head, which was exposed to the action of the tallow, were eaten a way very bad-
ly. The surface of the metal semed to be dissolved, so that I could scrupe a portion of it away
with my thumb nail. I then cleancd all thedirtof the Piston, and packed between the rings with tin until the outside ring was large enough to fill the cylinder, put them to their places, and put a ring of tin against the edge of the rings so that the followers would press against them. Then I put the !
follower on, with new bolts, and started the en-: gine, usiug lard oil as a lubricant for about six
months. Then I examined the piston again, and found that it had not bcen eaten away at all. A. which we have frequently called attention before namely, the evil effects of the acid and other deleterious ingredients in impuretallow. Good tallow,
so far as our experience goes, does not injure an so far as our experience goes, docs not injure an
engine; but it is so difficult to obtain the pure arti-
cle, that many enginecrs prefer (as our correspon
dent docs) to use oll, and we think that dent docs) to use oll, and we think that their pre-
caution is a wise one. (18) D. I. F. says, sis how much should thetail end. C.. .t.Co., who be lower than the head: All first class millers claina
that $1 / 4$ inch fall to each foot in length A. We are mueh obiged forthisinformation, which will doubtiess be useful to many of our readers.
We would be ghal to hear fromother millers. We would be glaul to hear from other millers. (10) H. B. I. says: On p. 10. vol. 31, J. G. II. says: "'To run a saw mill, we have an engine Ixiz3
inches stroke with an f fect driving wheel, belting inchess stroke with an x fect driving wheel, belting
to a pulley on the main countershaft of only 335
fect diameter, surface 1 is inches. This pulley is so fect diameter, surface 15 inches. This pulley is so
small (in order to give thenecessury specd) that the small (in order to give thenecessury speed) that the
belt will slip. Can we (by putting im anothercountels will slip. Can we (by putting im anothercoun- the mill by- welting from the enrishe and then to the present commtershaft, thercby giving an opportunity to inerease the pulleys to a
size that will prevent slip? The cnpine is said to be 60 horse power. It is argued that this extra shaft would take so much more power that the engine would not drive the mill. Can bou tell us
about howmuch power it would consume to dive this extra countershaft,it heing abouts feet long!," deciued improvement, umu the change would he eciued improvement, unl, instead of a loss, mori
of the power of the engine would be utilized than at present. For this I cannot sec any reason. The at present. For this I cannot sec any reason. The
diflicully scems to be that the transmitting power of his main belt is not sufficient either for the strength of hisengine or the work he has to do.
How is he to increase the tramemitting power of his belt by only enlurking his leading pulley, or by
adding two wheels and a shaft to his alrealy overadding two wheels and a shaft to his alrealy over-
loaded belt? In my practice, I have found that a lined belt will sometimes slip when driven by a txalsengineind $\$$ feet driving wheel, which, with twice the number of strokes per minute, would
transmit double the power that his arrangement trunsmit double the power that his arrangement
will. I would recommend, therefore, that, if he must use a 3 i inch stroke engine, and cannot get Ib foot driving wheel in, he put on two fifteen nch belts side by side, if he has room to increase
he width of his pulleys suficiently. For a circular inill, I use a 14×14 enginc and 8 fect driving wheel, or 14×13 and $i f$ feet driving wheel, with a $1: 5$ inch belt. For some years past I have recommentcd these dimensions, preferring the latter, and with no countershaft at all for either of them. 'They
make a cheap, simple, and powerful mill. A. The reason for the advantage would be that he could use larger pulleys. If you run a large pulley at small one, the velocity of thebelt is greatest in the first casc; and as the same power is transmitted as before, the tension of the licit does not need to be so great.
(20) (. M. B. asks: How can I construct a eceptacle in a garret for water from the roof of a house? It must not let the water be frozen in win-
ter or spoiled in summer. A. Jake your girret tight; and the water in an ordinary tank of 2 inch plank, grooved, dowelled, and lined with shect in sud, will not freeze in an occupied house, norspoil used. Make the tank ventilated and occasionally very high, ind place it where there may be some support bencath the foor.
(21) N. C. P. asks: If I take two screw drivers with similar points and handles, and oue of
them is 6 inches longer than the other, I have more power with the longer,and can turn a screw with it that I cannot with the short one? Why is this? A.It is because a screw driver is gencrally inclined sumewhat, when in use, so that, in the case of the long crew driver, the force acts at the end of a longer lever arm. If both tools were secured so that they had to be held at right angles to the plane of the
(22) G. B. asks: How is roofing tar prepared for usc, with paper and gravel? A. Sprcall the paper unon the reof and secure the cdges with large tacks; heat the tar in an iron vessel and
spread it upon the paper when in a fuid state; besprcad it upon the paper when in a fluid statc; be-
fore the tar cools, apply the gravel, the coarscrsize frst and then the finer. The gravel must be washed clean and then the fliner. Th.
in before used.
Ipropose to construct a henery, which I wish to ventilate. The uprights are to be ceiled on both sides, and the roof also. There is to be no plate
