## Tusinesss aud Zersoual

 The Charvoc for Insertion under the hencad is 81 a Line.




 Meriden, conn.



 burbh, Pa.




t $P$.






 tamp to teo. Parr, Buratio, N. T.

Wooden Ware Patent for Sale. 2947 N. Y. P.O Grindstones 2,000 tuns stock. Mitchell, Phila, Pa Lathe GearCutters,Wm.P. Hopkins,Lawrence,Ms.
 struction, and management of American Locomotives,
Price, post-pald, \&2.50. Address The Rallroad Gazette, ${ }_{73}$ Price, post-pald, \&2.50.
For 13, 15, 16 and 18 inch Swing Engine Lathes,
addrese Star Tool Co., Providence, R. I.
Wanted-Machinery for splitting out or riving
Plpe Staves 60 inches long, $s$ to 8 inones wide, and in
inch thick, from White Oak Timber, for the New Orleans inch thick, from Whtte Oak Timber, for the New Orleans Mills for Flour \& Feed, White Leed, Colors, Ivory
Black, Printing Ink, \&c. John Ross, Wil lamburgh, N.Y. Telegraph and Electrical Instruments and Bat-
eries, cheap. M. A. Buell, 86 Bank St.. Cleveland. O. Models for Inventors.-H. B. Morris, Ithaca,N.Y Three Second Hand Norrns Locomotives, 16 tuns
each; $4 \mathrm{ft} .8 \%$ Inches gauge, for sale by $\mathrm{N} . \mathrm{O}$. \& C. R. R. each; 4 ft. $8 \%$ Inches ga
Co.. New Orleans. La.
1, $2 \& 3$ H. P. Engines. Geo.F.Shedd,Waltham,Ms. Boult's Paneling, Moulding and Dovetalling Machne is a complete success. Send for pamphlet and san
ple of work. B. C. Mach'y Co., Battle Creek, Mich. Saw Ye the Saw ?-81,000, Gold for Hand Sawmill
to do same work with no more power Expended. A. B.

For best and cheapest Surface Planers and Uni-
versal Wood Workers, address Bentel, Margedant \& Co. Haml ton, Ohio
Diamond Carbon, of all sizes and shapes, for
drilling rock, sawing stone, and turning emery wheels,

 Address Wm. D. Rusell. 13 Park Place, New York.
Engnes, 2 to 8 H. P. N. Twiss, New Haven, Ct. Engines, 2 to 8 H. P. N. Twiss, New Haven, Ct.
Agents, 100 men wanted; 810 dauly, or salary.
selling our new goods. Novelty Co., 500 Broadway, N.Y. Thomas's Fluid Tannate of Soda never fails to
remove scale from any steam boller; it removes the remove scale from any steam boner;
scale-productng material frem all kinds of water cannot
infu-9 Boller. asit has no effecton iron; saves 20 times its cost buth in Fuel and repairs of Boller; Increases steamIng capactty of Boller; has been tested in hundreds of
Boflers; has removed Bushels of Scales in single cases. Bonlers; has removed Bushels of Scales in single cases.
It is in Barrels 50 lb., $\$$ Bbls. 250 lb.. $\%$ Bble. $125 \mathrm{lb} .$.
 For Tri-nitroglycerin, Mica Blasting Powder,
Electric Batterles, Electric $\begin{aligned} & \text { Muses, Exploders.Qutta Per- }\end{aligned}$ cha Lnsulated Leading Wires, etc., etc., etc., resalt of
seven years' experience at Hoosac Tunnel, address Geo. seven years' experlence at Hoosac
M. Mowbray, North Adams, Mass.
Faught's Parent Round Braided Belting-The
Beat thing out-Manufactured onls by C. W. Arny, 301 \& Genuine Concord Axles-Brown, Fisherville,N.H. Price only $83.50 .-$ The Tom Thumb Electric
Telegraph. A compact working Telegraph Apparatue, Telegraph. A compact working Telegraph Apparatue, giving alarms, and various other purposes. Can be put in
operation by any lad. Includeb battery, zee, and wres. Neatly packed and sent to all parts of the world on recelpt
of price. F. C. Beach \& Co., 236 Canal St., New York. Hydraulic Prexsee and Jaoks, new and gecond
tand. Latnee sod Machners for Polishtng and Boflng
Metala. E. Lson, 470 Grand Street New York. The Lester Oil Co, 183 Water St., N. Y., Exalualve
Msnufacturers of the renowned Synovia: Lubricating Oil. The mose prorfooct and economioal lubricent in axdiconco.
Send for CIrcular.
 The "Scientific American" Oflice, New York, is
atted with the Miniature Electric Telegraph. By touching itted with the Miniature Electric Teleerraph. By touching o persone in the rartous departments of the establish-
ment. Cheap and effective. Splendid for shops, offlces, mellings. Works for ans distance. Pice 86. WItD good
Battery. F. C. Beach \& Co., 2 Ch Canal St.. New Pork, Small Toois and Gear Wheels for Models. Lig
ree. Goodnow Wightman. 2 Cor Corhill, Boston, Mas6. Hotchliss Air Spring Forge Hammer, beet in the
narket. Prices low. D. Frishle \& Co.. New Haven. Ct
 lispment. Ad
lthograph, \&c.
Spinning Rings of a Superior Quality-Whiting-
ville Spining Ring Co., Whttingville, Mase. Allie Spining Ring Co., Whitinaville. Mase.
All Fritcan Tools, Ferracute $\mathbf{W}$ k's, Bridgton, N. J. Wash Stands, New Styles, Marble Tops, can be
used in anv ettuation. Prices very low. Send for a catalogue. Bailey, Farrell \& Co., Pittsburgh, Ps.
For best Freaee, Dies, and Fruit Can Tools, Blise
\& Willame, cor. of Plymouth and Jay, Brooklyn, N. Y. Whilams, cor. or Permouth and Jay, Broozign, N. Y.
Mechanical Expert in Patent Cases. T.D. Stetson, Mechanical Expert in
is Murrav St.. New Yori.
For Solid Ennery Wheels and Machinery, sen
sho Unlon Stone Co.. Boston, Mass., for circular.

