On the contrary, if it possesses the least weight, this weight is a force which would cause it to fall, unless it were buoyed up. by something else. If it is sufficiently light, however, its tendency to descend is counteracted by the buoyant force of the air, and it ascends. Placed in a vacuum, it would immediately fall. Some illustrations may be introduced. to render this point plain. Suppose that a cubic foot of some substance, weighing in the air 400 pounds, is wholly immersed in water, which weighs 62 pounds per cubic foot. By the immersion, a cubic foot of water is displaeed to make way for the substance, and, by its effort to return, presses upward against the substance, with a force of 62 pounds so that the body, if weighed during immersion, will be found to have its original weightdiminished by 62 pounds, and will balance the scale at 338 pounds, instead of the 400 required when weighed in the air. Now if, in place of this heavy body, we immerse a cubic foot of some other substance, which weighs only 40 pounds, the water, as before, will press up with a force of 62 pounds; and as the body only exerts a downward pressure of 40 pounds, it will rise, under the in fluence of the unbalanced upward pressure of 22 pounds The action of the air on all bodies immersed in it is precisely similar to that of the water, except that most bodies are so much heavier than equal bulks of air that the effects are not ordinarily noticed. For instance, a cubic foot of arr o ordinary pressure and temperature weighs about $\frac{183}{8.50}$ of pound; so that a substance, one cubic foot in capacity, which weighs 400 pounds in the air, will weigh $399 \frac{1}{2} 8 \frac{4}{3} \frac{7}{3}$, or prac tically the same, in a vacuum. It is obvious, here is some difference in the weights as estimated in the air and in a vacuum; and since the weight of the air varie somewhat at different times, the absolute weight of a body is its weight in vacuum. Of course, the weight of a body in he air is ordinarily sufficiently accurate, and it is only in delicate scientific researches that the method of weighing in vacuumis employed.
From the foregoing considerations, we are led to conclude
1st. If a body is wholly immersed in any fluid, it will be pressed upward by a force equal to the weight of a volume of the fluid equal to the volume of the body.
2nd. If the upward pressure is less than the weight of the body, the latter will have a tendency to fall, under the ac tion of a force equal to the difference between the body's weight and the weight of an equal volume of the fluid
3d. If the upward pressure is equal to the weight of the lody, the body will have no tendency either to fall or rise.
$4^{\text {th. If }}$ the upward pressure is greater than the body's eight, the body will have a tendency to rise, due to a force equal to the difference between the weight of a volume of Huid, equal to the volume of the body, and the weight of the body. These principles are a concise statement of the theory of a balloon's action. If we have a body whose weight per cubic foot is less than the weight of, a cubic foot of air, the body will rise with a force equal to the difference between the body's weight and the weight of an equal volume of air. For instance, if a balloon is flled with hydrogen, the air wil exert a lifting force of about $\frac{10}{100}$ of a pound for each cubic foot in the volume of the balloon, so that, if the weight of the balloon and car is less than this lifting force, the balloon will uscend. If common illuminating gas is used in the bal loon, the lifting force will be about $\frac{1}{5}$, of a pound for each cubic foot of the balloon's volume. The weight of the ma erial in a bulloon varies greatly, of course, according to the construction, some balloons only weighing, with the net work, about of a pound per square foot of surface, or ven less, and others weighing as much as $\frac{1}{s}$ of a pound per square frot of surface. The ordinary shape of a balloon ap proximates closely to that of a sphere, which it is commonly assumed to be in making calculations. An example is ap pended to illustrate the application of the preceding state menls:
A balloon has a diameter of 40 feet, the weight of the ma erial and netting is $\frac{1}{8}$ of a pound per square foot of surface the weight of the car and contents is 600 pounds, and the gas which distends the balion is subjeet to an upward press ure of $\frac{1}{86}$ of a pound per cubic foot
The volume of the balloon is 33,510 cubic feet, so that the upward pressure due to the air is about 1,340 pounds. The surface of the balloon is $5,026 \cdot 5$ pounds, so that the weight of material and netting is about 628 pounds, to which must be added the weight of the car, making a downward pressure of 1,228 pounds; hence the unbelanced upward ressure, which causes the balloon to ascend, is about 112 pounds. It will now be evident, we think, that the lifting force of a balloon is entirely due to the air, and is impeded, nstead of being assisted, by the gas; so that it would be better, if it were practicable, to make a balloon with a vacuum in the interior.
It must be remembered that, as a balloon ascends above the earth's surface, the air in which it is immersed grows contin ually less dense, so that the lifting force becomes less and less, unless the volume of the balloon is increased. Thus at about 18,000 feet elevation, the air is only about half as dense as at the sea level; at 36,000 feet elevation, t as dense, and so on. Hence balloons are rarely filled at the surface, as we have explained in former descriptive articles. We have also detailed the methods of manufacture, varnishes employed, etc., so that it only remains to explain the manner of calculat ing the size of a balloon required to fulfil given conditions.
In making the estimate for a balloon, one can generally scertain the weight of the car and contents, the differenc of weight of a cubic foot of air and of the gas to be employed
(which may be called the buoyant effort), and the weight of the balloon with its ropes and network per square foot of surface. It is then required to find the diameter of a baloon which will have a tendency to rise with a given force.