in the uprights; there will be a space betwcen the uprights connceted with a cupola, throurh space etween rufters, which I wish to use for the ventilating shaft. Where should the openings in said
shaft be? λ. Make small oluenings both at top and tbottom, and he careful to have openingsto admit fresh air direct from the outside, which openngs may be at bottom. You will require some plank tics across the building at the caves to prevent the roof from spreading.
(2:3) J. M. H. says: Uur city reservoir is situatcd at a distance of $21 / 2$ miles from my office;there a fall of 250 fect. 'The water enters the building short nozzle (\%/8 inch) opening, turning an enlosed vister (hbe inch) opening, turning an en inch pipe. Now under the most favorable condiions, numely, a perfectly struight pipe or connections from reservon, how much water can pass
through this $\$ 8$ inch opening per hour? The city neter charges ine li, ew gallons daily. The 115 iuth pipe conneets with street mains, distant about 100 fect. A. You omit to state two of the mostimportant elements required in a calculation of this kind; first, the size of the main pipe, which is 2% miles lonir, and second, the extent to which it is tapped to supply other buildings before it reaches
yours. Friction in pipes is a very material imped iment to the fow of water, and increases inversely to their size; and of course every tap reduces the pressure. But none of these conditions would have to be regarded, provided the fow of water at
the nozzle was determined by experiment. Note the quantity discharged, say for the first fifteen the quantity discharged, say for the first fifteen
minutes of cach hour of the day, and divide tbe
sum by the number of hours taken; the quotient
will be the avarage How per quarter hour, and will be the average Hiow pcr quarter hour, and
from this the discharge per day may be correctly nscertained.
(24) R. R.S. asks: How can I join the facia mad crown at the foot of the rake and side rafter where they arc in linc, and the foot of the rafter is
cut square? Λ. We presume the diffculty arises from the fiet that the facia or corona of yourraking cornice is vertical on the face, and that of your
level cornice is inclined on the face at a right angle to the pitch of the roof. Where the upper line of your crown molding on the rake meets that of the
crown molding on the level cornice, commence a regular miter, returning the raking cornice in to ward the building on a level, but with the facla set cornice of the building die against this reture which it can do, leaving a small triangularpiece o the return exposed,and still have the upper line of its crown molding ona line with that of the raking cornice. If we have rightly compreh
difficulty, this will be a solution of it.
(2:i) H. E. E. says: A infichljor has a water was used, and the walls leak. What kind of cement is used in cementing cisterns, and how can I mix
and apply it to this wall? Must we turn off the and apply it to this wall? Must we turn oft the
head of water and wait till the wall is dry, or can it be applied while wet? Λ. Sylvester's method for expelling moisture from external walls consists in
using two washes or solutions for covering the surface of brick walls; one is composed of Castilesoap and wert, and the othcr of alum and water. The proportions are: Thwe quarters of a pound of
soap to one gallon of water, and half a pound of alum to four rallons of water; both substances to be perfectly dissolved in the water before being temperature of the air should not be below 5 od Foh. whicn the compositions are appliea. The tirst, heat with a Hlat brush, taking care not to form froth on the brickwork. This wash should remain twenty-four hours, so as to become dry and hard
lefore the second (alum) wash is alpllied, which should be done in the same manner as the tilst The temperature of this wash manner as the tirst. and itshould also remain twenty-four hours befor a second coat of the soap wash is put on; and these is made impervious to water. This process was brick face walls of the gate house of the sith street rescrvoir, in Central Park, New York, where an infiltration had shown itself; the application wiss successful, the walls proving imper viousto the entiance of water under a pressure on whe ee head
and they remained so for 6% years when reported by him in 1sī). In an experiment, four coatings ure of 40 feet head.
(26) W. B. C. asks: What is the simplest method of smelting le method of smelting lead ore, contuining some sil
verand eopper? Λ. The galena is smelted in a re verberatory furnace and the pig lead is remelted and relinea, the silver being extracted from th pig lead and not trom the ore
(27) J. J. K. asks: How can I polish tin-
ware? \boldsymbol{A}. Hub with rottenstonc and swectoil,and then with soft leather.
(2S) (I, 'T. L. asks: What makes corn pop thatis, wurst open and swell up to a white, spongy
miss? Λ. The conversion of the water (contained in Krain) into steam.
(29) J. S. asks : How can I make soluble impal impalpable powd
(30) P. I. V. II asks: Which was the first stamship that crossed the A tlantice' A. The Sav York city.
(31) M. D. II. asks: 1. What do scene painters use for sizing canvas? Λ. Try a thin
glue size. $?$. With what are the colors mixed 1. Water, size, and turpentine. Ese the ordinar pigments. 3. What is a good work on the
paintinz in water colorst'
(33) C. K. asbs: What substance is used to harde C Kishe tray andadda little shellac.
(32) L. K. Y. asks: Of what shape is the
Leclanche battery, and of what metals and chemicals is it composedt Λ. See p. 3ti, vol. 31 .
How can I make a fine powder to give lurnish ers a high polish without scratching them? A. I
you refer toagate burnishers, use putty powder or you ref
tripoli.
alp

