Mr. Culley to Mr. Browning, whomonnted them soas toshow their leading peculiarities. Close to these microstopes were placed sume specimens of gutta percha insnlated wire fretly marked be them.
Another novelty was an electrical gas-lighting apparatus exhihited by Mr. Thompson. 'This consisted of a very small portable apparatus. held easily in the hand. At the upper part was acurved rod with a bell cup to it, which was placed over the gas to be lighted; the lower part, near the handle, contains a small electrophorus, the upper plate of which was lifted by the thumb or finger of the hand holding the handle. The electric spark from this is arranged to pass across a small space where the gas has mixed with the atmosphere in such proportions as to become explosive. Immediately the spark passes, the gas ix lighted. This instru ment, though new in Iondon, has heen in use here for some three reurs.

OCEAN TELEGRAPHY.

Sunnter II.
The workingspeed of eregen cathles with the mirror sustem is as follow:

	Knuta, , , (mat.	Kats, 1, 5 \%.	Knots.2.00\%.	Knuts, 2.5 50)
100	18:3	$8 \cdot 1$	$4 \cdot 6$	2.9
150	80.	$1: \%$	$6: 9$	$4 \cdot 4$
200	:170	16.4	$9 \cdot 2$	\%9
250	16.1	204	11.2	$7 \cdot 4$
300	5250	$24 \cdot 4$	$14 \cdot 0$	8.8
3.50	(34 1	28.5	16.0	$10 \cdot 3$
400	73.2	30\%	$18 \cdot 3$	$11 \cdot \%$

The apparatus empioyed in the transmission of communi. cations through ocean cabless is the invention of Proferssor Sir William Thomson. Ampère suggested, as early as the srur 1820, the employment of a galvanomester for the purpose of selegraphing, and in 1833 Gauss and Weber used a redect. ing galianometer as an indicator upon a line about one mile in length, uniting the Observatory and the Physical C'abiuet at. Göttingen. Their alphabet. was made up of combinations of right and left deflections. This apparatns, the first wer employed for practical telegraphy, has lately, in the hands of Professor Sir William Thomson, become the most sensi. tive of all telegraphic instruments. His reflecting galvano. meter is the only instrument at present with which a cable 2,000 miles in length can he successfully worked by a battery of low tension. It consists of a needle formed of a piece of watch spring, three eighthsof an inch in length. The needle is suspenderl by a therad of rocoon silk without torsion. The needle lies in the center of antexeedingly delicate galvino. meter coil. A circular mirror of silvered glass is fised to) the needle, and reffects at right angles: to it in the plane of its motion. It is so curved that, when the light of a lamp isf thrown througha fine slit on it, the inange of the slit is retlected on a scale uhout three feret off, placed a littl: nbore the front of the flame. Detlections to that extent of half un inch along any part of the scale arst :3nflicient for one sigrimi. In so delicate an instrument, the sluggish swing of the neredle in finally settling into any position would destroy its ase. fulness. To rectify this, a strong magnet, about eight inches long and bent convave to the instrument, is made to slide up asd down a rod placed in the line of the suspend. ing thread aloove the instrument. This magnet cun be easi) y shifted, as necessity may require. The oscillations of the needle due to itself are, b-the aid of the strong magnet, made so fudden and short as only to broaden the spot of light.

The above illustration (Fig. 6) shows the construction of the instrument. The galvanometer, P, contains the multiplication wire, divided into several layers and so arranged that it can be used for weak or strong currents, according to the requirements of the instrument. In the center of the coil the magnetic needle is suspended, to which is attached the tiny mirror, and close before it is to be found a small rollective lens, whereof the focal point lies almost in the mirror, in order to pmduce a slasp figure of the prism on the scale.
The magnetic needle has a length of only $\frac{3}{5}$ of an inch, a breadth of $\frac{1}{18}$ of an inch, and a thickness of $\frac{1}{1 / 2}$ of an inch.
The mirror connected with the needle bas a thickness of only ato of an inch. The magnetic needle is made from a small piece of a very fine watch spring, and the little mirror, from ne of the thinnest microscopic cover glasses. The magnetic needle and mirror used for signaling across the Atlantic weigh only $1 \frac{1}{2}$ grains.