The calculation by which this is determined is somewhat complex, but it will be found explained at length below, an example being added for the purpose of further illustration The following quantities must first be ascertained :

1. The buoyant effort, or difference between the weight of cubic foot of air and of gas
2. The weight, which includes the weight of everything except the material of the balloon and the netting, together with the lifting force.
3. The superficial weight, or weigbt of the material and etting, per square foot of the balloon's surface.
The operations for finding the required diameter are ns follows
(a). Divide twice the superficial wight by that buoyant effort.
(b). Divide 8 times the cube of the superficial weight by the (b) of the buoyant effort
(c). Divide 0.95493 times the weight by the buoyant ,ffort (d). Multiply $15-27888$ times the cube of the superticial weight by the weight, and divide the product by the fourth power of the buoyant effort.
(e). Divide 0.91188 times the square of the weight by the buoyant effort.
$\left(j^{\prime}\right)$. Add together the quantitias obtained by rules (d) and (e), and take the square root of the sum
(g). Add together the quantities obtaiued by rules (b), (c), and (f), and take the cube root of the sum.
(h). Add together the quantities obtained by rules (b) and (c), subtract the quantity obtained by rule (f), and take the cube root of the difference
(i). Add together the quantities obtained by rules (a), (g), and (h). The sum will be the diameter required
Example: It is required to find the necessary diameter of a balloon, the following data being given
The weight of the car and contents is 475 pounds, of the valve 25 pounds, and the air is to exert a lifting force of 100 pounds. The gas in the balloon is to be such that the difference between its weight and that of a cubic foot of air shall be 0.04 pound. The weight of the material and netting is to be 0.12 pound per square foot of balloon surface.
Pursuing the same steps as indicated in the preceding ules, we find:
4. The buoyant effort $=0.04$ pound
5. The weight $=475+25+100=600$ pounds.
6. The superficial weight $=0 \cdot 12$ pound.
(a). $2 \times 0.12 \div 0.04=6$
(b). $8 \times 0.001728 \div 0.000084=210$
(e). $0.95493 \times 600 \div 0.04=14,324$.
(d). $15 \cdot 27888 \times 0.001728 \div 0.00000256=6,187,946$
(e). $0.91188 \times 360,000 \div 0.0016=205,173,000$.
(f). $V(205,173,000+6,187,946)=14,538$
(g). $v(216+14,324+14,538)=30 \cdot 75$.
(h). ${ }^{2}$ ($\left.216+14,324-14,588\right)=1 \cdot 26$.
(i). $6+30 \cdot 75+1 \cdot 26=38 \cdot 01$ feet, required diameter

This explanation will doubtless render the method plain o all who are sufficiently interested to devote a little attention to the matter; and such readers would do well to work out other examples from assumed data.
As there are many who like to know the reasons for a result, we have added the method by which the rules are obtained, which can readily be verified by those who are familiar with algebra. Let
$b=$ buoyant effort, $W=$ weight, and $a=$ superficial weight
The balloon is to have sufficient volume that the upward pressure of the air, which is the volume of the balloon nul tiplied by the buoyant effort, shall be equal to the weight, ncreased by the product of the superficial weight and the surface of the balloon. Assuming that the balloon is in the forn of a sphere, this condition is expressed by the following equation, calling x the diameter of the balloon:
$0.5236 \times b \times x^{3}=\mathrm{W}+3.1416 \times a \times x^{2}$
From which we deduce:
$==2=0$

the same value as was given in the foregoing rules
It will be evident, by inspecting the equation of condition, that the same method can be applied to any form of balloon whose volume and surface can timpressed algebraically.

SENATE CONFIRMATIONS.

We are informed that the nominations of Captain J. M. Thacher as Commissioner of Patents, and General Ellis Spear as Assistant Commissioner, have been confirmed by the Senate, and also that of Major Marcus S. Hopkins as a member of the Appeal Board
It is gratifying to be able to say that they are all gentle. men of the highest personal character, possessed of ability and experience. 'T'he duties committed to their charge are of great importance, and will, we trust, be discharged with unswerving fldelity. They have before then a splendid opportunity, by an honest and liberal-minded administration of the Patent Laws, to secure the public confidence, and win for themselves individually, an honorable and widely extended fame.