Please sive me a recipe f al. A. sec p.

(31) C. D. B. aski: : How can I make gnn-
 sulphur auds charcoal together, add the saltpeter mix, dimp, press into c:ikes, dry, and grunulate.
(8.5) (i. IB. I. ask: Why do variuns text
 there aresevcreth antluritics. Warner's "T Te hunology" is a recent work. iunl is probaluly ns goul an
authority on thesul, jectus caun be eonsultel. Wattes "Chemical Dictionary" will kive you several meit ing points for each metal witbout specifying the
most relialule. In sueh case each person must satisfs himself, by the cestimation he holds of the severna experimentors and the beneral character of
thcir work.
(330) A. B. C. says: I have a thick coat of bue color, which has g.one (wite rusty in places
What shall I do to get it to its proper hue? A.The What shall I do to get it to its proper hue? A.The
best method would probably ve to have it dyed.
(37) P. B. P. ask s: How can I make an or
nolu dip?
A. Brush on a thin paste of nitrate o potassa, alum, and oxide of iron, colored with any solulle pigment.
How can I
H. Sal I make a solution of sal ammoniac? soluble in water
What is grizy iron? The lower grades of cast on are so called from their grayish color
(38) E. S. V. asks: 1. What is a good method of keeping ink from freezing? I have tried
placing alcohol one quarter inch thick all are the bottle, but it freezes through it. Is there any substinee known, either in a 1 iquitid or a dry state would it, if placed around a bottle of ink, keep rom freezing? Λ. There are no perfect non-co ductors, but the losa of heat may be retarded by pings of such excellent non-conductors as cotton pings of such excellent non-conductors as cotton,
voolen, or similar fabrlcs. All such bodies of a light and porous character, including in their cavities air in astate of rest, are among the best non-conductors. 2. Why does not alcohol itself freeze? It certainly is nota non-conductor of heat, clse it would not let ink freeze through it. If it be a
conductor of heat, why does it not part with its wn heat, and freeze up? Λ. Because its freczing point is lower than the temperatures to which it thickens, and at a still lower temperature would eeze.
(3!) J. A. C. asks: How is copperas made? Protosulphate of iron (copperas, or green vitri1) is prepared by dissolving 1 part of pure iron (or
parts of its sulphide) by the aid of heat in 14 parts of oil of vitriol diluted with 4 parts of water On 111 tering the solution guickly, it deposits beaufuese efthoresce in a dry air cry stals on cooling. rust, which soon beors a owing to their absorption of oxygen.
What acid will eat iron the fastest? (40) W. D. K. asks: How is the fulminate put into the common copper cartridge? A. The quisite quantity forced into the cap, which is then arefully and thoroughly dried, and covered with coat of varnish to protect it from the weather. Please give me a good recipe for coloring woole loth a permanent black. A. Wool is dyed black y the following process: It is boiled for 2 hours in a decoction of nut galls, and afterwards kept for hours more in a bath composed of logwood and
ulphate of iron, kept during the whole time at a scalding heat but not boiling. During the operation it must be frequently exposed to the air, because the green oxide of iron of which the sulphate is composed must be converted into a red gain acquire a proper color. The common proportions are 5 parts nut galls, 5 parts sulphate of on (copperas), and 30 parts of logwood for every ly added to the sulphate of iron, to improve the color.
(41) C. V. asks: Is there any known solvent for mica? Λ. The different forms of mica arc double silicates of alumina, which contain in addi-
tion a small quantity of water and some alkaline tluoride. It is soluble in a mixture of hydrolluoric and sulphuric acid
(42) J. B. \& B. ask: What is the best powder or composition to usefor polishing or burnish-
ing German silver inoldings? A. Putty powder is much used for this purpose.
(43) W. B. asks: 1. Are pure hydrogen and oxygen gas, combined, explosive? $\boldsymbol{\Lambda}$. Yes. 2. How
can I produce and combine them on a small scale? have a solid piece of steel aboutfour feet squar and three inches thick. I wish to make an aperture in it about four inches in diameter. Can I, with
theabovegases, bring heat to bear on the spot, intheabovegases, bring heat to bear on the spot, in-
tenseenoughtoallow of cutting through with a bit? \boldsymbol{A}. The hydrogen may be obtained by the action of dilute sulphuric acid upon zinc scraps, in a close by heating, in an iron or copper bottle, a quantity of chlorate of potash mixed with one guarter its weight of black oxide of manganese (powdered).
Perhaps the best instrument for your purpose Perhaps the best instrument for your purpose
would be the ordinary concentric oxyhydrogen wlowpipe, in which the oxygen is made to enter the center of the hydrogen flame, something on the small scale. The action of this Hame on your steel plate wo
(44) F. P. L. a-ks: 1. What is used in giv P. filling or ground is generally made by painting the
canvas with coats of thin oil color, which must completely cover the threads of the fabric. which latter must be free from projecting lines and
knots. The color of the tilling is a matter of great nots. The color of the tilling is a matter of great mportance, as it is impossibleto paint a richly colthe whole, a white tilling is to be preferred, but inpoor effe colors unskilltully. Pale cream und warm darab,
are other colors much used for filling eanvas. 2 . What will kexp the canvas from wrinkling aft the first coat is applied; A. The cansus mast b strained on a wooden frame before any filling is
put on. (4.3) W. F. H. asks: How can I bleach or whiten leather that has been tanned in the ortina-
y way, without injury to the material: $\boldsymbol{\Lambda}$. It is doubtrul whethout injury to the materinis can be accomplished, as the same agents which will preserve the coloringmat(4i) affect the leathe
(46) F. C. LR. asks: Will wine keep its nat. Wines are sometimes improved by an ocean A. Wines
voyige.
(47) J. G. M. \& Co. ask: How can we lac-
quertin to a blue color? A. Use Prusslan blue guertin to a blue color? $\boldsymbol{\Lambda}$.
cround in pale'shellac varnish.
(48) I. L. ask s: What is the best fux for soda.
for outcoor sims? Grind the pigment of the required color in shellac varnish.
(49) J. C. asks: 1. Please give me a recipe or making stove polish. $\boldsymbol{\Lambda}$. Use finely powdered graphite. .2. How can I make a stove polish which, applied with a brush, produces a gloss while dry
ing: A. Fuse 2 lls, asphalr in an iron pot, add pint boiled oili mix. remove from the fire, and add a little turpentine when cool. Some makers add dryers.
(50) R. K. says: I have a lot of leaves for making manure. Can you tell me of anything to ter and wood ashes? ture and air is necessary; and hence the gardene should turn the heap over frequently and apply water when the process appears impeded, excluding rain when the heap is chilled with too much
(51) W. H. B. asks: What is meant by proor, in connection with alcoholic liguids? Λ a specific gravity of $0 \cdot 92$. If above this gravity, it said to be below proo?
(.52) A. B. W. ask s: What is a vinaigrette A A small box orbottle, used ns a smelling bottle for holding arom
or smelling salts.
or smeling salts.

