THE LIORTHODSES OF THE ONITED BTATES,
We have heretofore called attention to the efficient system of beacons which is being completed along our Atlantic and Pacific coasts, as well as on the shores of the great lakes. Most of the lighthouses are modern structures, and arecom. mendable for their thorough efficiency and the engineering skill shown in their construction; and many of them possess considerable architectural merit.
We publish this week two more examples of American lighthouses, both on the coast of California. The first of these is at Piedras Blancas, a point about midway between the lighthouses on Points Conception and Pinos, and is distant about 150 miles from each. An appropriation of $\$ 75,000$ was made for this work, which has a first-order light and fog signal.

The second illustration shows the lighthouse for the Straits of Karquines, Caliiurnia. An appropriation of $\$ 20,000$ was made for this structure, which is to mark the entrance of the Straits of Straits of Karquines. A location on the southern shore, just opposite Mare Island, was recommended; but as none suitable was found, the final selection of site was made on the southern end of Mare Island.

The French

 Meter. Sir Fidmund Beck. ett. is a true Fnglishman, and does not love the French measure. He says: " The polar axis The polar axis $7899\}$ miles, or 500 , millions of inches a thousandth part longer than our present standard inch, which proba bly only came by accident to be what it was when the standard was taken, and might just as well be a thou as well be a housudthore the other European nations haveiaches too, and some of them are rather longer than ours. The French meter, $39 \cdot 371$ inches, is the worst measure in the world, because it is inconsisten t with inconsisten t with any natural yard is the long stride of a man of good hight, and the natural length of his walking stick, and half his hight or half the stretch of his arms; and the meter is not the meter is not even what it pretends to be, the 40 millionth of a meridian of the earth, for the measure taken was erroneous; and if it were, such a standard is of no more real value than the distanceSoctety of Telegraph Engineers.
At a recent soiré of this Society, London, the greatest fea tures of the evening were the electro-motograph exhibited by Mr. R. S. C'ulley, Engineer-in-Chief to the Post Office Tele graphs, and some specimens of boring worms caxhibited by Mr. llrowning under his microscopes.
The electromotograph was discovered by Mr. Thomas A Edison, of Newark, N. J., who, in a letter published a few weeks ago in the Scirntific American, described his expe rinents in chemical telegraphy, wherein he met with the pe culiar force he obtained; from that letter and the ideas contained in it, the instrument exhibited was made. It has been known for vears that marks; could he made on chemically pre pared puper loy passing currents of electricity through a style resting on the paper, which passed orne a metal drum, these marks being produced by chemi cul decomposition. In his experiments Edison noticed that with certain compr sitions motion was produced in the le wor lolding the sty lus, which caused apparently ly the sudden de rease of friction of the paper. It wa found that paper repared with caus 1.ic potash and a sty lus tipped with tin gave the most favorable results. In the electro-moto graph exhibited by Mr. ('ulley, the sty lus was of tin, but held in a peculia fom of clip, which broughta very great :anount of friction on the paper, so much so thut, when the instrument was started, the great friction carried the tylus forward. Im mediately a curren was passed througl it, lecomposing the papr, all friction scermed to cease, the clip, by the strong force of its springs was drawn back and this occurred each time the cur rent passed, and so long as the current existed the clip re mained in its nor mal position. Im mediately, however the current ceased, the friction of the paper showed itself, and the stylus was drawn forward
This motion was made audibly mani fest by the position of a small bell which was struck loudly each time a current passed and de stroyed the friction. So perfect was it that the Morse sig nals sent by the key wer: perfect and accurate as recorded on the bell. This ittle instrument at tracted crowds al through the even ing, and it may be fairly characterized as one of the mos interesting scientif
of the moon. Yet there are people who have engaged in from each depot an auxiliary train on a side track, to be novelties produced for a long time
the crusade of trying to force on us this bad, erroneous, ar. coupled to the main line through train as soon as the former Engineering says: "It may" undoubtedly be termed a new bitrary, and revolutionary measure of a nation which tried has attained a similar speed. Passengers can step from the discovery in Science.'
also to abolish the week and make a new one of ten days, main line train to the auxiliary, and the latter will be un- The specimens of boring worms were fuand in the cable and whose language is declining over the world, while ours coupled in time for stoppage at the next depos, and the pro. i between Holyhead and Deblin belonging to the Post Office, already prevails over more regions of the world than any cess will be continuons.
other, and is avidently deatined to advance more and more."

Sir Edward, we think, is about right. The good old yard stick is a better measure than the meter.

Glant Beaver.