## Matsadurutiss <br> J. G. B. ought not to remove the cancelin

 ink from postage stamps, as it may lead to fraud using the dip described on p. 107, vol. 31.-J. P.McC. can clean shells by following the McC. can clean shells by following the directions on p. 122, vol. 27.-J. M. C. will tind directions for
crsehardening on p. 202, vol. 3l.- F. E. can deodorze butter by fol 30 , vol. 30.-F. W. K. can use rubber varash for ma-
king waterproof cloth. See p. 11 , vol. $32 .-\mathrm{D}$. H . can separate silver from lead by the method de-
scribed on p. 138 , vol. 32 -G. M. will finda formula for thickness of a boiler on p. 155, vol. 32. Read Camus on the " Teeth of Wheels."-R. R. B. ough to know that no instrument can possibly point out
where gold, silver, lead, etc., lie buried in the earth.-J. T. C. can dissolve pure rubber in benzine, naphtha, or carbon bisulphide.-D. can remove stains of iron rust from fabrics by the meth-
od given om p. 170, vol. 27.-H. B. can fasten leath er to wood with marine glue. See p. 222, vol. 31 . J. A. W. can fasten chromos on thin canvas by
following the directions on p. 91, vol. 31.-A. A will find directions for separating aluminum on pp. 91,116 , vol. 32.-R. MoA. can exterminate cockroaches by using the recipe on p. 43, vol. 31.-A.
K . should consult Kustel on the "Nerada and Cal fornfa Processes for Gold and Silver Extraction. -W. A. P. can galvanize his iron articles by the method described on p. 346, vol. 31.-I. G. will find
a recipe for a hair stimulant on p. 3月3, vol. $31 .-$ i E. K. Jr. will find directions for making a black walnut stain on p. 90, vol. 32-G. C. H. can make windowglass opaque by the method described on
p. 264, vol. 30.-T. H. L. can utilize old rubber by the process described on $\mathbf{p}$. $34 y$, vol. 26.-J. S. F.can fill and polish his black walnut furniture by the
method described on p. 315, vol. 30 , and 347 , vol. 31 . method described on p. 315, vol. 30, and 347, vol. 31 , can render wood freproof by the proces -W. C. can render wood
detailed on p. 280, vol. 28.
(1) P. C. askos: What is the chemical reacer bicarbonate of co adding of tartaric acid af Carbonate of potash, being an alkali, neutralize the lactic and butyric and other acids in the ran cid butter, but the excess of alkali used has burning taste. The tartario acid added decom
poses the potash salt, liberating carbonic acid,and the resulting tartrate of potash does not offend the sense of taste.
(2) S R. asks: 1. For what particular pursoda glass? A. The addition of lime to glass dit minishes its fusibility, while it increases its luster, but the addition of an excess of lime is apt to make the glass milky when cold, although it may be perfectly clear while hot. 2. What is the process that has been patented by a French gentle-
man foradding strengthand elasticity to the glass? d. The agent of M. Bastie, the inventor latels ex d. The agent of M. Bastie, the inventor, lately ex-
hibited specimens of the glass at the office of the SCIENTIFIC Amrrican, New York, and subjected
the same successfully to the most remarkable tests. The process for reating the glass has not yet been made public
(3) H. B. W. asks: How is rubber melted is simply rendered soft by passing betwe rubber is simply rendered soft by passing between roll-
ers heated bs steam, in which state it is pressed into the molds.
(1) M. H. K. asks: What are the cheapest and best chemicals known, to be mixed together
for use as a freezing mixture? To what degree Fah. will they descend, and what are the proper proportions to mix and use? A. One of the best,
and one of the most economical, is the solution of sulphate of soda in commerctal hydrochloric acid
Pour 5 parts of the acid upon 8 parts of the salt Peduced to powder; the temperature may thus be red.ıced from $50^{\circ}$ to $0^{\circ}$.
(5) G. E. K. Jr. asks: How can I remove oil stains from marble? A. First rub with ben-
zine or turpentine, and then cover with powdered ohalk or pipe clay and keep in a warm place for some time.
(6) E. M. D. asks: W hat kind of clay should I use to make orucibles? A. You do not state for
what purpose you intend to use your crucibles. what purpose you intend to use your crucibles.
We cannot give defnite directions unless we know. In order to render crucibles capable of withstand ing great variation of temperature, several sub-
stancee Are used: sand, filnt, fragments of old crucibles, blaok lead, and coke are used for this pur-
made with pure clay, or such as contains little o no orlde of iron and is free from calcareous mat-
ter. The best clays contain the most silica, yet orucibles of pure clay are not absolutely infusible and in the high temperature of a blast furnace.
they sometimes soften so much as actually to fall hey sometimes soften so much as actually to fal into a shapeless mass. This defect can be some
what remedied by mixing the clay with graphite olid skeleton, which retains the softened clay an prevents its faling out of shape.
(7) S. F. H. \& Co. say: We have some leather lined with blue oloth,such as is used for car-
lage curtains. The color of the cloth is blue, and it rubs off. Can the color be made so as not to ome off by applying a solution to it? A. Tr dippin
tha.
(8) A. C. J. asks: Are the numerals and unctuation marks commonly used in telegraphy A. The numerals are, but punctuation mark
not very generally used, except the full stop.
(9) S. S. W. asks: How long should locust mes bolled before planting? A. Take thre Boil the water, and pour it boiling hot over the ceeds and let them soak till the next dav: then plant them. The plants are as tender as melons,
and the least frost will kill them, so do not plant and the least frost will kill them, so do not plant
too early. Some of the plants will have thorne, hade treest herest you can use for hedres or throw away, for they are too disagreeable to keep in a
and civilized community. Both the thoray and thornless plants are perfectly hardy, require no sbelter after the first start, and are about the eafest tree
to transplant (at any age) that grows in this latito transplant (at any age) that grows in this lati-irable.-H. H
(10) W. Y. asks: What tools does a man n assortment of fles. a flat chisel, a cape chis scrapers (1) round and flat), a straight edge, an as--
ortment of wrenches, a screw driver, and a belt punch.
(11) F. W. asks: In manufacturing our
ommon red brick, is there any way of colorng them, either byglazing or mixing, to produce some pleasing tint, without adding materially to the ex pense? $A$. This can be done by facing them wit
coloring preparation, as ts now done in the cas of encaustic floor tiles, but not without considerably enhancing the price.
(12) W. R. H. asks: How much greater is the resistance of the ordinary railroad rail, made wrought iron, than that of a rall of the same cast iron, respectively, in respect to resisting the whocks or strains of locomotive or car wheel
wotion? A. The steel rail is about 1.5 times as strong as the wrought iron one, within the limit of elasticity. Malleable cast iron is no well suited to resist shocks.
(13) H. R. T. asks: Which is correct, "buhr stone" or " burr stone?" A. Both are correct, but
bubr stone" is the more usual way of writing it.
