Zusiness and exrsonal.

The Chare for Insertion under thie headi is 8 a Line.
Agriculturnl Implements, Farnn Machinery, Seeds,
Ferdilzers.

 Diamond Carbon, of atll sizes and shapes, for
dililug rock, saving stone. and turulug culury whecls.
 Planing Mill Machinery Wanted-Addrese, price
and terus, Huntci\& They, Hecrices, Norfok, Va.

 Wanted, by a man of lurye experience and ae--
(uvainled with all modetu huproveurents for ceonomizizng

 Wanted-Oilicial Putent Onfice fazette, Volume 1 ,
for which a fir prle will he padd. e. O. Thompson,

 The Advertising: Agcency of Geo. P. Rowell $\&$ Co.,

 Genuine Concorl Axlcs-lifrown,Fisherville, N.H. Protect Your Houscs-Champion Burblar Alarm
:o. No. to West isth st, New Sork. Send for clreular.

 Shect Metal Drawing Presege-For the best and
cleapest, address The Baatimore Sneet Metal Machnoe Spinning Rings of a ${ }^{\text {a }}$ Superior Quality-Whiting-
vile Spinning RIng Co., whitnosilie, Mass. Send for Mining, Wrecking, Pumping. Drainage, or Iriza-
Ing Mnchnnery, forsalc or rent. Sce davertsement. An. drews' Patent, , inslde Page.
Faughts Patent Hound Braided Belting-The
Hest

 Neatly packed and sent to oulp parts or the worlic on wecelpt
of price. F. ©. leach \& Co., 2rs Broad way, New York. Cast Iron Sinks, Wash Stands, Drain Pipe, and
sewer traps. Send for Price Llst. Balcy, Farrcil
Co.,

 For Solid Wroughtiron Beams, etc., see adver--
tisement. Addrese Unlon Iron Mulis, Pittsburght, Pa., for Many New England Manufactories have Gas
Works, which 1 ght diem ac one fourth the cost of coat gars. For partctulars, sddreses Providence stearm and Gas
Pipe Coo., Providd nec, Hotchkiss Air Spring Forge Hammer, best in the
warket. Prices ow. For Solid Emery Whels and Machinery, send to
the Unoon Stone $i=0 .$, Boston, Mass., for clrcular. 23 Mcchanical Expert in Patent Cases. T. D. Stetson,
 all Fruit-can Tools, Ferracute, Bridgeton, N. J. Hydraulic Presses and Jocks, new and second
nand Lates and Machnory for Polishng and Bumng
Metals. E. Lyon, tioctrand Street New York. Brown's Coalyurd Cuarry aud cuntractor's Appn-
ratus for holsting and conreynn matetrill by ron cable.
 Mass. "Scientife Americean" Office, New York, is
The
nited with the Minatature Electric Telegraph. By touching

 Battery. F. C. Beach \& Co., 263 Broadway,
Makers. Send for ree llusustrated Catalogue.
For best Presses, Dies, and Fruit Can
 Peck'spatent Drop Press. For
silio, Peck \& Co., New Haven, Conn.

Enyines and Boilery a speciaity- Ist cless; new
patterns; late patents; reduced pricecs. Platan and cut or

Buy Boult's Panelling, Moulding, and Dove-tailing Sachine. Send for clrcular and sample of
luch'y Co., Battue Creck, Mlieh., Box 22 .
Small Tools and Gear Wheels for Models. List