Drawings and specimens of the remains of the great extinct beaver, castoroides Ohioensis, an animal closely allied to the beaver of modern times, but of giant size, being about five orsix feet in length, and weighing probably from 200 to 400

A RFMARKABLE result has recently bern ohtained fy Messrs. Brown \& Co., of Sheffield, Eng., with a disk made from a rail saw and rotated at 3,000 revolutions per minute. As the disk was 9.6 feet in diameter, the velocity of its circumfer. ence was in the neighborhood of 86,400 feet per minute. Steel rails were cut with astonishing rapidity, and even melted. Millions of sparks were thrown off, but no heating of the disk could be detected after the cutting.

Mr. Culley to Mr. Browning, whomonnted them soas toshow their leading peculiarities. Close to these microstopes were placed some specimens of gutta percha insnlated wire frety marked by them.
Another novelt. was an electrical gas-lighting apparatus exhihited by Mr. Thompson. 'This consisted of a very small portable apparatus. held easily in the hand. At the upper part was a curved rod with a bell cup to it, which was placed over the gas to be lighted; the lower part, near the handle, contains a small electrophorus, the upper plate of which was lifted by the thumb or finger of the hand holding the handle. The electric spark from this is arranged to pass across a small space where the gas has mixed with the atmosphere in such proportions as to become explosive. Im mediately the spark passes, the gas is lighted. This instru ment, though new in Iondon, has heen in use here for some three reurs.

OCEAN TELEGRAPHY.

IV george h. Pifiserter
Sunnter II.
The worlingspped of eregen cathles with the mirror sustent is as follows:

xirulus\% ins.	Knols, 1, , mat.	Knots, $1, \mathrm{san}$.	Kuncs.2.0xu).	Knuts,
100	18:3	8.1	$4 \cdot 6$	2.9
150	20.5	$1: \%$	6:9	$4 \cdot 4$
200	:3.0]	16.4	$9 \cdot 2$	\% 9
250	16.11	$20 \cdot 4$	11.2	$7 \cdot 4$
300	$5: 0$	$24 \cdot 4$	$14 \cdot 0$	8.8
3.70	(34 1	28.5	16.0	$10 \cdot 3$
400	732	30 i	$18 \cdot 3$	$11 \cdot \%$

The apparatus empioyed in the trammission of communi. cations through ocean cable's is the invention of Professor Sir William Thomson. Ampère suggested, as early as the srar 1820, the employment of a galvanomester for the purpose of selegraphing, and in 1833 Gauss and Weber used a redect. ing galianometer as an indicator upon a line about one mile in length, uniting the Observatory and the Physical C'abiuet at. Göttingen. Their alphabet. was made up of combinations of right and left deflections. This apparatns, the first wer employed for practical telegraphy, has lately, in the hands of Professor Sir William Thomson, become the most sensi. tive of all telegraphic instruments. His reflecting galvano. meter is the only instrument at present with which a cable 2,000 miles in length can he successfully worked by a battery of low tension. It consists of a needle formed of a piece of watch spring, three eighthsof an inch in length. The needle is suspenderl by a therad of rocoon silk without torsion. The needle lies in the center of antexeedingly delicate galvino. meter coil. A circular mirror of silvered glass is fised to the needle, and reffects at right angles: to it in the plane of its motion. It is so curved that, when the light of a lamp is; thrown througha fine slit on it, the image of thes slit is retlected on a scale uhout three feet off, placed a littly ubore the front of the flame. Deflections to that extent of half an inch along any part of the scale arse sufficient for one sigrimi. In so delicate an instrument, the sluggish swing of the neredle in finally settling into any position would destroy its ase. fulness. To rectify this, a strong magnet, about eight inches long and bent concave to the instrument, is made to slide up asd down a rod placed in the line of the suspend. ing thread aloove the instrument. This magnet cun be easily shifted, as necessity may require. The oscillations of the needledue to itself are, bythe aid of the strong magnet, made so sudden and short as only to broaden the spot of light.

The above illustration (Fig. 6) shows the construction of the instrument. The galvanometer, P, contains the multiplication wire, divided into several layers and so arranged that it can be used for weak or strong currents, according to the requirements of the instrument. In the center of the coil the magnetic needle is suspended, to which is attached the tiny mirror, and close before it is to be found a spiall rollective lens, whereof the focal point lies almost in the mirror, in order to pmduce a slasp figure of the prism on the scale.
The magnetic needle has a length of only $\frac{3_{5}}{5}$ of an inch, a breadth of $\frac{1}{1 g}$ of an inch, and a thickness of $\frac{1}{12}$ of an inch.
The mirror connected with the needle bas a thickness of only ? for $_{\sigma}$ of an inch. The magnetic needle is made from a small piece of a very fine watch spring, and the little mirror, from ne of the thinnest microscopic cover glasses. The magnetic needle and mirror used for signaling across the Atlantic weigh only $1 \frac{1}{2}$ grains.