(14) R. C. M. says: I am putting in two 8 0 engines, to run together, and I wish to use cis ern water. If I exhaust into a fourinch pipe, ex ending from the cistern upward, and keep a smal tream of cold water running through it from th second s.ory, 10 feet above the engines, winl it con
dense the most of the steam? A. This plan will not answer. Your best plan would be to use out of two $8 \times 10$ cylinders, coupled rigidly togethe or run iodependently and connected with one line shaft with belts? Part of the time I shall use only
one oylinder for light work. A. It would no doubt one oylinder for iight work. A. It wo
be better to run them independently.
How can I ascertain the number and claims of records, or engaging some one to do it for you. (15) A. A. asks: I have a stesm heater o the following capacity, and desire to know what pressure it will stand without bursting. It is 18
nohes long, 14 inches wide, $21 / 2$ in hes deep and inches long, 14 inches wide, $2 / 2 / 2 \mathrm{in}$ hes deep and $1 / 2$
inch thickness of the iron. The boiler pressure is 45 lbs . The pipe that connects with the heater is 8 of an inch in diameter, and is about 60 feet in
length. The exhaust pipe is $1 / 2$ inch in diameter and is not quite free. A. Under the conditions
stated, the heater will have sufficient strength.
(16) D. asks: Can the area of an octagon exactitude, if the diameter of the circle be known? A. Yes. It is composed of eight equal isosceles
triangles, of which two sides and the included angle are known. The two equal sides are each aquil to the radius of the circumscribing
and the included angle is $1 / 8$ of $360^{\circ}$, or $45^{\circ}$.
(17) C. C. asks: In your issue of April 17,
1875, in answer to the following 1875, in answer to the following question: "At
what power would you rate an engine that is 8 inches bore and 15 inches stroke, running at a say : At about 12 horse power. By what formula do you calculate this? Do you mean that therea effective power of an engine under these cond:-
tions is 12 horse power? According to Roper's formula, as well as Haswell's, I shoujd figure it at 38 horse power, with (say) 10 per cent otr for friction,
making about 32 horse power. A. We do not consider that either of these rules gives very correct results. Our answer was based on a personal nes. The answer referred to effective hore power. It is quite true that the rules sou menTon will give you true results, if they represent
the conditions of actual practice; but in general the conditions of actual practice; but in general
(18) J. W. asks: How many inches from
give 30 lbs. pressure on the square inch on a safety
alve $1 \frac{8}{\text { g }}$ inches in diameter, the valve being be
ween the fulcrum and the ball, with its center $18 /$ inches from the fulcrum? A. You can work it ut for jourself by the aid ot the following rule Multiply together: (1) The pressure of steam, the
rea of valve, and the distance of center of val rea of valve, and the distance of center of valve
from fulcrum. (2) The weight of the valve, and rom fulcrum. (2) The weight of the valve, and The weight of the lever, and the distance of it center of gravity from the fulcrum. (4) Add together the products obtained by (2) and (3), an ubtract the sum from the product obtained by 1). (5) Divide the difference by the weight of th (19) C. H. D. asks: I enclose you a photo graph of a windmill which is erected on an emi-
nence near York, Pa. It was built in 1870 by an ngenious German, and has been regarded as a cu riosity, being the only windmill for many miles around. The sails are rot constructed on the principle put forth in your recentarticle on wind rills, but have a unform inclination to the plane of revolution. They seem, however, to be very ef cient, and I am informed that the power varie
from 5 to 10 horse power, according to the velocit of the wind, the sails being 3 feet wide, and the dimeter of the wheel 25 feet. The shaft is incline to the plane of the horizon at an angle of about $6{ }^{\circ}$ and is arranged to swing around a vertical sbaf when the wheel is shifted to face the wind. The nd is ustivansmited by pars of bel wheels and is utilized for crunching bones. This windmill wich is certainly cheap. A. We have no doub ur readers will be interested in this account; fo while it is probable that a wheel constructed with the proportions noted in ourrecent article would e somewhat more efficient, this is a little simple
(20) P. F. asks: In a cylinder 6 feet high containing 6 cubic feet of air, how many lbs. ressure on the piston will be required to compres A, If the temperature is constant, the pressure aries inversely as the volume.
(21) L. H. R. asks: 1. Can you explain the rinciple of the gyroscope? $A$ : It may be ex plained generally on the principle that, though the force of gravity is constantly acting downwards, here are other forces with which the force of ravity is resolved. See p. 91, vol. 31. 2. Wa that principle? A. There have been several. If principle? A. There have been severalive engineer be called upon to stop his engineas soon as possible, would it be advisable to shift the eccentric, thereby causing great resist nce at every stroke, until the engine has stopped A. Itwould be better to shut off the steam, and
pply the brakes.
(22) J. W. H. asks: What is the difference in strength between an iron and a steel shaft, $4 \%$ nches in diameter? How far will it spring with A. The steel axle will be about twice as strong. It ould not be advisable to strain the shaft so as to pring it sensibly ; and, though it might not break
(23) M. P. S. says: We have a 60 hors power horizontal return tubular boiler,set in brick nches, and there are 56 three inch tubes Ater 54 of boiler is a combustion chamber, $3 \times 5$ fect, and the chimney is on one side, at front of boiler. The eat passes under the boiler, returns throug 3 , into th passes through a square flue, $12 \times 12$ inch and 36 feet high. This stack, 48 inches in about 20 feet up, reducing the area to about 4 nches. The draft is sluggish, and the cast iro oovering of the rear combustion chamber ha iven way with the excessive heat. A. We thin matters by contracting it at the bottom.
(24) P. A. asks: What is the correct rule or getting an engine into line and squaring th axis of the cylinder or through the calinder, possible, and the other perpendicular to the first, in the same plane. These are reference lines to
measure from, to bring the shaft and guide into ne.
(25) B. \& C. say : 1. We are building a boat bout 60 feet iong and 20 reetwide, with a lat bo tom and a light top,to be used as a trading boat o will probably require ar angine of from 15 to and horse power. 2. Can the motion of a vertical en ine be reversed A. A vertical engine can be re versed hy being fitted with a link, or with two ec flat-bottomed boas. Can a propeller be used on build such a boat it woild be betterto A . with a stem wheel
(26) R. B. W. asks: Would a 12 horse power engine in and a 30 inch grist mill? A. Not if they were driven up to their full capacity.
(27) D. S. S. says: I have a eteel spring, eet long, $11 / 2$ inches wide, and $3 / 3$ inch thick, which he rate of its utmost for a period of 1 week, at tains a bend which weakens it. Is it impossible to nake one that will always retain its natura good, take a set in time