We are requested to state that the case of the rotary lower, illustrated and described in our last issue, is formed of cast iron, bored out true, and bolted firmly to the heads of the machine. The mention of "light boiler iron, formed up very truly and inserted into the heads of the machine," is an error.

sCiEstific and practical infogmation

NEW VARNIBH FOR METAL WORK

A late Italian patent contains the following recipe for a arnish for protecting metal work: A paste is made of finely pulverized quartz, carbonate of potash, or oxide of lead and water according to the color required. A thin coat of this is applied with a brush to the object, which is then placed in a muffe, and heated to $1,495^{\circ} \mathrm{Fah}$. The articles emerge covered with a sort of polished glass, which resists blows and which doos not split nor scale off, while it serves perfectly to protect the metal against oxidation.

Since the revoking of the concessions obtained by Baron Reuter from the Shah of Persia, for the construction of the railways in that country, Kussia hus been negotiating for the privilege, and the success of her diplomacy is now an. ounced.
Russian capitalists will furnish the funds,and the line to be built will connect the Caspian and Black seas through Tiflis and the port of Peti. The Shah guarantees 6 per cent of the cost of such portions of the road as enter his dominions.

electroplating on china.

M. Hansen has recently patented in France the following process for electroplating on a non-conducting material: Sulphur is dissolved in the oil of Lavendula sprica to a sirupy consistence. Sesquichloride of gold or sesquichloride of platinum is then dissolved in sulphuric ether, and the two solutions are mingled under a gentle heat. The mmpound is next evaporated until of the thickness of ordinary paint, when it is applied with the brush to such portions of the china, glass,etc., as are desired to be covered with the electrochina, glass,etc., as are desired to be covered with the electro-
metallic deposit. The objects are baked in the usual way before immersion in the bath.

imitation gold.

An alloy having a very fine and malleable grain, susceptible to a high polish and impervious to rust (which, while closely resembling gold, may advantageously replace that metal in a variety of cases), is made of 100 parts pure copper, 17 parts tin, 6 parts magnesia, 3.6 parts sal ammoniac, 1.8 parts quick lime, und 9 parts bitratrate of potassa. The copper is melted first,and the magnesia, ammonia, lime, and tartrate are successively added in small quantities. The tin in small pieces is then placed in the crucible, and the whole brought to fusion for 35 minutes, after which the alloy is allowed to cool
effect of flame un an electric bpare
Mr. S. J. Mister notices a curious effect of a gas flame on the current of a Holtz machine. The jet consisted of a glass tube drawn out to a point, and the flame bad a length of about an inch and a diameter of only an eighth of an inch. Inserting this between the two terminals of the machine, the length of spark obtainable was at once increased from less than ten inches to over twelve, the full distance to which the balls could be separated. The same increase was not obtained on simply inserting a conductor between the two terminals, a ball an inch in diameter only lengthening the spark about an inch.

a new galvanic batters

A new battery is manufactured by Messrs. C. \& F. Fein, of Stuttgart, which is said to be remarkably cheap and to have a coustant current, with high electromotive power. It consists of a three-necked jar, similar to a Woolff bottle. In onc of the side oriftces is inserted a charcoal plate, and in the other a strip of amalgamated zinc, the last covered with cotton. By means of the center tube, pieces of coke and pre. oxide of manganese are inserted until the bottle is about two thirds full. The remaining space receives a concentrated solution of sal ammoniac. The center tube terminates above in an inverted flask, the neck of which is extended down to the level of the liquid. The flask is also filled with the sal ammoniac solution, and, by affording a continual supply, provides against loss by evaporation. The contact between the charcoal and the copper conducting wire is made by platinum plates. The battery remains constant for a year, and is said to be easily cleaned and renewed.
hippophagy in france.
During the fall of 1874, Paris ate 1,555 horses, asses, and mules. A horse, which,for his skin,hoofs, etc., alone, is worth but about five dollars, brings as food, in the markets of the French capital,five times that sum.

Gas Irom Crude Petroleum.

In a reply recently given to one of our correspondents in respect to this subject, he was informed that many attempts had been made to employ crude petroleum for the manufac. ture of illuminating gas, some of which are in progress, and that, as yot, the various inventors have not succeeded in perfectly overcoming the practical difficulties.
The Ashtabula Neves, Obio, objects to this reply, because, says, Ashtabula is now and has been for more than a year lighted by gas made from crude petroleum by a process invented by Dr. Wren of Brooklyn; that the process is entirely successful and very economical ; and that among other places which are now using this gus we may name. Shelbyville, In. diana, and San José, California.

We are glad to record these evidences of successful progress in the use of crude petroleum, and we hope that gas engineers in all parts of the country will send us reports of what they are doing in that line. Crude petroleum is a very cheap, abundant, and valuable natural product. Its success. ful, economical use for gas illumination will be of great ad. vantage to the country.