1. Would
not the drinkeng of vinegar (cider or wood) act as a disinfectant to the disagreeable
 no. 3. Would the effect be only temporary; and if so, about how long would it last? A. The effect would be temporary upon the breath; the period of its effect upon the stomach would vary with dif ferent constitution. Bac breath is generally due digestion (dyspepsia). Cider vinegar ceitainly would not remove the first cause, and the second would not be improved by it.
(53) B. II. S. says: You state that a qua am think you are mistakenc as ans out of cloth. as the acid has touched the cloth. A. If the col oring matter is not destroyed, aqua ammonia will in all probability restore it, as we have tried it hundreds of times with success. In case the coloring matter is destroyed by the nitric acid, neither aqua ammo.
(ii4) S. W. C. asks: Having an iron safe, the fireproof material of which has broken loose,
wish to know how to replace the flling? plaster of Pariswith a strong solution of alum wa ter, and use quickly.
(iaj) N. L.C. ashs: Can you tell me of any always remain white after being sifted into gum araic and exposed to the air? Ω. If otherwis ized barytes, would keep better than organic bod ics such as corn starch, etc.
(56) F. N. B. asks: 1. Please give me a test a slip of paper with sugar of lead (lead sectate) and expose it near the surface of the water for a short time. If the paper is discolored, it shows the presence of sulphuretted hydrogen. Another
method is to take a small quantity of the water, into which pour a small quantity of a strong soluis proof of the presence of sulphuretted bydro gen. 2. Can water and sulphur be united artiff cially, to form whatis known as "sulphur water?"
A. Yes sulphuretted hydrogen in water, and may be hatained by the action of di tute sulphuric acid on sulphide of iron.
(iv7) C. B. asks: What is the cause of the sound on a cold night, imitating explosions of a of the ground. A. It is probably due to the free 2 ing of the sap in green wood, such as the trunks n the liguid on freezing, causing a rupture of the liber.
(:i8) L. N. L. says: In the Agricultural Re port or the year 1863, I lind the following state
nent : "Wheat contains some lime one ounce in a bushel of grain (and a little more inthe straw) while it contains rather more soda than lime, about flve times as much magnexia, nearly nine times as much as potash, and more than thirteen times as much phosphoric acid." Is this correct?
A. We find that 1ut parts of the dried griin sive per cent of ashes, and 109 parts of the driedstraw give 4 per cent of ashes. In the following table you can compare the amount of the inorganic
matters of the grain and straw. 100 parts of the ashes contain

Potash.		fax
sola	3×2	\%
Limc	115	-it
Magnesia.	13:39	19
Phosphoric acid..	$4{ }^{4} 79$	2\%.5
Oxide of iron..	11.91	
Sulphuric acid.		3.1\%)
silica.	3\%)	6389
		(m)