The entire box which encloses those parts is hermeticully closed. The ends of the multiplicator wires are soldered inside the box to two screw posts, $x y$, wherewith the instru ment is connected with the cable.
A curved steel magnet, N S, is fixed to a brass lmr, P, in uch a way that, by turning the micrometer screw, V, any required removal, upwards or downwards or to the right or left, can be given to it; and by this means the magnetic needle, when in a state of rest, is kept in such a position that the picture of the slit, D , which is reflected from the middle of the mirror, and likewise returns through the lens, appears upon the zero mark of the scale, M M.
Opposite the galvanometer, the scale, M M, and the lamp F, are to be seen. The light from the lamp penetrates through the slit, D , in an oblique direction to the looking glass, and is thrown back from it to the scale somewhat upwards, in the direction, F , where the picture of the slit is to le seen as a fine liglit line. The sicreen, N, can be turned u, undserves to keep the lamp light from the scale. The instrument is necessarily used in a darkenen room.

The: transmitting key is shown in Fig. $\underset{子}{ }$. It consists of two separate levers, L ant E. moving on axes at the upper end in the figmore. They are kept, by springs, pressing agrainst the cross plate, (', which is in the battery. L is connected with the cable and \mathbf{E} to the earth. When either key is pressed down, it falls on the plate, Z, in connection with the other pole of the battery. In the normal position of the key, the cable is connected, through L, C, and E, to earth, how a positive or negative emrrent is put to line according as L or E is de. pressed.
The ulphabet is made by opposite movements produced by one or other of the keys. The signals need not be mude from zero as a starting point. The eypan pasily distinguish, at any point in the scale to which the spot of light may be dethected, the beginning and the end of a signal, and when its motion is caused by the proper action of the needle or by currents. It is thus that the mirror galvanometer is adapted to cable signaling, not only by its extremedelicacy, but als by its quickness. The deflections of the spot of light have been aptly compared to a handwriting, no one letter of which is distinctly formed, but yet is quite intelligible to the prac tised eye. Signals in this way follow each other with won derful rapidity. A low speed of from twelve to sixtern words perminute is adopted for public: messages; but when Whe operators communicate with each other, a speed of twenty-four words per minute is somethmes attainerl.
Condensers are used at both ends of the Atlantic cables, by meuns of which the speed is very consideral)ly increased. The term condenser lat; long been used umong electricians to denote an arrangentent, in a moderute compass, equivalent to a leyden jar of enormous rapacity. It is composed of at ternate layers of mica or parafined payer and linfoil. One coating of thiss Leyden jar is put in direct communicution with the conductor of the cable, and the other is joined t the sending kev. At the other end of the cable one coating of the condenser is connected with the cable and the other coating with the receiving instrument. The condensers are each equal to about 70 miles of the cable. The condenser serves two purjoses: it lessens the delay caused ly induccon, and prevents the disturbance of the signals by earth currents. The cable and condenser being insulated, there is no voltaice circuit, and n
enter and leave the line
Ther and leave the line
The question is often asked: "What is the velocity of electricity"' or " how long does electricity take to go across the Atlantic Ocean \because " Electricity cannot properly be said to have a velocity, but differs with the circumstances under which it travels. For about two tenths of a second after contact is made with the conductor of an Atlantic cable, no offect is perceptible on the opposite side of the ocean, even by the most delicate instimment. After fourtenths of a se condl, the sereived current is alonat 7 per cent of the maxi mum jermanent current which the battery could produce in the circuit. One second after the first contact, the current will reach a bout half its final strength, and after about three seconds its full strength. The current does not arrive all at once, like a bullet. hut grows gradually from a minimum to a maximum
The Direct United States Cable, which is now being laid letween Ireland and Nova Scotia, and thence to Rye Beach, New Hampshire, is 3,060 nautical miles in length. The core is composed of a thick copper wire encircled by eleven very fine copper wires, weighing 480 pounds per mile, and is served with four coatings of gutta percha, measuring about three eighths of an inch in diameter. After the ser ving with gutta percha comes a serving with manilla hemp which brings the core up to a thickness of three fourths of an inch; and then follows the sheathing with iron wire, which forms the outer covering of all. Ten iron wires are cable, they are each wound with five strings of manilla hemp, so as to impart greater strength, and protect them from the action of water. The hemp covered wires are served with a species of black compound resembling tar or pitch; and after being twisted around the core, they are again served in this manner, and finally whipped with Italian hemp, which, however, can scarcely be said to do more than bold the strands in their places until the whole becomes hard and dry: This is the deep sea portion of the cable.