M. E. W. can remove frult stains by usin will find full directions for mounting maps on p.
!1, vol. 31.-T. A. H . must send a sample of the paint, lefore we can tell him what it contains. W. S. V. will find directions for polishing shells on
p. $1 / 2$, vol.2i.-W. L. will find that we pulished p. $1 ; 2$, vol.2i.- W. L. will find that we published a
recipe fora copper dip on p. 90 , vol. 31 .-G. W. E. Jr. will find the formula for sufcty valves on p. 107, vol. 31. For inf will find directions for miterin frumes on p . 342 , vol. 30 . For polish for wal-
 ing gold on p. 43, vol. 30 - - Mf. will find the needed information as to removing superfluous hair
on p. 22n, vol. 28.-G. R. will find recipes for on p. 22n, vol. 28.-G. R. will find recipes for
colored fircs on p. 219, wi. 31.-J. C. S. will find diections for making marine slue on p. 43, vol. 32.-
G. G. will find descriptions of Puscher's and other methodsfor dainting on zinc on p. 11t, Seience Recanl for 18it.-A. P. will find a recipe for boot black-
ing on p. 4;), vol. 31 . -W . L. D. will find directions or making cement for joining glass on p. 359 , vol. 31, and p. 90 , vol. 30 - - E. A. N. will find directions
for making molds for plaster casts on p . 58, vol. 24 . P. W. will find a formula will find a recipe for metal for models on p. 11 , vol. 31.-RI. V. T. will find a recipe for waterproof shoc
crease on p. 155, vol. 26.-C. A. K. will find direc grease on p. 155, vol. 26.-C. A. K. will find direc-
tions fir nickel plating with a battery on p. 1 il vol. 30. Mucilare is described on p.203, vol. 31 . (1) C. W. M. asks: How can I make varnish for gilt work? A. Take gum lac125, dragon's blood
125, annatto 125 , saffron 32 parts. Dissolve each re\sin in 1,000 parts absolute alcohol; two separate mixtures must be made with the dragon's blood and annatto, in 1,000 parts of such alcohol; and a proper portion of each sh
gamboge to the varnish.
(2) M. H. K. says: I am putting up a short line of telegraph wire; on account of ditficulty in getting a good ground connection, I think of using
two wires. Can you tell me how to join them, cuble two wires. Can you tell me how to join them, cuble
fashion, in some simpic and inexpensive way, so as fashion, in some simpic and inexpensive way, so as
to get the bencft of their united strength for some long stretches? I must secure insulation properly. wires, and you will have both strength and insulation. $\stackrel{3}{\sim}$ My hattery consists of carbons, porous cups, zincs, and containing vessels. What is the best and most lasting solution to use in them? A.
For your battery, use nitric acid in the porouscups, For your battery,use nitric acid in the porous cups,
and sulphuric acid diluted with ten parts of water for the solution containing the zine.
(3) A. F. asks: What metal would answer bestfor covering the frame of a bread-delivering
wagon, to carry the warm bread and leave it unafected? A. Metal would be unsuitable. Painted cloth is usually omployed for the tops of bread (4) J.C.C. asks: 1. If I start from New York
t noon of May 25, and travel westward, kceping exact pace with the sull, and I meet a man very ten miles, where will I meet the first man situde 150° west from the place in which time or How is the diurnal revolution of the earth demonstrated by the vibration of a pendulum? A. If a pendulum is set swinging in a north andsonth piauc, at any place other than the equator, the
ilane of swing will be shifted.
(5) J. W. asks: When were surnames first used? A. Among the Romans, date unknown.
They werc used about A. D. 90 in France; and in They were used a bout A. D. 900 in
England in the time of Edward II.
England in the time of Edward II.
Why does plunging red hot stcel into water make it harder, when the same process makes
copper softer? A. It has never been satisfactorily explained.
What ivould be the length of the longest boand, 3 feet wide and square on the ends, that could be placed diagonally across the foor of a room 12×16 feet? A. In general, a problem of this kind can
best be solved by approximation. The solution ould occupy too much space for insertion herc.
(6) I. Z. asks: Can very thin sheet iron scraps be used for making iron bars by the usual
process for making bars with the common scrap? A. Yes.
(7) T. A. G. says: 1. I have a small engine,
$y_{4} \times 2$ inches stroke. Can it be made to run a sewY/x2 inches stroke. Can it be made to run a sewing machine? A. Yes. 2. How large a boiler would
it take to run it forshoursat a time, the boiler to be made like a kettle and hang down in a small
arch made on purpose? A. It should hold from 15 to 20 gallons of water. 3 . What would be the best metal for such a boiler? A. Copper.
(8) S. J. says: I have a plan for the pur-
pose of propelling a balloon. How much weight will a cubic foot of gas, such as is used for the will a cubic foot of gaise? A. A cubic foot of gas will not
purpose rem raise any weight; butif it weighs less than the air, the latter will exerta lifting force equal to the dif-
ference of weight between equal bulks of the air ference
and sad.
(9) R. A. B. says: In Xo 18 you reconmmend
 consider frequent blowng? , ind the way the bolice
on the fuality of the water, steam
swer.