The composition of wheat (grain), orgenie and in
organic constituentsincluded, is: Carben
 In an ounee of phosphoric acid,there are about 20
rains of phosphorus.
(i99) A. W. asks: Which is the best acid for
tehing on lend? Λ. Use dilute nitrie acid.
(60) G.F. P. says: I have seen very fine specimens of etching on lithographic stone, the
hollowsbeing as regular and even as though cut with a chisel. How is this accomplished? A. The esign is transferred to the stone, which must be
previously perfectly clean : the surface of the tone is then moistened with dilute nitric acid, to which a small quantity of gum arabic has been added to prevent the roughening of the stone
(61) J. E. W. asks: What shoukl I do with ealth, except that at times he will sit and pant as though he had some difficulty about his brenth. . We know of no remeds: We judge, from your escription, that hebird has the asthma.
(62) R. M. asks: Are there any clemicals that will produce gas in a boiler fast enough to run
(63) C. H. C. says: In Dick's " Practical As ented by here is an account of a telescope int contains an intermediateglass called a corrector, omposed of a plano-convex lens of crown glass he cone of rays that come from the object glass; lengthentic focus achront fore where a perfect patent on such telescopes, or make them to sell, patent on such telescopes, or make them to sell,
without a patent? A. C. F. Gauss, in his "Diop.. trisehe Untersuchungen,", ik40, says: "The dialytic telescope has, instead of the lint lens, a combihis cof lint and crown placed close together. mage, if in the same focus is the red, is larger than the red. This defect is unavoidable, but it may be compensated by proper calculation of the ward the crown objective the requisite difference f focus for each ocularmay be attained." As the e is not achromatic, the secondary spectrum of a good object glass is of slight importance. We can-
not recommend the dialytic telescope as an object ftudy but the usual forms might be proftably onstructed.
(64) A. H. T. asks: How long :should the

(6ij) R. D. asks: Will grapes grown in New process? Λ. Λ monthly reportof the Department Agriculture, of 1872, says : Several grape grow raisins of fine quality. Growers sowing a vine yard, on the foot hills near Nevada City, have produccd, from $4: 0$ lbs. grapes, $1: 0 \mathrm{lbs}$. raisins of superior flavor, claimed to be equal to the best.
Malaga, and worth $2 t$ cents per pound. This fur alaga, and worth $2 t$ cents per pound. This furer pound for grapes, which is a very remunera ve figure for California. We think that the cliate in the vicinity of New York is entirely too the production of raisins
(G6) R. S. (i. asks: 1. What is the latest and most approved method of generating oxygen gas? . Heat together in a flask 1 part by weight of lack oxide of manganese and 4 parts of chlorate
f potash. $\mathbf{2}$. What is the proportion of carbonic eld gas to ordinary air, to produce asphyxia? Anything exceeding 4 per cent.
(GI) H. D. asks. 1. Does the ordinary gun
rifle powder in use give perfect satisfaction? No. 2 . Wherein is it defective? $\boldsymbol{\Lambda}$. The principal bjections arc the large volume of smoke, and the complete combustion, which necessitates the freuent cleaning of the gun. 3. How does the white laimed to do a of this powder therc are sercgrades, the highest and most powerful of which not suitable for a gun or ritle powder; and if so cotton, dynamite, or nitroglycerin would be if used for the same purpose.
(c8) A. M. says: While viewing a drop of water, thesize of a pin's point, through a micros-
cope, the animaleulæ gradually became motionless nd dim, and upon examination I found that the water had evaporated and left a stain on the object glass, which I wiped away. 1. I would like to know what became of the aulmalcule that I had
cen in the drop. \boldsymbol{A}. The animalcule could not have evaporated; they undoubtedlyremained upon the glass. .. Did any remain in the little dry stain? A. We should say so. 3. Did I terminate their cx-
istence by wiping away that stain? A. Yes. You had only to examine the glass again with the miroscope to prove the nimaleulx. 4. What look is best suited for an
mateur microscopist? $\boldsymbol{\Lambda}$. Heale's ${ }^{4}$ How to Work with the Microscope" is one of the standard auhoritics, being plain, simple, and easy to under and. Itfuly
(199) S. N. M. says, in moswer to R. O. B3., an anked: Is there any rule by which a person
and iven? There is no formulated rule, but I can tell how to find the diameter from the given data, if pains and a day or two of time, a talle can be calculated, showing the lengths of the arcs of any number of degrees snd parts of a quadrant, corresponling to the natural sincs in the common
tables, when $l t=100.00$ nand also the ratio of asine to the are. Thus: $3: 0^{\circ}: 0 \mathrm{liz}::$ any numbir of de-
crees and parts : length of the arc. Divide the leng'th of the are so found by the nitural sine (of the tables); itgive : the ratio of the sine to the arc.
Example.-Given the length of arc $=\stackrel{\sim}{2}(\mathrm{f} ;$ length of ehord=2, to find diamcter. Having made my table, By the formula above: $3 i 0^{\circ} \cdot 6.6{ }^{\circ}$ By the formula above: $380^{\circ}: 6 \cdot 2832(2 \mathrm{k} \pi):: 70^{\circ}:$
$1: 22173$, length of the arc, when $R=1$. Then
 $6 \cdot 685 \%=$ circumference of the required circle, and
$2 \cdot 128$ its diameter. If the ratio of the sine to arc is
greater than $1: 1: 5708$, the arc is greater than a semi-
circle, and indeterninate by this means. As the ratio of the arc to the sine increases slower in the irst half of the quadrant than in the last half, the number of degrees may be approsimately ostims ted by the given lengths of the $1 / 8$ arc and 1 chord and by a fewtrials, the ratio can be found without going through the long process of making out a
full table of the quadrant. A. This is not a new method, but is worth investigation.
(70) J. N. McC. says, in reply to several cor respondents, who ask as to burning slack: My ex very open. I have always used the widest I could et, not less than an ineh between the bars. I have used bars with openings of 1 1/s inches. The only secret in using it with any kind of a furnace is to have the grate bars open enough, so that the fire can be kept open from the underside of the grates, with the poker. Some coal, of course, will go hrough at first; but coarse coal or wood can be falls through the grate, and put it in again. The coal will soou cake so that it will not weste To build a furnace for the purpose, I would make it wider thaniusual, with doors in the side of the front similar to furnaces for burning sawdust. For some varieties of coal, it will be found beneficial to we the coal before throwing it into the furnace: i helps it to run together. Then put in the coal at the side your poker and roll it into the center of the ire. It will then be in large lumps and wlll not waste; and you will always have a good fre in the center. Never smother it with fresh coal."
Minerals, etc.-Specimens have been re ceived from the following correspondents,and examined, with the results stated:
R. B.-A very highly sillceous slate, perfectly compact and homogencous.-J. E. E.- Your spect men does not contain silver
J. E. D. asks : How can I make cream candy for feeding weak colonies of bees during the win-
ter? How ts the granular condition of the sugar overcome?-E. W. H. asks : How are honey locust seeds prepared for sowing?-N. N. asks: Can you tell me how to color coral afterit has been burned? - P. W. says: I havea tamc frog which in summer ives on flies. What shall I give it in winter?

