THE VEGETABLE FIBERS AT THE UNIVERSAL EXPOBI TION VENA.

by profe or dr. julios wirgiter Number II.
In the English colonisl exhibit. furthermore, there wer dirplayed two East Indian fibers, up to the present time quite unknown to European commerce. We refer to the yercum fiber and the jetee fiber, which, sofar as tenacity is conceraed, throw all the vegetable textile fibers with which we are acquainted into the shade. The first is the fibrous bark of caletropis gigantea, and the latter that of Marsdenia tenacisalma. A comparative estimate of strength is afforded by the following example: A jute cord of given size wih support, ay 140 lbs., while a cord of jetee fiber of the same diameter will support a weight of 248 lbs ., the ratio of strength being very nearly as one to two. For the manufacture of ropes and cordage needing great tenacity, the above na
The tiber sunn, finally, is worthy of some attention on the part of our hemp and coarse flax manufacturers. This is a very strong fibrous material obtained for many years in India from the crotalaria juncea, extensively cultivated in India, ava, and Borneo. Since its first introduction to European manufacturers, which occurred at the Paris Exposition in 1867, the wunn has been to some extent employed in Eng. land. The appearance of this material is not very prepossessing, the commercial rroduct resembling tow more than anything else. 'This is, however, to be attributed to the method of its preparation. By the employment of a more complete mode of separation, the fiber could be much im. proved in fineness and homogeneity. Strength and great ability to withstand alternations of wet and dry are its chief characteristics.
In one qualification-namely, its want of hygroscopic pro-perties-the sunn surpasses every known fiber; and whereas the last named raw materials are able to absorb from 16 to 22 per ceut of moisture from the air (and some the known thattake up as much as 40 to 50 percent by weight of troisture when exposed to a damp atmosphere), the sum, ander ordinary circumstances, contains only 5 to 6 per cent of water, and can absorb, from an atmosphere charged with moistnire, only 10 to 11 per cent. As these raw products are sold by weight, and no account is taken of the weight of moisture absorbed therein, this property of the sunn is worthy of consideration.
The colonial exhibits were likewise rich in their display of manilla hemp and cocoanut fiber; to these, however, it is unnecessary to do more than simply refer, inasmush as our manufacturers are already sufficiently familiar with their qualities. 'The material called pite, the fiber of certainagavo', has been introduced in Vienna within the past few years under the name of fibris, and so largely employed, in the manufacture of bruahes and the like, that it may be of inerest to name the countries that make exhibits of the raw material. These are: Martinique (agave Mexicann) Guadeloupe (a. Anve icana and a. faltida),Guiana, Brazil, Venezuela (the pxhibit of this country, called cocuisa fiber is closely allied to the pite; it is the product of Fourcroya giganten), India, Mauritius, Réunion, Algeria and others. Central and South America, however, are the chief producers of this fiber. The piassara of Brazil, with which we are already familiar, was likewise well representedat the Exposition.
Before passing over to the consideration of the vegetable silk and wool, and of the vegetable horsehair displayed at this exhibition, it will be well to enumerate some of those vegetable textile materials, thus far entirely unknown to commerce, but which are largely utilized in their native countries, and may in time play an important rolē in our textile industries. In this enumeration belongs the bark
fiber of numerous species of hibiscus (h. camabinus,tiliaceus, fiber of numerous species of hibiscus (μ. cammabinus,tiliaceus,
sabdariffa, etc., found and utilized chiefly in India); the genusabdariffa, etc., found and utilized chiefly in India); the genu-
ine aloes and ananas fibers; and the racou orvacoun, consisting of the leaf fibers of the pandanus, and produced chiefly in Réunion, Mauritius, and the French colonies.
The so-called vegetable silk, the seed tufts of numerous asclepiadacce and apocynacep, were happily not so strongly represented as at the recent Paris Exposition. At that time the French colonies presented such a quantity and variety of these products that one was tempted to regard them as wares of much importance.
In spite, however, of the heauty and eminent luster of these silks of the vegetable world, their techuical value is very small. The fiber is both weak and brittle, and therefore poorly adapted for woven fabrics. And unfortunately these are the varieties that might be placed in the market in nnlimited quantities: the seed tufts,for example, of asclepins giganten and curasarctica, that are least valuable for industrial purposes. In this connection, the seed tufts of Berelmontea (East Indies) appear not to have received the attention that the material deserves, inasmuch as its comparatively greater strength would appear to render it more adaptable
for utilization than those previously named for utilization than those previously named
The vegetable silk appears to be far better adapted for the manufacture of artificial flowers and similar artistic workin which direction it has been considerably employed-than for textile uses. It has likewise been suggested as a substitute for down in filling bolsters, pillows, and the like; but for this use, the brittleness of the fiber will be likely to prove a serious objection. The samples of this product at the Exposition were almost exclusively from the French colonies; and in the published catalogue of their exhibits its merits were placed in the most flattering light.