The shore ends are of varying sizes, graduating from about The shore ends are of varying
?dinchesdown to $\frac{7}{8}$ of an inch.
The Birect United States Company expect to obtain a speed of about nine words per minute, or about one half tluat of the present Newfoundland and lreland cables.
The French Atlantic Cable, laid in 1868 between Brest and St. Pierre, has 400 pounds of copper per mile, is 2,584 knot:: in length, and has a working speed of fifteen words per min ute.
The contract price of the Direct United States C'ible, laid down, is $\$ 6,055,000$. The cost of the Anglo-American Cable -betiveen Ireland and Newfoundland-laid down, was $\$ 1,500$ per mile.
The Direct United States Cable lum been laid from Ireland to within a distance of about 200 miles of Nova Scotia; but owing to unfavorable weather it had to bec cut and buoged. It will probably be recovered again нs soon ats favorable weather ensues, and its laying be sulcessfully completed When this is arcomplished, there will be five working tables across the North Atlantic and one alrows the South Atlantic ceans.
Salmarine telegraph catbles now extered across the North and South Atlantie, Indism, and Gertmen Oceans; the Mediterramean. Recl, North, Baltic, C'hinese, Oriental, Japan. Javn, and ('aribbean Seas; the cillfs of Biscay; Bengal Mexico, and St. Lawrence, und the struitm of Bass and Ma reca : thus placing North and South Ameries, the West In dies, Europe, Indii, Iuva, Anstralia, Tasmauia, and Sileria in constant and jastantaneous telegraphic commmication, as well as alfording communication with the most important ports in China and Jupan.
The following is a list of the more important cubles which are in working order at the present time

Date. From,
8.,51. Dover, Engluma, to Calals, Frunce..
Rio Holyheud, Wates, to Howth, Irelanc Port Patrick, Scotlaud, to Donagbadee, Ireland Prince Edwurd Island to New Brunswick
Ikiz3.

1kit. Dorer, Enusland, to Ostend, Bengium Port Patrick, Scotland, to Donaghadec, Ireland Sweden toDenmark Holyhead, Wales, to Howth, Ineland Srete or Candia to Syra, Greeve Acrois the A mazon.
Ceuray across the
England to Holland
18: in . Denmark to Hellgoland
falc of Man to Whitehaven, Enylund Sreden to Gottland
Fonkentone, Ensland, to Buhlopat: Frmene Malta to Sicily.
Iit Gunt lielt De France
Ciape sit. Martin, Spain, to catuleat Inize to Majoica
xebl. Corfu to Otranto, Italy 1)ieppe, France, to Newhaven, kithithul

88:. Wexford, Ireland, to Aberman, Nonles.
Lowertoft, England, to 7 midramt, Holliand
wit. Fuo, Persis, to Bushire, Pervía.
rughier Pers Mo Perviu
Gwadar, Beloochistan, to Kurrachec, Irittish c, British India. Trelleborg to Lo Avona, Turkey South Foreland, England, to Case Griguez, France
rititi. Ireland to Newfoundland
L,ynul's hay to White's Bav
Crimua to Clrcassia.
Enumiand to Buenos Ayres
Cape Ray, Newfoundland
Cape Ray, Newfoundand, to Aspee Bay, Cape Breton Persian Gulf.
South Foreland, Englund, to La Panne, France Malta to Alexandrla, Eeypt.
Placentia, Newfoundland, to St. Pier St. Pierre to Sydney, Cape Breton.. Irendal, Norway, to Hirtshals,
Italy to Sicily.............. Hissana to Key West, Florida.............. Perigelbamis Sweden, to Nystadt, Ruspia Newbiosin to Sondervir. Malue to Sicily. Tasmania to Australis. Scilly Isles to Land's End, England ithaca to Cephalonia. Bushire, Psa, to Jask, Beloochistan st. Plerte to Duxbury, $\mathrm{t}^{\text {E. }} \mathrm{S}$. Moen to Hornholm, Sweden Bornbolm, Sweden, to Libau Scotland to Orkney Istes. Salcombe, England, to Brignogan, Fsance Beachy Head, England, to Cape Autfee, Frane suez, Egy t, to Aden, Arabay den, A rabia, to Bombay, India Portheurno, England, to Lisbon, Portugal Gíbraltar to Malta
Iargeilles, France, to Bona. Af ica
Bona, APrica, to Malta.
Madras to Penang.
Penang to Singu ore
Singrpore to Batavia.
Malta to Alexandria, Egypt.
Jersey to Guerneey, Cbannel Islands.
ersey to Gueroser, Cbannel Islands
Guerosey to Aldernes,
zanto to Trepito.
Sunium to Thermia.
Patras, Greece, to Lepanto. Dartmouth, England, to Gueinses: Guernsey to Jerrey

Length in
Miles.