(28) J. B. K. says: I claim that a balance to the teady motion. My opponent claims that the bal ance wheel gives the engine additional power Who wins? A. You do. Your opponent appear to assert that the fy wheel bas more power tha $t$ would be a very desirable kind of perpetual mo
(29) R. H. McI. asks: What is the best cement or packing to use under a soft patch on boil
er or in a steam joint? A. Red and white lead, to which ine iron fllings may be added.
In a low pressure boiler, with mercury gage showing 15 lbs ., is the actual pressure upon the
piston 15 lbs . to the square inch or $15 \mathrm{lbs}+149$ (the piston 15 lbs . to the square inch or $15 \mathrm{lbs} .+149 / 4$ (the
armosphere) which (with the vacuum) is about 45 lbs. per square inch actual working pressure? A. The actual effective pressure is the total pressure
above a vacuum on one side of the piston, diminished by the total pressure above a vacuum on the ther side.
(30) B. B. B. asks: Will two hydraulic
rams, with the same fall, with separate feed pipes, rams, with the same fall, with separate feed pipes,
playing into the same landing pipe, work? If so, will they force up more water than one ram with the same fall? A. They would work satisfactorily,
and, under favorable conditions, the two would and, under favorable conditions, the two
deliver abo it twice as much water as one.
(31) F. A. C. says: 1. I have an upright
and boller, with whell and beads of wrourht iron 9 ameter, with shell and heads of wrought iron 8 8 How great a pressure will it safely stand? A. If How great a pressure will it safely stand A. I
well made. you can carry from 150 to 175 lbs. of
and steam. 2. Of what power ought an engine for this
boiler to be? A. From 1 to $11 / 4$ effective horse power.
(32) J. N. C. afks: What is your opinion about the use of compressed air for street car lo-
comotion in lieu of steam (or hor se) power? What comotion in lieu of steam (or hor, se) power? What
is to prevent the compressing of air into suitable is to prevent the compressing of air into suitable
receivers, attached to each car and made to conreceivers, attached to each car and made to conare numerous dificulties in the way; but they may be overcome, as many in
attention to the subject.
(33) R. A. K. asks: Of what dimensinns
hould a boiler, engine, and propeller be, to draw a should a boiler, engine, and propeller be, to draw a yawl 22 feet long and 5 feet beam, drawing 20 inch-
es, at a speed of 6 miles an hour? A. Engine, $3 \times 5$; es, at a speed of 6 miles an hour? A. Engine, $3 \times 5$;
propeller, 2 feet in diameter and 8 feet pitch; boilpropeller, 2 feet in diameter and 8 feet pitch; boin-
er, 2 to $23 / 2$ feet in diameter, and 3 or 4 feet high. (34) C. R. H a.jks: If I take a boiler, fill it (34) C. R. H avks: If I take a boiler,
full of water, and seal it up so as to bave it propfull of water, and seal airtight, and place a fre under the same, what erly airtight, and place a fire under the same, what pansion of the water, or the steam : A. As water
expands rapidly by beat, it is probable that the expands rapidly by heat, it is probable that the
boiler would be torn open long before the boiling point of wate
( 35 ) W. S. B. says: We have a machine called a cool sir slasher, situated in a small room in the attic of our mill. The room is so small that, when the atmosphere outside is amp and heavy,
we cannot dry our yarn. The air in the room is so moist that the beams and plaster overhead become
wet. A ventilator on the roef, with a fan insido wet. A ventilator on the roof, with a fan insido,
is a beneft; but as moist air remains low and does is a beneft; but as moist air remains low and does
not rise, I am thinking of putting a fan to one of not rise, I am thinking of putting a fan to one of coming down to the foor. I will box in the winwindow at the bottom opposite the fan, more or iess. Am I right? A. Your general idea is right:
for if you cannot get a natural draft, you must for if you cannot get a natural draft, you must
create one, either by a heated fue or a revolving create one, either by a heated fue or a revolving
fan. It is probable that you might get over the
(36) J. B. S. asks: How is it that the wheels (of the same size) are going round a curve, the out(of the same size) are going round a curve, the out-
side track of which is of course longer than the inside? A. One of the wheels slips in such a case.
(37) A. F. \& Co. say : We have been think ing of using our exhaust steam by turning it into ing our supply water and saving fuel. We bave been advised by experienced men not do so, as
they say we should burn out our boiler in a short time; they claim that the grease contained in the exhaust steam would form into globules, whic vent the water from touching the plates, thereby burning them out, and that they know this by ac tual experience with lake water in Chicago. With hard water or water containing much lime, it mlght be feasi ole; but with spring or soft water, it There would not be much danger unless you use
very large amount of grease in the cylinder. In nearly all ocean steamers the condensed steam is used for feed water. With a proper oil cup, the amount of lubricant used in the cylinder is ver small, and is as effective as a much larger quantity
admitted carelessly. It is not well to use tallow in such a case.
(38) F. S. L. asks: Are not the cubic contents of a stick of timber, 12 inches square at one
end and 18 inches square at the other, of a uniform taper, equal to one of the same length, 15 inches square throughout? And is not the answer No 49, p. 231, vol. 32 , incorrect? A. The answer is cor-
rect. The rule is as follows: Multiply together the area of the two bases, take the square root of the product, add the greas of the two bases; and
multiply by $1 / 6$ of the hight. If $A=$ area of lower multiply by $1 / \mathrm{s}$ of the hight. If $A=$ area of lower
base, $a=$ area of upper base, and $h=$ alttude, then solidity $=\frac{(A+a+\sqrt{A a}) \times h}{3}$. Applying the rule to the given example, solldity $=\frac{2 \cdot 25+1+\sqrt{2 \cdot 25 \times 1} \times 20}{3}=$
$=31 \cdot 66+$. (39) A. W. asks: What horse power are we 1514 inches, stroke 32 iaches, revolutions 73 per mingute, average pressure throughout stroke being $48 \frac{1}{10}$ lbs. 7 A. Do you and many others who con-
tinually write to inquire the horse power of engines ever read our replies on the subject? We
have published the rule in a dozendifferent forms and bave explained that, with the mean pressure as ascertalned by the Indicator, the indicated horse
oower can be calculated: but that the effective
 more: Multiply together the area of the piston in quare inches, the mean pressure throughout the troke diminished by the mean back pressure in pounds per square inch, and the speed of the pis-
ton in fect per minute, and divide the product by 33,00. If you can ascertain the presesure in bs per square inch required to overcome the frictio of the engine-by subtracting thisfrom the mean
effective pressure, as determined by the indicato effective pressure, as determined by the indicator,
and using the remainder for the effective pressure and using the remainder for the effective pressure