Commonications recerved.

The Editor of the SCiEntric American ac-
knowledges, with much pleasure, the receipt of or iginal papers and contributions upon the following ubject
On Steam Boiler Explosions. By C. R.C. and by S.G.H.

On Brass Bearings. By T. J. $\mathbf{1 B}$.
On Ctilizing Water Power. By H. C.K.
Ona Cheap Iocomotive. By F.G. W. Oaspringe and Wells of W
On Turmellug. By J. H. S.
On a Flying Machine. By M. B. E. and by L. On Multlplicatlon and Divisiod. By G. B. G. also enquiries and answers from the following E.S. V.-K.-M.-I. B.-L.R. C.-W. H, L.-T. Λ.J
-P. B. S.-L.W.-I. E. N.-C. O'B.

HINTS TO CORRESPONDENTS Correspondents whose inquires fail to appear should repest them. If not then published, they may conclude that, for g 00 d reasons, the Editor de-
clines them. The address of the writer should always be given.
wayo be given.
Enqr.Irles relating to patente, or to the patenta-
bllity of Inventions, assignmenta, etc., will not be publishedhere. All such questions, when initial only are given, arc thrown into the waste basket, a it would fill half of our paper to print them all but we generally take pleasure in answering briefl by mail, if the wgiter's address is given. are sent: "Who makes balloons? Who sells ma chines for hulling barley, and also for grinding oatmeal? Where can machines for marking boxwood rules be obtained? Are thereany makers of rallway tlcket printing machines in the United States? All such personal enquiries are printed. as will be observed, in the column of "Buslness and Person-
al." which is specially set apart for that purpoes al." Which is specially set apart for that purpose,
subject to the charge mentioned at the bead of that oolumn. Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS
Lecters Patent of the United States
Granted in the Week ending December 29, 1874,
AND EACH BEARING THAT DATE.

[Those marked (r) are relsbued patents.]	Pump, force, W. W. Green. Pumps, bucketforchalu, W. C. Barker
Atr	Range, e. O. Brinckerhof
Ammonla, mavufacture of, L. S. Fales............ 158,2	Screw taps, cuttlng, w. Tuck
Atomizer, hydrocsibon, C. E. Robinbon 158,816	Screw-threadtng devlce, C. W. Robert
Auger, carth, Hitchlage and Eynon................ 15y,2;6	Separator, graln, G.\& J.R. Beachl
Augers, twist, W. Tucker.................. 158,337	Sewing machlne, T. S. Hunting
Bage, plling, J. D. Platt............................ 158,506	Sewlng machtne needic bar, (f. A.
Rale the, W. G. Caln. 158	Sewtng machl
Bark ing woud, machine for, O. W. Clark.......... 159,47	Sho
Harrel heads, Planing, E. and B. Holmes......... 158,21s	Shoe fastentng, G. Merril
Beefteak crusher, J. W. James................... 158.238	Sletgh fender,
Beer barrels, vent plug for, J. A. Munn 158,930	Sletgh thill, L. Lyon
Beer coollng house, itc., J. J. Schillinger 158.319	soap, maklng, R. Freeland
Belt shifter, Hill and Proctor....................... 158,173	Soda fountaln, J. W.
Blacult board, A. P. Forman....................... 158,266	Sods water cock, H. Fraber
Bllnd atop, W. A. Clark........................... 158,200	spinnlug mules, clearer for,
Boller, agriculturat, J. G. Smith. 159,822	Splnning ring, J. G. Lamb.
Bolt, door, F. W. Brucksleper.................... 158,2	Spring torston, R.Dud
Bootand sboe chai, el opener, F. D. Ballou....... 158.	Springa, manufa