Porto Rico to st. Thomas....
Santiazo, Cuba, to Jamaica
Port Patrick, Scotland, to Donaghadee, Ireland
Mnjer, Java, to Telok Betong, Sumatra...........
st. Thomas to St. Kitts....
St. Kitte to Antigua.
1xil. Javea to Iviza, Balearic Islands
Majorca to Minorca.
Villa Real to Gibuultar
Marselles, France, to Algiers, Africa
Singapore to Saigon, Cochin China
Salgon to Hong Kong.
Hong Kongto Shanghal
Shanghai, China, to Nagasaki, Japan, thence to Wladi-
wostock, Si beria.
Rhodes to Marmarice
Latakla to Cyprus.
samos to Scala Nun
Khanda to $\mathbf{- 1 v}$ vali
Khanla to Retimo.
Candia to Fhodes.
Chios to Chesmeb.
Zante to Corfu.
Zante to Cephalonia
Lowestoft, England, to Greitseil, Cieramany
ntigua to Demararth connecting the West India Windward Islands.
Min. Yizarcl, Enkland, to Bilbao, Spaln.
British Columbia to Vancouver Island
1si3. Falmouth England, to Lisbon, Port ugad
Calthnews to Orkney.
Valencla to Newfoundland
Key West to Havana.
Placentia, Newfoundland, to Sydney, Cape Breton
Heligoland to Cuxhaven. Germany
Fiance to Denmark.
Denmark to Sweden
Pernambuco, Braxil, to Para, Brazil.
IIrxandria, Egspt, to Candia or Crete
Cindia to gante
Tante to Otrunto, Italy.
Alexandria, Kgypt, to Brindisi, Italy
18i4. Lisbon, Portugal, to Madcira, Madelra Islands

St. Vincent to Peruambuco, Bruzil
Pernambuco, Irazil, to Bahla, Braxil
Bahia, Brazil, to HinJanctro.
Italy toisiclly
Jamalca to Porto Kico.
Rio Janeiro to Rio Grande do Sul..
Rye Beach, U. S., to Tart Bay, Nova Scotia
Barcelona, Spain, to
shetland to Orkney.
Vatencia to New foumslland
The following is a list of the prituripal submatine telegraph compunies, with the amount of their capital
Anglo.dmerican Telegraph Company: Ireland to New foundland; Newfoundlumel to ('upe Breton; Brest. to st. Pierre; st. Pierre to Duxlury, L. S. (five cables)- $\$ 35,000,000$. Brazilian Submarine Telegraph C'ompany : Portugal to Brazil— $\boldsymbol{*} \mathbf{6}, 500,000$
('ulu Submarine I'elegruph Company: Santiago to Havana - $\$ 800,000$.

Direct Spanish Submarine 'lelegraph Company: England to Bilbao, Spain- $\$ 650,000$

Direct United States Subuarine Telegraph Companr : Ire land to Nova Scotia; Nova Scotia to the United Statos*6,500,000.

Eastern Submarine 'Telegraph Company : England to Bombay via Mediterranean and Red Sea- $\$ 15,000,000$.
Eastern Extension, Australian and China Submarine Telegraph Company: Madras to ('hina and Japan ; Java to Aus-tralia-\$8,315,500.

Gireat Northern of Copenhagen Telegraph Company: England to Denmark. Norway, Sweden, and Russia- $\$ 2,000,000$ (ireat Northern China and Japan Extension: Siberia to Hong Kong and Japan- $-3,000,000$.
International Ocean Telegraph Company: Florida to Hav na- $\$ 1,500,000$
Mediterranean Extension Telegraph Company: Sicily to Malta and Corfu- $\$ 760,000$
Montevidean and Brazilian T'elegraph Company: Monte video to Brazilian Frontier- $\mathbf{\$ 6 7 5 , 0 0 0}$.
Platino-Brazilian 'Celegraph Company $\mathrm{R}_{\mathrm{i} \text {, }}$ Janeiro to C ruguay- $\$ 2,000,000$.
Submarine Telegraph Company: England to France, to Belgium, and to Holland- $\$ 2,093,200$.
Western and Brazilian Telegraph Company : C'oast of Brazil— $\$ 6,750,000$
West India and Panama Telegraph Company: Cuba to West India Islands and South America- $\$ 9,500.000$.

Sanltary Sense.