In No.5!,same date, the last equation is: $t=8 \cdot x$			

the friction. take the square root of the quotient, and multiply it by :c-1)?:
(10) Ct. S. asks: What is power? A. The mount of work done in a given time.
(11) J. A. A. asks: What is a good method for curinim and drying flgs to be put up in boxes? A. In the East, th
anally in ovens.

With in ovens.
With what can I varnish a paper balloon, so that
will hold hydrogen gas? A. lsoiled linseed oil. (12) E. P. C. says: I am running a high pressure propeller with a cylinder ${ }^{20} x^{2 x}$ inches The main valve has 38 inch lead and $9 /$ inch lap on the steam side; but when the valve is in the center
of its stroke, the exhanst port opens into both of its stroke, the exhanst port opens into both
steam ports $\$ / 8$ of an inch. 1oo wou think that, if put two strips in the exhaust port of the valve to to the cngine? If so, how much would you adr'ise me to put in? The engine makes 106 i revolution
with 80 lbs . of steam, foilowing half stroke. with 80 lbs. of steam, foilowing half strokc.
Put in enough to keep the cxhaust open forabou Put in enough to
$1 / 4$ of the stroke.
(13) (. B. asks: 1 . How is roofing tar pre-
pared, to be used with paper and gravel? A. See pared, to be used with paper and gravel? A. See
the specifications of patented processes. 2. For what purpose is the gravel put on? A. To G1ve
(14) E. A. asks: Would the draft of a street carbe increased by connecting the whiffletrec at 24 inchea from the front of the car, instead of at 12? A. If the line of draft were parallel to the
plane of the rails, in the two cases, there would be no difference. If this line were oblique to the plane of the rails, the draft would be easier for
that position which had the greatest componcnt of force resolved in a direction parallel to the plane.
(15) D. N. asks: How can I calculate the extra pressure of stcam above the pressure in the
water cylinder of a steam pump? I want a steam water cylinder of a stcam pump? I want a stcam
pump to throw waterat 180 lbs. pressure per square inch; and if the water cylinder is 14 inches in di
ameter (area nearly 154 inches), $154 \times 180=2 \pi, 720$, total pressure in pump; and if the stcam cylinder is 24 inches in diameter, and the steam 62 Ibs., the area is $45 \cdot 2 \times 62=23,024$, which is a little over the to
tal pressure in the pump. If they were hoth alike the pump would stand still. How can I calculate how much extra pressure it will require to drive it at50 or 101 strokesper minute? A. It is a matterthat
can only bedetermined by experiment,and thecontants will vary for different linds of pumps. The simplest way to make the experiment is to takein dicator diagrams from the steam and water cylin ders of the pump.
(16) G. A. M. says: We bought an engine out using steam power high enough to mukcit dangerous. The boiler is upright, with one flue inches in diameter; while the diameter of the shell is 23 inches, and hight 5 feet from ash pan to top of
dome. The thickness of shell is $3-16$, and the shell is of very purciron. The boiler leaks with 80 lbs steam. The engine is vertical, standing on separatc
base. The cylinder is of 3 inches diameter $x+$ inches stroke, making 200 revolutions per minute, with a plain slide valve, cutting off at about $7 / 8$ stroke. Engine exhausts into smoke pipe. I cannot make this nearly 3 horse power by any rule you have
ever given. A. We scarcely think that the engine is working up to 3 horse power.
(17) D). K. savs: D. S. T. Eays that he has been running for 18 months an engine with 10×16 face plate to the steam chest and the cylinder hear are being cutaway as if by acid. You reply that it was probably caused by water being carried
over with the steam. I have been running 8 and 10 over with the steam. I have been running 8 and 10
inch engines for the last 12 years. I have had coninch engines for the last 12 years. I have had con-
siderable trouble of the same kind, but I do not think that it is caused altogether by wet steam. I