Bridge, truas, L. L. Buck.
Bridge, t ugs, J. B. Winter Buckle, harness, P. Burns.
Burner, lamp, J. Curzon..
Butter bucketfastenlng, etc., Thlelepa pe et al
Cap, etc., knitted. P. L. Slay
Caraxie box, Fryer andHall
ar axle box, Fryer andHal
ar couplling, G. R. Moore.
Car coupling, E
ar coupling, E. Stone
W. H. Ward
Car couplling, C. C. Wligon
Car. dumplng. J. E. Bemis
Car
r, dumplng, R. Eaton.
Car spring, .J. W. Cochran.
Carrlage, chlld's, Betn and Ulitch (r)
'arrlage handle, chlld $\mathrm{t} \beta$, C F
Carilage handie, child $'$,
Churn power, ${ }^{\prime}$. Rauh.
locks, striking mechanism of, fi. Clark.
Clud crusher, D. B. Baruet.
olumn, Iron, L. Lirkup..
cooler, water, W. F. Garrison
Cotton worn polison distributor,
Cullinary steamer, W . M. Smith.
utlery, manufacture of, W. H. \& G. W. Miller
Dental engine dextbe shaft, E. T. Start........... 158,9 derrick for fuld cans, S. N. Blodgett Desk, school, F. M. Gllchrist Dlgere and cultersator, potato, A. Croobs Doorplate, F .. Avey............
Drill tube clamp, J. Fleming... Drying animal charcoal, L. Colwell. Elevator rafety attachment, H. F. Bathrick Elevator safety lock, H. Carille
Embankments, construction of, E. Bush Embankments, construction of, E. Bush
Engineand pump, rotary; Smith and Robicho Engine, atatlonary, C. S. Crane (r) Enginc, balanced valve, R. Wrigh
E:ngIne governor, M. Muchlu.... Einglne governor, M. Muchil Eyecup,P.S, Stephens............
Eycleting machine, J. E. Wiggln. Faucet, beer, Steveb and llrederion Fenceplecketmachlne, I. Levy
Fence, portable, J. W. Harttey Fitth wheet, s. B. Hitt.
Firearm, breceh-loadlng, F. Smitb Flour bolt, G. T. and A. Smilh
Fork, egg, C. A. Read........... rult drier, W. S. Plumme Furnaceand atove, J. H. Tompmpou
Furnace, boller, J. c. Ramadel Furnaee boller oven, blast, H. Ha Furnace grate, K. A. Hutchinaon ...
Furnace, hydrocarbon, \mathbf{c}
Gas, coal, M. W. Kldder
Gas, coal, M. W. KIdder.............
Gas regulator, Det wiler and Fa Sen
Glas retorts, ilnng, E. G. Wellma
Glasn, duplex drebsing. H. S. Woo
Graln cleaner andscourer, \boldsymbol{A}. Hough
Grate, M. Mahony.
Grate, Bre place, J
Grate, Bre place, J.S. Lester
Grater, almond, J. Levy
Griper, ilfthe, H. H. stuar
Hammer, buah, R. K. Cit
Harvester, J. P. Manns.
Harvester rake, T. G. G
Hay tedder, H. Moore...
Hoe and chopper, comblned, c. H. Gaylor
Hoe and chosper, combined, C. H.
Hog-holllnglmplement, A. L. Hill.
Hook, Bnap, G. Reynold
$\underset{\text { Horsepower, R. Stlles............. }}{\text { Horseblioe, Kintzing and Hopper. }}$
Hydrocarbon a tomizer, c. E. Robinnon Indlcator, T. S. Keunard
Insect destroyer, F. A. Eldridge.
Knife, cheese, Phlllips and Young
Knife-grindlng machlne, Hill and Proctor Knltilng machine, Reedand Mulligan Knliting machline, P. L. Slayton
ens-8electing dertice, G. Meyer
ock, Beal, a nd Indlcator, J. L. Howard
Loom for plle \&abrices, J. Cochrane,
Loom pleker rod, Kent and Parker..
Loom picker rod, Ken
Lubrictor, M. Evans.
Matt crusher, A. Dobler.
MIll splndle, W. S. Bacon....
Mirror attachment, H. S. Wood
Mower, lawn, A. Grobch, Jr...
Needle blanks, etc., 8wagl
Nut lock, A. F. Dlmond....
Organ reed board, R. Burdett.......
Paper and twine holder, B. F. Eat
Pa perartlcles, formlng, J. W. Jarbo
Pa per, ruled, H. D. Cone....
Paper. Winding machine, b.
Photographle plate, P. Ner
Plpe couplling, C. E. Dulln
Pipes, Joint for lead, C. F.
P.
Plane, bench, C. Nordell...
Planter, seed,
Planter, seed, J. R. Sample.
Pllerg, cuttlng, T. P. Farmer
Plow, H. D. Smith1.
Plow, whect, I. R. Gllbert
Pocket, sa fety, P. Smith
Power by fuld
ower by fulde, transmittling, H. Pleq
Printed sheets, dry
Prunink shears, J. J. Brititow.
Pump, force, W. W. Gre.
Pumps. bucketforchalu,
Range, E. O. Brinckerhof....
Screw taps, cutting, w. Tuck
Screw-threading device, C. W. Roberte
Separator, graln, G.\& J.R. Beachler..
sewing machine, T. S. Huntington.
ewtng machlne welt gage, F. D. Ballo Shoe, c. \mathbf{v}. Hinl.
Sletgh fender, J. Cobb
soap, making, R. Freeland.
Soda water cock, H. Frabe
Splnning ring, J. G. Lamb
Springe, manufacturing door,
Stone, dressing, F. L. King..