The entire box which encloses tbose parts is hermeticully closed. The ends of the multiplicator wires are soldered inside the box to two screw posts, $x y$ wherewith the instru ment is connected with the cable.
A curved steel magnet, N S, is fixed to a brass har, P , in uch a way that, by turning the micrometer screw, V, any required removal, upwards or downwards or to the right or left, can be given to it; and by this means the magnetic needle, when in a state of rest, is kept in such a position that the picture of the slit, D, which is reflected from the middle of the mirror, and likewise returns through the lens, appears upon the zero mark of the scale, M M.
Opposite the galvanometer, the scale, M M, and the lamp F, are to be seen. The light from the lamp penetrates through the slit, D , in an oblique direction to the looking glass, and is thrown back from it to the scale somewhat upwards, in the direction, F , where the picture of the slit is to le seen as a fine liglit line. The sicreen, N, can be turned u, undserves to keep the lamp light from the scale. The instrument is necessarily ussed in a darkenen romm.
The: transmitting key is shown in Fig. $\underset{7}{ }$. It consists of two separate levers, L and E. moving on axes at the upper end in the figmers. They are kept, by springs, pressing agrainst the cross plate, (', which is in the battery. I is connected with the cable and E to the earth. When either key is pressed down, it falls on the plate, Z, in connection with the other pole of the battery. In the normal position of the key, the cable is connected, through L, C, and E, to earth, and Z is insulated; and it is easy to see how a positive or negative emrrent is pressed.
The ulphabet is made by opposite movements produced by one or other of the keys. The signals need not be mude from zero as a starting point. The eypan pasily distinguish, at any point in the scale to which the spot of light may be dethected, the beginning and the end of a signal, and when its motion is caused by the proper action of the needle or by currents. It is thus that the mirror galvanometer is adapted to cable signaling, not only by its extremedelicacy, but als by its quickness. The deflections of the spot of light have been aptly compared to a handwriting, no one letter of which is distinctly formed, but yet is quite intelligible to the practised eye. Signals in this way follow each other with won derful rapidity. A low speed of from twelve to sixterr words perminute is adopted for public: messages; but when Hue operators communicate with each other, " sile
twenty-four words per minute is somethmes attainerl.
Condensers are used at both ends of the Atlantic cables by means of which the speed is very considerably increased. The term condenser las; long been used umong electricians to denote an arrangenent, in a moderate compass, equivalent to a levyden jar of enormous rapacity. It is composed of at ternate layers of mica or parafined paper and linfoil. One coating of thiss Leyden jar is put in direct communicution with the conductor of the cable, and the other is joined to the sending kev. At the other end of the cable one conting of the condenser is connected with the cable and the other coating with the receiving instrument. The condensers are each equal to about 70 miles of the cable. The condenser serves two purjoses: it lessens the delay caused ly induc: tion, and prevents the disturbance of the signals by earth currents. The cable and condenser being insulated, there is no voltaic circuit, and no way whereby earth currents can enter and leave the line.
The question i: of
The question is often asked: "What is the velocity" of electricity "' or " how long does electricity take to go across the Atlantic Ocean "?" Electricity cannot properly be said to have a velocity, but differs with the circumstances under which it travels. For about two tenths of a second after contact is made with the conductor of an Atlantic cable, no offect is perceptible on the opposite side of the ocean, even by the most delicate instimment. After fourtenths of a se cond, the sereived current is almat 7 per cent of the maxi mum jermanent current which the battery could produce in the circuit. One second after the first contact, the current will reach a bout half its final strength, and after about three seconds its full strength. The current does not arrive all at once, like a bullet. hut grows gradually from n minimum to a maximum
The Direct United States Cable, which is now being laid between Ireland and Nova Scotia, and thence to Rye Beach, New Hampshire, is 3,060 nautical miles in length. The core is composed of a thick copper wire encircled by and is served with four coatings of gutta percha, measuring about three eighths of an inch in diameter. After the ser ving with gutta percha comes a serving with manilla hemp which brings the core up to a thickness of three fourths of an inch; and then follows the sheathing with iron wire, which forms the outer covering of all. Ten iron wires are cable, they are each wound with five strings of manilla hemp, so as to impart greater strength, and protect them from the action of water. The hemp covered wires are served with a species of black compound resembling tar or pitch; and after being twisted around the core, they are again served in this manner, and finally whipped with Italian hemp, which, however, can scarcely be said to do more than bold the strands in their places until the whole becomes hard and dry: This is the deep sea portion of the cable.