was nowhere exhibited sare as an article shown in practice to be an excellent substitute for mattrass filling. This fine material consists of the seed tufts of several trees of the family bombaceck. Of these raw materials we noticed the following varieties on exhibition: paina limpa, from Brazil (seed tufts of bombax heptaphyllum and b. ceiba); the kabok, from the Dutch colonies(obtained from eri)dendron an frattoosum); the Edrédon végétale, from the West Indian French colonies, called also patte de licire (from Ohironia lagopus); Venezuela exhibited, under the name of laine régétale, the wool of both O. lagapus and \boldsymbol{B}. cumunensis. The wool of O. lagapus is brown, while that of the several bombax species is white, or only slightly- colored. All of the vegetable wools above enumerated consist of a delicate, not brittle fiber, which forns when in bulk a soft, elastic mass, well adapted for the purpose to whirh it is applied (see bove)
In Holland, the kapos is very largely introduced; and in Germany, likewise, the wooly product of eriodendron an frae tuasum, under the name of vegetable down, has recontly bee introduced. The statement,occasionally met with in books, that these vegetable wools, either alone or in mixture with cotton, could be satisfactorily made into woven fabrics-upon which point,I have on a former occasion expressed my doabts on account of the weakness of the fibers-appears to be quit erroneous; at all events, no such goods were at the Exposi tion, nor were any of the exhibitors aware that this result had ever been accomplished; in addition to which,all the ex hibits were entered as bedding materials.
In addition to the above, a number of coarse vegetable fibers, generally characterized as vegetable horsehair (crin dégétale), a re deservingof notice. The desirability of securing a cheap substitute for the expensive horsehair, which should possess similar ptoperties, and resemble it closely enough to be mistakè for it on cursory observation, has long beeth felt in several important branches of industry. In Austria and Germany, the leaves of carex brizöides, brough into the market from Cpper Austria and certain quarters of the Grand Duchy of Badon, is ased in oiromous quantitie as a substitnte for horsehair. The material in question is
but slightly ehastic and not very darable, and affords only but slightly elastic and to $\begin{aligned} & \text { ver } \\ & \text { an indifferently } y \text { god subtitute. }\end{aligned}$.
 the split leaves bf tre twarf paln(chemacrops humilis), is a far superior articłe for this yaniose, and it is now being im ported into Europe froin Algetia in large quantities. The same material has lately been broughtinto the Vienna mar ket for bedding,' and colored black (the natural color of the product is green); it is known by the name of Afrik, and is em ploved for a great variety of uses. 'Ihe introduction of the
crin d'njrique has unquestionably been of great utility to crin dajrique has unquestionably been of great utility to
numerous industries. Despite its excellent qualities, how ever, the leaf of the dwarf palm is by no means the best sub stitute for horsehair with which we are acquainted. Of far greater value for this purpose, inasmuch as they possesa the properties of horsehair to a much higher degree, are to be mentioned the three fibers ejoo,pitool, and caragate. The ijoo fiber, called also gomuti fiber, is the product of a very common sugar palm of India (arenga saccharifera), and occurs in the form of a black horsehair-like mass, growing on the stems where the leaves have been attached. This fiber re-
mains behind when the leaves fall off. The black fiber ditool has a similar origin. It is derived from the palm species, caryota mitiy (Réunion) and c. urens(India, Ceylon). The best substitute for horsehair, however. is without ques tion the fiber caragate, called also tree hair. This fiber is a portion of the aerial roots of a parasitic plant (bromelincea) infesting certain trees, and occurring in Tropical America It attains alengthof 8 or 9 inches,and in appearance,elasticity and tenacity approaches so closely to the genuine horsehai hat an ordinary observer will scarcely be able to distinguis the difference. By burning one of the fibers, however, its
vegetable character may be readily established by the ab. vegetable character may be readily established by the ab
sence of the characteristic odor of burning horn, which ac companies the combustion of horsehair and similar anima matters. The following very essential difference between the two materials, which is observable upon close inspection, will serve to distinguish them apart quite readily: 'I'he horsehair consists of one single fiber throughout its length, while the caragate consists of a succession of branched fibers. A he present time Guians is perhaps the most important pro ducer of this valuable material, and the only objectionable
feature incident to its introduction is found in the fact that dealers employing it cannot resist the temptation of repr senting their goods as being made of the genuine article. The coarse fibers were represented at the Exposition by the eaparto fiber, and another obtained from Spanish cane, by mechanical disintegration. Ropes, cords, etc.,made from the position, having been exhibited for the first time. Ropes, and the like of the esparto formed one of the features of the Paris Exposition of 1867, and their reappearance at Vienna demands no special notice in this report.