am now running two engines from one boiler ; the frstengine is in the same house as the boiler, and has a short steam connection. A bout 18 months ago. I coramenced using tallow as a lubricant in the cylinder; and after using it about six months, the pistons began to leak steam. On taking of the
cylinder head, I found that the rings on the piston did not flll the cylinder, bcing too small in diame-
ter. On taking the follower off the piston I found that the bolts were half euten away on the part that passed through the follower; and the whole
surface of the inside arm, and inside surfaec of the outside ring, together with the whole inside surface of the piston head, which was exposed to the action of the tallow, were eaten a way very bad-
ly. The surface of the metal semed to be dissolved, so that I could scrupe a portion of it away
with my thumb nail. I then cleancd all thedirtoft the Piston, and packed between the rings with tin until the outside ring was large enough to fill the cylinder, put them to their places, and put a ring of tin against the edge of the rings so that the followers would press against them. Then I put the !
follower on, with new bolts, and started the en-: ginc, usiug lard oil as a lubricant for about six
months. Then I examined the piston again, and found that it had not bcen eaten away at all. A which we have frequently called attention before namely, the evil effects of the acid and other deleterious ingredients in impuretallow. Good tallow,
so far as our experience goes, does not injure an so far as our experience boes, does not injure an
enginc; but it is so difficult to obtain the pure arti-
cle, that many enginecrs prefer (as our correspon
dent docs) to use oll, and we dent docs) to use oll, and we think that their pre-
caution is a wise one. (18) D. I. F. says,
sks how much should thetail end of a do foot bolt be lower than the head: All first class millers claina that $1 / 4$ inch fall to each foot in length is enough. . Whll doube mueh obliged forthisinformation, which We would be blaul to hear fromother millers. (10) H. B. I. says: On p. 10. vol. 31, J. G. II. says: "1To run a saw mill, we have an engine 14x 3 lij
inches stroke with an K fect driving wheel, belting to a pulley on the main countershaft of only 3 Ss fect diameter, surface 15 inches. This pulley is so
small (in order to give thenecessury speed) that the small (in order to give thenecessury speed) that the
belt will slip. Can we (by putting in anothercountelt will slip. Can we (by putting im anothercountershatt improve the will be welting from the en-
gine and then to the present commershaft, thercby giving an opportunity to inerease the pulleys to a giving an opportunity to inerease the pulleys to a
size that will prcvent slip? The cmpine is said to be 60 horse power. It is argued that this extra
shaft would take so much more power that the enshaft would take so much more power that the enGine would not drive the mill. Can sou tell us this extra countershaft, it being abouts fect long!" o which you imswer that the change would he deciued improvement, uml, instead of a loss, mori
of the power of the engine would be utilized than at present. For this I cannot secany reason. The dillicully seems to be that the transmitting power of his main belt is not sufficient either for the strength of hisengine or the work he has to do.
How is he to increase the tramemitting power of his belt by only enlurking his leading pulley, or by
adding two wheels and a shaft to his alrealy overadding two wheels and a shaft to his alreally over-
loaded belt? In my practice, I have found that a 15inch belt will sometimes slip when driven by a txalsengineind $\$$ feet driving wheel, which, with twice the number of stroses per minute, would
transmit double the power that his arrangement will. I would recommend, therefore, that, if he must use a $3 j$ inch stroke engine, and cannot get Ib foot driving wheel in, he put on two fifteen nch belts side by side, if he has room to incrcase