- you can calculate the useful horse power by the - you can calculate the
aid of the above rule.
(40) G. W. G. says: We have buried her (Galena, Ill.) one Lytion, whose friends claim tha he was the original inventor of the paddle whee
and the frrst to put it in practice. Is this so? A. and the first to put it in practice. Is this so? A
No. The paddle wheel was used by the ancient Egyptians, and later by the Romans.
(41) L. K. Y. asts: Please give me a recipe plated cup, that $I$ am going to gold plateon the in side; it must be thin and easill tasen off. The object is to prevent the outalde
plated. A. Coat it with wax.
(42) G. M. H. aaks: 1 Can a strong electric current be sent through successive coils of fine platinum wire for gas lighting purposes? A. No.
Can the current be divided at each platinum coil Can the current be divided at each platinum coii
by some simple means, so that a part only may poll.
(43) B. R. H. says: 1 I havea mirror fora re cal length of $\mathcal{L}$ feet 2 inches. I wish to construct a telescope on the Casegrainlan plan. 1. What ought the diameter of the small mirror to be? 4 .
Two inches. 2 . What focal length should it havo? Two inches. 2. What focal length should it havo
A. Sixtcen inches. 3. What should be the size of A. Sixtcen inches. 3. What soould be the size of the bole in the large mirror? A. Two inches. 4.
How can I test the accuracy of the curvature of the sun. 5. Is there any other method than Dra per's of silvering the surface of the mirrors? $A$
English method of silrering glase: Solution English method of silvering glass: Solution A:
Nitrate of silver crystuls 90 grains, distiled water Nitrate of silver crystuls 90 grains, distilled water
4 ozs. Solution B : Potassa, pure, by aloohol, 1 oz,
 sugar 3 , oz., distilled water 5 ozs. A and B will aod filtered. To silver an 8 inch glass speculum : Pour 2 ounces of solution, A , into a glass vessel capable of holding 35 fulud ozs. Add drop by drop,
stirring with glass rod, as much ammonia as is stirring with glass rod, as much ammonia as is
just necessary to obtaln a clear solution of the rray precipitate frrst thrown down. Add 4 ozs. of solumust be Tue brown- by the adstion ormed emmonia as before. Add distilled water untli the bulk reaches 15 ozs., and add drop by drop some of solution, A, until a gray precipitate, which does not re-dissolve after stirring three minutes, is ob
tained; then add 15 ozs more distlled tained; then add 15 ozs. more distilled water. Set of solution C; stir gently and thoroughly in a 2 . round disk 3 inches deep and 2 inches larger than the speculum. Suspend the speculum face downward in the liquid, which should rise $1 / 4$ inoh up the side. The mirror is attaobed to a wooden
block by pitch at the back after wetting the back block by pitch at
with turpentine.
(41) J. H. asks : Could a galvanic battery be nade of sufficient current to stun birds, 80 as to A. No.
(45) S. H. asks: What is a Florentine re-
 asentlal and other
olls? A. A Flor
A. olls? A. A Flor-
entine receiver is
conical in form, and at the side is a spout, B C, communioating with the bottom, the
orifice, $C$, of the spout being much lower than the
mouth, A, of the receiver. The dig-
tilled product betilled product be-
ing poured into
this vessel, the oll this vessel, the oil pics the upper part of the vessel. The water, as it
ises above tbe bend of the spout, flows of at C rises above the bend of the spout, flows of at C ,
while theollmay be from time to timeremoved by means of a plpette.
(46) W. P. J. says: In the report of the Hartford Boiler Insurance Company, it is stated thing. Does this mean sal soda, or carbonate of
soda,
soda.
$(47)$
(47) A. L. asks: Will a blowpipe drill
ole in the best safes manufactured $i$ A. No. (48) C. F R. asks: Can you give me a re clpe for mlxing dry pigment, as wator colors, for
painting on paper? A. Mix the pigment with water to a thin paste. Add pure gum arabic (beavy) sufflelent, when dry, to make a soft dry cake, which
may be used as a body color.
What can I put on drawing paper tn make it
What can I put on drawing paper to make it oughness? A. See p. 208, vol. 32.
What is the heaviest metal? A. Platinum is
with the exception of indum snd o3mlum, which (with the exception of indlum and o3mlum, which
I own.
I often hear people say it is too cold to snow; is cold, dry alr is one from which the moisture in If an ice house be built on the side of a hill,
walls being of stone 12 inches thick and two stories high, and the ice packed in the upper stor, and
he lower one used for a sort ofrefrigentor, would he temperature be sufficiently low to preserve
resh meat and other perishable articles? A. We do not $t$,
actory.
(49) R. D. asks: 1. What distance a part their diameters and focal lengths being as follows? 1. 15 linch focus, $\frac{3}{3}$ diameter, plane. $2.11 / 4$ inches
ocus, 11
diameter, plane. A. Lenses 84 inche focus,
apart.