138,197
158,377
188

DESIGNS PaTENTED.

7.959.-Bucsi.et.-V. Prlce, Woodelde, N. Y

Morse, Rochester,N. Y.
W. Vedder, Troy, N. Y.
w. Wright, Glaatunbury, Ct.
W. J. Reagan, Royer

TRADE MARKS REGISTERED
2.140.-Labilbs-Allen, Lane \& Scott, Phlladelphls, Pa. 2,141.-CionR9.-Goldmmith \& Scwhurgh, Clncinnati, \mathbf{O}
2,142.-JIt.-Holzinger \& Bruckhelmer, New York clty.

2.145.-Cigarb.-W. H. Romerman, Jackbonville, 111 .
2,146.-Shirt Bobons. - S. Sihley, Boston, Masb,

SCHEDULE OF PATENT FEEA.
On each Caveat........
On each Trade mark.
On fillng each appllcation fors Pat
On tseulng each original Patent
On appeal to Examiners.In.Chte
On appeal to Commlastoner
On application for Rel
On alling a Disclalmer
On an appllcation for Design (34, yea On applleation for Design (7 years)
On application for Dealgn (14 years)

CANA IAN PATENTS.
List of Patents Grinted in Canada
December 28 to December 29, 1874.
4,205.-H. Smulh, Hamburg, Waterloo county, Ont. Im.
provements in wind wheels, called " smitb"s Improved Wind Power wheel." Dec. 188, 1874 .
4, wio.-J. Tesseman and P. Smith, Dayton, Montgom-
erycounty, Ohto, U.
erycounty, ohio, l. S. Jmprovementa in salve gea
for steana engines nud pumph, called "Improvementa
In StcamPump Valve Gear."' Dec. 28,187 is.
,200.-F'. P. Mackelcan,Montrenl, P.Q. Improve
, 20OT-F. P. Mackelcan,Montreul, P.Q. Improvementso a machine for pulling ntumpa,
Stump Machinc." Dec. 28, 18it.
, M (4. - W. G. P. Cabscle. Toronto City, Ont. Improve
rator." Dce. 28, 14 it
 P. Q. Improvements in holter
etable Boller." Dec. 28, 18 it.

4,210-H. D. Giblis, Batavis, Genesee county, N. T.. L.S.
Improvements indeltces for connecting thenecky yoke
with the draft poles of vehicles, called "Gibbe" 1 m
proved Neck Yoke Clasp." Dec. 29,18i4.
in1.-F. H. C. Mey, BuIsalo, Erle county,
Improven
Graln and
Grain and Malt liryer." Dec. 2s, INit.
4, 212.-G. Wbite, London Townhip, Mddlesex county
Ont. Improvemeuts on parts of carrlages. called
"Whtte's Improvements on c'arrlage Axles, Springs "White's Improvement on Carrlage Axiea, 4,213.-T. Gavin, Montreal. P. Q. Amellorationsauy boltes a tamlser les cendres de charbon de terre, par
Thomas Gaven," called "Improvements in Sifters for

P.-D.W. Slprell,RIvtere du Loup, Temlscouata county

Improved Reamer." Dec. 2y, 1874 .
ands.-F. H. Date, Nlagara, L:ncolin county, Ont. Im
provements on the manufacture of llluminating zas
called "
county, X. Y., E. C. Gregg and C.
county. ,. Y., E. C. Gregg and C. P. Gregk, Trumans
burg, Tompklingcounty, N. Y., If. S. Improvements in wheeled horse rakes, called "Cllition and Wood's Im
proved Horse Rake." Dec. 29, $88 i 4$.

Advertisaments.

Back Paze Inslde Pare

81.00 a line. Eurravings may head andertise mots at the same rate per line, by measurement, at thdetterpress. Adver
tlsements must be receitad at pubitcat hon oftce as early ars Frlday moming to appear in next isprec.

 FOR-

UUTPURLISHED.

Steam Pumps STMET CASTINGS,

 Shapies Engine,

Model Engines. Castinges

DFCATUR

Agriedlulual Horts ror sate.

 + TPants Stretemer W7. $2=$

Useful and Rare Chemicals.

"

Planing \& Matching,

RUHRDSO, MERIAM \& Co,

T The Lion Iron Mills, Pittsburah, Pa.