Dr. W. W. Hall, in his Journal of Health, says a great many truthful things in his peculiar why. These are, and certainly should be, extensively read; for they include so much ex. cellent advice that their influence can be for nothing else but good. The last number of the Journal is before us now, opened with the intention of clipping an article here and there; but after reading it all through, we really cannot decide that any one subject is better treated than the rest. Consequently, we have culled a few ideas which strike us as especially good and interesting, and these we give below:
Dyspepsia-says the opening paragraph of a short sermon on that wretched malady-means a difficulty in preparing the food eaten so that the nutriment can be extracted from it to supply the wants of the sy!stem. Eating too fast and too muchare prolific causes; the first because the food, being swallowed in too large pieces, begins to fennent before it can digest, and the second because the stomach cannot cope
with the quantity forced upon it. A limited supply of gas
tric juice is another cause, and this implies bad blood Out tric juice is another cause, and this implies bad blood. Out
of door life, moderate exercise until hungry, and simple food are the best remedies.
Bitters, the names of the multitudinous varieties of which Bitters, the names of the multitudinous varieties of which
disfigure the fences and scenery of the country, come in for severe handling, on account of their alcoholic composition. A list of thirty-four of these mixtures is given, including all we ever heard of and a great many which we did not know existed; and in every instance ther are shown to contain alco. hol. In brief. while persons are using bitters as a medicine they are often drinking, three times a day, a more concen trated form of alcohol than is found in the purest whiskies and brandies. It should be set down as a settled rule that bitters in any form is alcohol in disguise.
Localities of life should be high. Elevated stations are generally exempt from the ravages of consumptive disease The air is lighter and contains less oxygen; but as the lungs live on oxygen, as it is the oxygen which they brink in contuct with the blood at every breath, it is that which purifies and gives it its life.giving power. If parh breath of air does not give a sufficient amount of oxpgen, instinct prompts a fuller breath; this distends the lungs more fully, and thus develops and strengthens them. A statement is given of the plepation of several Americun rities: New Orleans is rela tively given as 10, New York and Philadelphia 35, Boston 40. Chicagu 585, Nebraska (ity 1,000, and Winona, Miss., 1,500
Many a family mansion, says the editor, speaking of healthy. houses, has been built with the accumulations of the savings of halt a lifetime to make the graves of half the household in a few months, from neglect of the precautions for thorough drainage and a proper water supply for drinking and cooking. Never yelect a house wre a tilling: prefer sandy soil or the top of u hill.
In Munich, the bodies of the deal arr kept for forty-eight hours loefore burial, and the fingers are connected with a wire so that, in case tire person should reriva, his least move inent will ring a bell and so give warning. This is not ap plied to babies; hut it is suggested that, if the plan h adopted here, the wire should be attacherl to the child's toes as all babies begin to kick as soon as a wake.
With reference to winter garments, sutficient clothing, it is said, should be worn to kepp off a feeling of chilliness when about usnal arocations. Less than that subjects one to an attack of dangermes perumonia at any day or hour. Mor than that oppresses. Steadily aim, ly all possible ways and means, to keep off a ferling of chilliness, which alway indicates that a cold has been take+11
Instinct tearhes that lessexrrive power is required to ker. moving than, after coming to a standstill, to , wet the body in motion again. The frequent stoppages of stages antl strent cars kill of the horses. Instinct also teaches the requisite axpenditure of strength acemoding to the circemstancers of the
 much may begained ley fonomizing daring the day
Spectacles become necessury when you finst notice yourself foing to the window ins;inctively for a better light, or when vour eve gets tired by looking at any small thing mear at hand, of a dimutss or watering is manifested. so as to cause indistinctness. First purchase No. 20; and as yonobserve the symptoms aloove named, get No. 18, and so on. 'The glasses should be near enough to the eve almost to touch the
lashes; they should be waslied every morning in cold water and carried in a pocket ly themselves. Brazilian pebble malses the best lenses. Aroid reading before sunrise and after sunset. Read as little as possible before breakfast, or by artiticial light ; do not sew on dark material at night, and use no other eyewash then pure, tepid, soft water. Babies eyes are often injured b.yallowing the glaring sunlight to fall upon them.
Exercise is worth more than all the medicines in maintain ing health. If it rains, take an umbrella and let it rain on it is cold, walk or work faster; if it is windy, furn around and go the other way; if it rains, hails, snows, and blows, all at once, so that you have to stay indoors, then live on bread and water that day, not an atom else, and you will heed no exercise to work it up.
It should always be borne in mind that a large share of our little aches and pains would pass off about as soon by letting them alone as by doing or taking something; and the more we "take," the greater is the necessity for "taking." The best way to enjoy things is to use them, and thus get the worth of our money out of them. There is no sense in gorgeous parlors kept in darkness.
Sometimes the reading of a single sentiment in a newspaper makes an impression on the mind which tinges the whole subsequent life for good.