2. Wiameter, plane. A. Lenses 94
inches
A. and of what size should the aperture be? A. Dia phragm aperture $5 / /^{\prime \prime}$, distant ${ }^{1 / 3}$ inch from eye lens
at its inside focus. 3. What distance apart shouid thelenses for a terrestrial esepiece be placed,thei focal length and diameters being (1) 2 inches fo-
 ameter, double ; (3) 2,8 inches focus, $1 / 4$ dame
 4. Where should the diaphragm be placed,and what
the size of theaperture? A. Diaphragm aperture $8^{\prime}, 1 \cdot 5^{\prime \prime}$ in front of D , aleo diaphragm aperture $0 \cdot 23^{\prime \prime}$, distant $1 \cdot 64^{\prime \prime}$ from $A$. 5. What will be the power of these eyepieces with a 3 inch achromatic
of 43 inches focal length? A. Equivalent focus $1.75^{\prime \prime}$, power 27.
(50) J. D. W. says: I would like to know why the pile of my Leclanché battery bothers m as it does. The top of the pile swells up, and some kind of whitish stuff comes out. It smells some
whatlike hartshorn, and after it appears the bat tery gets weaker. What is the cause of it A Probably it is owing to defective manufacture. top with gutta percha, but an article has bee made in this country in which paper is made to take the place of gutta percha. Now the pape it out of the cell by oaplliary attraction, and mell of hartshorn is due to the artion of the battery, ammonia being set free at the negative elec trode.
(51) R. O. T. says: 1 . I wioh to make an induction coil, about 10 or 12 inches long, with
center bundle of iron wires of about $\$ 4$ inch dicenter bundie of iron wires of about 94 inch di
ameter. The inducing coil conslsts of No. 18 wire and the secondary coil, of No. 28, both 13 gra $^{2}$ loug, and what I want to know is how much of the secondary wire ought I to wind on the primary to get a spark at least $1 / 6$ inch long? $\Lambda$. It would b
better to use finer wire for the secondary coll,sa better to use finer wire for the secondary coll,say
No. 36 wire. Your secondary coil should be at least thirty times as long a s the primary. 2. How must make the condenser? A. Condensers ar saturated with paratin, arranged like the leaves o an interleaved book, the metal plates being the priated leaves and the paraffined paper the
blank paper. Each alternate metal plate is con. lank paper. Each alternate metal plate is con
nected so as to form two distinct series, insulate from each other, one of which is to be connected with each end of the primary coli. The spark aninduction coil cannot take the place of a bat tery for general purposes. 3. I tried to make a
condenser of sheets of tin foil, glued on each sid of a large sheet of common newspaper; and aft doubling it up so that the two sides did nct touc each other, I counected each sheet with each et d
of the inducing coil. Will this do? A. You canof the inducing coll. Will this do? A. You caninduced current of a small coil for the inducing one of a larger? A. The reason why you cannot use the induced current of a small coil for the in duclng one of a larger is that the Induced currest is
one of tension, whereasquantity is required. The effects produced by the secondary coil result from mary to electric tension in the decondary.
(52) J. J. J. a.ks: 1. If I make a squar a square of zinc. I will have a sulphate of coppe battery. How many such cells will I require to plate with niokel and silver? A. Two. 2. How many such will be required to make the electric
light? $\mathbf{A} .100$. 3. If I make a silver solution by light? A. 100. 3. If I make a silver solution by
dissolving two silver dollars in acid, and put this dolution into three quarts of water, contained in a one gallon stone Jar, can I, by suspending the
articles to be plated in this solution and connect ing them to the negative pole of a battery, plate them? A. Use 100 parts of water, 10 parts cyanide of potassium, 1 part cyanide of silver.
(53) C. asks: Is there such a preparation os
chemical ink, tesomlng invisible or fading after witing to kesoming invisible or fading after wsitlng, to reappear on exposure to he
(54) R. W. W. asks: 1. Whal
(54) R . W. W. asks: 1 . What causes the ant to form well as smoke is formed in the combustion of fuels. As long as the temperature of the lue is kept high enough, thiswater is carried off in the form of vapor; but if the temperature is lowered,
it is condensed and acquires an acid reaction from the sulphurous, sulphuric, and carbonic acidsgen effectually prevent the dripping nuisance? See that your flue is not chilled, bas a good draft, and is free from elbows, ete.,where vapors may be (55)
for boiling a solution of 1 part sulphuric acid and 11 parts water; I want it to hold about 60 or 70 gallons. Of what material should it be made, in order not to corrode? A. Porcelain lined iron
pots have been used with advantage for this pur-
pose.
(56)
(56) H. L. asks: What is the formula for a objeotive or speoulum of 48 inches focus? A.
Foci: $A=1 \cdot 58^{\prime \prime} ; B=Z 38^{\prime \prime}, \mathrm{C}=2265^{\prime \prime}, \mathrm{D}=1.50^{\prime \prime}$. Die-
 $B=0 \cdot i^{\prime \prime}, C=1 \cdot 15^{\prime \prime}, D=07^{\prime}$. Diaphragm aperture, $0 \cdot 2 \prime$, distant $1 \cdot 24{ }^{\prime}$ from A. Diaphragm aperture,
$0 \cdot 55$, at inside focus of eye lens. Cap, 0.28 , aper$0 \cdot 75$, at inside focus of eye lens. Cap, $0 \cdot 28$, aper-
ture distant 0.44 from D. Length of esepiece $=10$ inches. Field of view $=30$ minutes. Power $=5 \%$ $A$ and $B$ plane side to objectlve, $C$ and $D$ plane $A$ and $B$ pla