Permanence of Vital Power

In clearing away the refuse from the ancient silver mines of Laurium, in Greace, a large number of seeds of a papaver acea of the glaucium genus were found, which must hav o the beneficent influence of the sun's rays, they rapidly took root, flourished, budded, and blossomed, their yellow corollas being beautiful in the extreme. This interesting Hower, unknown to modern science, is particularly and frequently described in the writings of Pliny and Dioscorides, and is thus again resuscitated, after having disappeared fro the surface of the globe for more than fifteen centuries.

In one of Jean Paul Richter's novels-if our memory serves us rightly, in that one called Der Comet-the hero is said to have had, when a boy, a peculiar light visible around his head when in a darkened room, something like the aureole or nimbus with which the old painters used to represent divine or saintly personages. Richter, who in such matters faithfully followed the extraordinary in Nature, gives, as his wont is, various references to medical works wherein such a phenomenon is mentioned. There is indeed no question of the correctness of such observations. But the explanation of the phenomena has been insufficient.
Dr. Brown-Séquard, in a recent lecture, quotes an analog ous phenomenon. He remarks that there are animals which are phosphorescent, and which are so under an act of their wills, so far as we can judge, and under the influence of the nervous system; so that light also can be evolved as a trans. formation of nervous force. There are cases of consump tion in which light has come from the lungs. The fact has been pointed out by Sir Henry Marsh and other physicians The light appears not only at the head of the patient, bu t may be radiated in the room. It has been considered that the light was only a peculiar effect of the mucus that came from the lungs of the patient. Dr. Brown-Séquard continues _" It is not likely that this is the case, because mucus in reater quantity is evolved, and all sorts of mucus, from the chests of the people, every day, without any such phenome on. I have read the history of each individual case of the kind, so farasi have been able to gea it, and in every one of the cases, the patient, I find, was in a terrible state of ,
If this were shown beyond a peradventure, our theories of nerve force would undergo material alterations, as it vould at once come into the category of the forms of motion, and be seen to be a correlate of light, heat, etc. To this in vestigation seems tending, but no one can aver that it has been proven.-Medical and Surgical Reporter

decibions of the cotrts.

United Statem Circuit Court.o-Eastern Dintrict of Pennsyivania.

\qquad

United Staten Circuit Court.---Southern District

or ohio.

(October Term, A. D. 1873.-Rehe ariog October Termi, A. D. 187 T .1