The Musconetcong Tunnel.

The tunnel through Musconetcong Monntain, New Jersey, for the line of the Easton and Perth Amboy railroad, was opened on the 16th of December. The work was begun on April 10, 1872, from which date in August of the same year labor was devoted to making an open cut on the west side of the mountain. Tunneling was then started at both ends through formations of limestone and syenitic gneiss. Considerable trouble was experienced during the progress of the boring by irrurtions of water from a subterranean lake. The tunnel is almost exactly one mile in length.

Erratcm. - In our article on the hydrocarbons produced on iron and steel, published in our last week's issue, it is stated that the least volatile portions of the bromated product
were "set aside to be treated with an alcoholic solution." were "set aside to be treated with an alcoholic solution
"of potassa" should be added to complete the sense.

THE ARITHMETICAL OPERATIONS OF MOLTIPLICATION AND DIVIBION.

We think thut most of our readers will agree with the assertion that there is less probability of mistakes, on the part of the ordinary calcnlator, in making additions and sub tractions of numbers than in multiplying and dividing. The reason is that the latter operationss are more complex, requir ing the use of all the fundamental rules of arithmetic. There is a simple artifice, employed by many in multiplying and dividing, which reduces these operations to cases requiring the application of the rules of division and subtraction only The method referred to is tolerably well known, but not a generally asit should be; and we think that there are many of our readers who will be interested in receiving an explana tion. The method finds its principul application in case Where different numbers are to be multiplied or divided hy he same number, as, for instance, in the preparation of tables. We can best illustrate it by giving an example.
According to our observation, a question frequentlyarisin with those who are engaged in mechanical pursuits is the determination of the circumference of a circle when the di ameter is known. It is not always conveuient or practicable to consult a book in which the properties of circles are given. but one can nearly always rarry a few (ards upon which use ful numbers are weitten. Let as suppose that one of thes cards contains the following
cmicumbenence or cincle

1 Mxumeter. Multiplicd by	Dtatheter. Mumepled by
$1=3 \cdot 1416$	$6=18.8496$
$\stackrel{\text { 2 }}{ }$ ($6 \cdot 28: 32$	$7=91.9912$
$3=9 \cdot 4248$	$8=25 \cdot 1328$
$4=12 \cdot 5664$	$!)=28.2744$
$5=15 \cdot 7080$	

and that the circumference of a circle whose diameter is $130 \cdot 0402$ feet is required. Below is the solution

$33: 1416$
$1: 0 \cdot 104(12$
162832
1256640
9424800
31416

408.53429232

It will be observed that the multiplier is placed beneath the multiplicand, as in the ordinary method; but that instead of actually performing the operation of multiplying the multi plitand hy each term of the multiplier, the several products are takenat once from the catand placel in their prope positions, so that we have only to add them to get the whole prodnct. It will le advisable, in following this plan, to use mall cards, with only one set of numbers on one side of ach, to a void confusion; and in preparing a card for a given number, it is well to form the secreral multiples by adding the number first to itself and then to each successive snm, repeating this operation nine times, so as to check the arconrace of the work. Below is given an illustration:
areas or chates.
add 11.7854
$0.7854=1$
$1 \cdot 108=:$
$3 \cdot 306=$
$3 \cdot 1416=4$
$3 \cdot 9270=5$
$4 \cdot 7124=1$
$3 \cdot 4978=$ т
$6 \cdot 2832=8$
$6 \cdot 2832=8$
$\therefore \cdot 0686=9$
$\cdot 0686=9$
$8 \cdot 840-10$
t is evident, from simple inspection, that the last quantity is ten times the first, and this affords a strong presumption that the interinediate calculations are also correctly made. an example is appended, showing the application of this method to dirision:
hedtction of cubic inciles to clibic feet.

Question: How many cuhic feet are there in $901,314,564268$ cubic inches?
,728) $901,314,564 \cdot 268(521,594 \cdot 076+$
8640
3731
34.56

2764
728
2

$\begin{array}{r}10265 \\ 8640 \\ \hline\end{array}$

16256
15052
$\frac{15552}{7044}$

13226 12096

11308 10968

940
A simple inspection of the card shows the successive fig ures of the dividend, and gives the products of the divisor by these figures, so that the operation is reduced to a series