side to eye.
(57) W. R. B. says: 1. In Dick's "Practical an achromatic telescope consisting of a small correcting lens of fint and crown glass to cor-
rect a large objeet glass of crown. I do not unrect a large objeet glass of crown. I do not un-
derstand the formula for computing or constructing such a lene. I have a good double convex
lens of crown glase, 5 inches in diameter and of 92 nches focus. Will you please give me the dlameter and focus of both the convex crown and concave filint composing the correcting lens, for such hefollowing formula for a 6 inch hial Smith gives of $83 / 4$ feel focus; Crown objective, outelde radius, $76 \cdot 806$ inches, Inside radius, $175 \cdot 109 y^{\text {. Cor- }}$ $8 \cdot 9915^{\prime \prime}$, and a double concave flint lens, radil 161-14" and $9.93^{\prime \prime}$. Flat sides of the corrector together, and crown next to object glass. 2. What is the
distance at which it should be placed from the ob distance at which it should be placed from the ob-
ject glass? Is there any great difficulty in obtaining a satisfactory efreet in this manner? A. The orrector, 4 inches diameter, is placed about half
he focus of arown objective from it, and moved until it corrects the chromatic aberration; and then the tenses of the oorrector are separated miore or less by 3 bits of card, about $\frac{1}{3}$ inch, more or
less, until the epherical aberration is corrected. The until the spherical aberration is corrected. The correction is now perfect at center of fleld iece must be put in a sliding tube and slid out un iece must be put in a sliding tube and slid out un except a slight aberration at the margin. 3. I deire to attempt the construction of an achromatic object glass for a telescope. Will you please give me the radius of the different curves of the crown and fint for an object glass 4 inches diameter, 60 nebes focus? A. Tables for the curves of any
pair of dlsks, given the index of refraction and pair of disks, given the index of refraction an
ispersive power of the flint and crown, to the fourth place of decimale are to be found in Prechtl's "Praktteche Dioptrik," being Barlow's ex-
tension of Herschel's tables." Where can I ob tension of Herschel's tables. 4. Where can I ob-
tain the filnt and crown glaes disks for the above? tain the flint and crown glass disks for the above
A. At Heroy \& Marenner's (Chance's agents), Duane treet, New York city. 5. Is thereany work pub rinding, polishing, and testing) of lenses? A Gor Draper's book, and also Prechtl, to read wit the help of some intelligent Teuton. You wil then be on the rodd to success.
(58) H. W. W. says: In your most interest ng article in No. 10, on solar chemistry, you say
that the gaseous substances which constitute th hotespheous substances wheb constitute the Are we to infer that our sunshine contains these Whatls the proof? A. The sunshine does not con tain lime, magnesium, etc. Its spectrum, howthe metals in the state of incardescent vapor, correspond with the bright spectral lines formed by tbese incandescent vapors. But it is a property of incandescent va ors to absorblight of the same refrangibility as they emit. Hence the dark bands in the sola tion of certain portlons of the sunlight by corre spondlng incandescent vapors. (99) C. A. says, in reply to E. G., who ask wat specd to givo a foot power circular saw: saws are flve inch, of No. 28 gage. The balance Wheel is about 75 lbs . 10 welgu, and $I$ increase mo made with a out-of the made with a out-ofr saw. Are they good work for
a foot power saw? A. Yes, very good indeed. and give evidence that the sawyer is an expert. E G and others willbe much obliged for the informa ( 60 ) R. H. H. says, in reply to J. S., "who
asks if a belt would hug a smooth iron pulley sloser than one covered with leather, and you sa that you are not sure that a pulley covered wit leather is better than onewith a smooth iron face ley with a 4 inch face, and the belt would sip matter bow tight it We . Weng ith, inch wood pulley with 4 inch face covered with eather, and it does the work now withoutan leather,
slipping.
(bl) G. B. says, in reply to A. B., who asks corduros, which gives that fabric so disacture ofle n odor when wet? Anima! gize, made chiefly of dead horses, put in to give the fabric more body
(62) F. V. J. says, as tot he needed improve ments in the raliljoints on street rallroads. A plece of rubber put under the plate would prevent the
evil to some degree. As the ralls are now, the damage the cars; but rubber put under the rails Mact as a spring and deaden the jar.
Minerale, etc.-Specimens have been re cived from the following correspondents, and examined, with the results stated
J. H. N. D.-The brilliant golden scales are films of muscovite, a variety of mica, which have ac-
quired their color by the oxidation of a small per centage of iron which the mineral contains under The infuence of heat in a current of air.-J. C. E. heat is attributed by scientists to combustion. A great many suns mads up of coal would bave been entirely consumed during the time the sun M. H.-It is sulphuret of lead or galena.-M. R. K. M. Ke regret to say that the jewelers will not pur-
chase these river pearls. We have had a pearlfrom
the Warash river many times the size of the larg-
B. M. asks: Which is the best way to bottle lager beer to avoid a second fermentation?-R. H. inches, be dropped into a conical glass full of waer, whose diameter 195 inches and altitude 6 inch-