he width of his pulleys suficiently. For a circular inll, I use a $14 x 1 \mathrm{c}$ engine and 8 fect driving wheel, or 14×13 and of feet driving wheel, with a 1 : inch belt. For some years past I have recommented these dimensions, preferring the latter, and with
no counterahaft at all for either of them. 'They no countershaft at all for either of them. 'They
make a cheap, simple, and powerful mill. A. The reason for the advantage would be that he could use larger pulleys. If you run a large pulley at small one, the velocity of thebelt is greatest in the first casc; and as the same power is transmitted as before, the tension of the licit does not need to be so great.
(20) (i. M. B. asks: How can I construct a eceptacle in a garret for water from the roof of a tor or spoiled in summer. A. Make your girret tight; and the water in an ordinary tank of 2 inch plank, grooved, dowelled, and lined with sheet in summer, if well wen occupied house, norspoil used. Make the tank ventilated and occasionally very. Make the tank broad on the floor and not support beneath the foor.
(21) N. C. P. asks: If I take two screw them is 6 inches longer than the other, I have more power with the longer,and can turn a screw with it that I cannot with the short one? Why is this? A.It is because a screw driver is generally inclined sumewhat, when in use, so that, in the case of the long
screw driver, the force acts at the end of a longer screw driver, the force acts at the end of a longer
leverarm. If both tools were secured so that they lever arm. If both tools were secured so that they
had to be held at right angles to the plane of the had to be held at right angles to the plane of
work, one would be as efficient asthe other.
(22) G. B. asks: How is roofing tar prepared for usc, with paper and gravel? A. Sprcad the paper unon the reof and secure the edges with
large tacks; heat the tar in an iron vessel and large tacks; heat the tar in an iron vessel and
spread it upon the paper when in a fuid state; besprcad it upon the paper when in a fluid statc; be-
fore the tar cools, apply the gravel, the coarscrsize frst and then the finer. The gravel must be washed rest and then the fliner. Th.
cefore being used.
Ipropose to construct a henery, which I wish to ventilate. The uprights are to be ceiled on both sides, and the roof also. There is to be no plate
on the uprights; there will be a space betwcen the uprights connceted with a cupola, throurh space etween rufters, which I wish to use for the ventilating shaft. Where slould the openings in said
shaft be? A. Make small olicnings both at top and tbottom, and he careful to have openingsto admit fresh air direct from the outside, which openngs may be at bottom. You will require some plank tics across the building at the caves to prevent the roof from spreading.
(23) J. M. H. says: Uur city reservoir is sitwatcd at a distance of $21 / 2$ miles from my office;there a fall of 250 feet. The water enters the building short nozzle (\%/8 inch) opening, turning an enlosed vister (hbe inch) openig, turning an a inch pipe. Now under the most favorable conditions, namely, a perfectly straight pipe or connec-
tions from reservoir, how much water can pass tions from reservon, how much water can pass
through this $\$ 8$ inch opening per hour? The city neter charges me lī, eno gallons daily. The 1 k inch pipe conneets with street mains, distant about 100 fect. A. You omit to state two of the mostimportant elements required in a calculation of this kind; first, the size of the main pipe, which is $21 / 2$ miles lonif, and second, the extent to which it is tapped to supply other buildings before it reaches iment to the fow of water, and increases inversely to their size; and of course every tap reduces the pressure. But none of these conditions would pressure.
have to be regarded, provided the flow of water at
the nozzle was determined by experiment. Note the quantity discharged, say for the first fifteen the quantity discharged, say for the first fifteen
minutes of cach hour of the day, and divide tbe