The shore ends are of varying sizes, graduating from about $2 \frac{1}{2}$ inchesdown to $\frac{7}{8}$ of an inch.
The Birect United States Company expect to obtain a speed of about nine words per minute, or about one half tliat of the present Newfoundland and lreland cables
The French Atlantic Cable, laid in 1869 between Brest and St. Pierre, has 400 pounds of copper per mile, is 2,584 knot:: in length, and has a working speed of fifteen words per min ute.
The contract price of the Direct United States C'ible, laid down, is $\$ 6,055,000$. The cost of the Anglo-American Cable -betiveen Ireland and Newfoundland-laid down, was $\$ 1,500$ per mile.
The Direct United States Cable lum been laid from Ireland to within a distance of about 200 miles of Nova Scotia; but owing to unfavorable weather it had to becut and buoged. It will probably be recovered again нs soon at: favorable weather ensues, and its laying be sulcessfully completed When this is arcomplished, there will be five working tables across the North Atlantic and one atrows the South Atlantic ceans.
Salmarine telegraph catbles now exterted across the Sorth and South Atlantic, Indism, and Giorimm Oceans; the Mediterramean. Recl, North, Baltic, C'hinese, Oriental, Japan. Java, and (aribhean Seas; the cillfs of Biscay; Bengal Mexico, and St. Lawrence, und the struitm of Bass and Ma reca : thus placing North and South Ameries, the West In dies, Europe, Indii, Iuva, Anstralia, Tasmauia, and Sileria in constant and jastantaneous telegraphic commmication, as well as affording communication with the most important ports in China and Jupan.
The following is a list of the more important cubles which are in working order at the present time

Date. From
, Frunce
B.,51. Dover, Engluma, to Calals, Frunce..
Rio Holyheud, Wates, to Howth, Irelanc Port Patrick, Scotlaud, to Donaghadee, Ireland Prince Edward Islund to New Brunswick
1kiz3.
1sit. Dover, Eusland, to Ostend, Belgium Port Patrick, Scotland, to Donaghadec, Ireland Sweden toDenmark
Holyhead, Wales, to Howth, Ivelund
אㅈ́.
Crete or Candia to Syra. Gew irniswick Crete or Candia to Syra, Greeve. Acrosis the A mazon.
Ceston to A
England to Holland.
18: in . Denmaris to Hellgoland
Talc of Man to Whitehaven, Enylund Sredento Gottland
Fonkentone, Ensland, to Brablanae, Frome Malta to Sicily.
Iit Gunt lleit Deurance
C:ape St. Murtin, Spain, to catuea) Iniza to Majoica
re6. Corfu to Otranto, Italy 1)ieppe, France, to Newhaven, kinkitum

88:. Wexford, Ireland, to Aberman, Winles.
Lowertoft, England, to 7 madromet, Holliand
wit. Fuo, Persias to Bushire, Pervin.
rushive Pa Pentu
Gwadar, Beloochistan, to Kurrachec, Brittish , British India.

Trelleborg to Kugen, Germark South Foreland, England, to Cape Grisuez, France
resiti. Ireland to Newfoundland
Lyull's hay to White's Bay
Crimua to Clrcassta.
England to Hanover Ayres
Cape Ray, Newfoundland
Cape Ray, Newfoundand, to Aspee Bay, Cape Breton Persian Gulf.
South Foreland, Englund, to La Panne, France Malta to Alexandrla, Eyypt.
Placentia, Newfoundland, to St. Pieri St. Pierre to Sydney, Cape Breton.. Irendal, Norway, to Hirtshals,
Italy to Sicily.............. Hissana to Key West, Florida............. rigethamms Sweden, to Nystadt, Ruspia Newbiosin to Sondervig. Malma to Sicily. Tasmania to Australia. Scilly Isles to Land's End, England Ithaca to Cephalonia. Bushire, Pra, to Jask, Beloochistan st. Plerte to Duxbury, τ^{2}. S . Moen to Ihornholm, Sweden Bornbolm, Sweden, to Libau Scotland to Orkney Istes. Salcombe, Eng land, to Brignogan, France Beachy Head, England, to Cape Autfee, France Suez, Egy t, to Ad en, Arabu.. den, A rabia, to Bombay, Inda to Lisbon, Poitugal Gíbraltar to Malta
Sargeilles, France, to Bona. Af ica
3ona, APrices, to Malta.
Madras to Penang.
Penang to Singa ore
lingzpore to Batavia
Malta to Alexandria, Egypt.
Jersey to Guerneey, Cbannel Islands.
ersey to Guerosey, Cbannel Islands
Gerosey to Aldernes,
zadto to Trepito.
sunium to Thermia.
Patras, Greece, to Lepanto.
Dartmouth, England, to Gueinsey:
Guernsey to Jersey

Length in
Miles.