## COMMUNICATIONS RECEIVED.

The Editor of the Scirntific American acknowledges, with much pleasure, the receipt of or-
iginal papers and contributions upon the following subjects:
On the Tides. By W. H. P, and by 2.
On Poetry and the Locomotive. By J. H. B. On the Vital Principle of Orgauic Matter. By
On Lighting Tapers. By F. W.D.
On a Parasite of the House Fly. By D. V.D.

 J. P.-J. C. R.-A. P. F.-E. W. P.-S.-A. W. P.-
C. H. A.-J. M.-F.II, w.-S. T.-R.(G.-J. R.D.-A.
-L. F. M.-J.F.J.-J. B.-R. A. K.

## GINTS TO CORRESPONDENTS.

Correspoudents whose inquiries fail to appear may conclude that, for good reasons, the Editor declines them. The address of the writer should a Enquiries relating to patents, or to the patentality of inventions, assignments, etce, will not be only are given, are thrown into the waste basket, as twould dill half of our paper to print them all; os mail. if the writer's address is given. Hundreds of enquiries analogous to the following
are sent: "Who makes the best steam trap? Who are sent : "Who makes the best steam trap? Who the latest improved steam cut-off? Who sells the best sewing machine motor? Whose is the best tool will be obscrved, in the coumm of "Business and Pil be obscrved in the collumn of "Business and
?ersonul." which is specially set apart for that purof that volumn the charge mencioned at the head ma in this way be expeditiously obtaned.
[OFFICIAL.]
INDEX OF INVENTIONS
Lettern Patent of the United States were

## Granted In the week endtise

## April 20, 1875,

## bach bearing that date



Clock, R. H. Strong.... .....................
Cloth winding and measuring, J. Wayland.
Coal scuttle, Feldmeler \& Stoeppelwerth Coal scuttle, Feldmeter \& Stoeppelwerth
Cock, Corn sheller, w. Stover. Cotton gin feeder, F. W. Flynn
Cotton seed drill, H. Steckler, J Cructble mold, J. C. Wallace Cultivator, $\Lambda$.
Curry comb, A. Dental bib, ri. Horton ..........
Dental mallet, J. T. Coolman Door check, G. Burt...
Door knob, c. Rebstoc Dough miser, E. C. Morrison Drill for drilling metal. shaw
Orill, rock, G. H. Reynolds Drill, rock, G. H. Reynolds............
Drill, ripod rock, Nucting \& Githens. Elevator, hay end grain. T. Powell Elevator, hydraulic, C. W. Baldwin Elevators. safetv catch for. F. B. Perkins Engine governor, steam, G. L. McCahan Engine governor, steam, J. D. Willoughby Engine lubricator, steam,. J. Farnan Engine valve, steam, R. Schinldt......
Engine piston cushion, G. H. Reynold Fabrics, machlive for coatting. L. L. Allen Fan, automatic, L. D. Stamps.
Fare box, R. M. Robinson
Fastener Fastener, metalltc, G. W. Mcia
Faucet, J. G. Bickel (r) .... Faucet, J. G. Bickel (r).
Fence, farm. T. W. Owen Filter rack, M. Lefner...
Frrc arm, brecech looading, F................ Freund.
Fire a m, revolving. Forehand $\&$ W Fire a m, revoiving, Forehand \& Wadswor
Fire arm, revolving, R . White...............
Fire arm, guard lever, etc., F
Fire arm grip, F. W. F reund
Fire escape, E. Matteson.. ..
Fire extinguisher, J. T. Hall
Fire extingulsher, J. T. H
Fire shteld, T. T. Moore...
Flour, making middIIngs, R. L. Downton
Forging tile blanks. T. L. Gr
Fuel, artifctal, J. J. Endres
Furnace doors. J. $A$ shcroft............................ 162,3
Furnace door, E. H. Ashcroft
Furnace, hot air, G. E. Wallis.
Gaffs, throat
Game board, G. Bay les..
Gas retort, S. S. Putnam
Gas stove, Burnham \& Tatte.
Gate, farm, G. O. Ross...
Gate, farm, J. N. Wilson
Gilding, passe. partout bace for, H. Mchugh
Glass mold, Hobbs \& Brockunier
Glassware, c. W. Brucku
Giassware, C. W. B. Chase..
Harrow, J. McPlierson...
Harrow, G. H. Pounder
Harrow, C. W. Strombeck.
Harvester, bean. Barber \& An
Harvester rake, J. II. Myers.
Harvester reel, F. Wyman
Harvester pitman holder, c. . Wheeler........ Jr
Hat brushing machine, $\mathrm{\Lambda}$.
Hatcliwass, safey guard for, E. Schlenker
Hay loader, P. L. Craig....
Heel stifener. J. W. Hatch
Holst, hydraulic. F. Lochow.
Horse interfering pad H
Horse interfering pad. H. S. Nichols....
Horseshoe. J. D. Feltinousen.............
Hose pipe nozzle, compound, c. L. Jones
Hydrant, I. H. Clover.......
Hyarant, street. J. Flower
Ice machine, S. B. Martin
Injector, steam, D. Fergus..
Iron, pile for bar,
Iron, pile for bar, w. F. Durfee Jelly press, W. W. Bostwick....
Kettle handle, tea, w. S. Potwin Key fastener, R. F. Glbson. Key fastener, .J. Thornton.
Kiln, brick, P.
Kiln, brick, P. E. Smith.....
Knife cleaner, F. $\Lambda$. Phillipp
nife, pocket, C. P. Benedict
nitting machine needie, S. Peb
Ladder, I. \& C. Erkskine....
Lamp bracket, H. G. Hubon
Lamp chtmneys, box for packing, N. Harris
Latch, door, J. A. Colry
Latch, door, J. H. Crane
Latch, locking, C. Seymour.
Lathe for turning wood, gage, F. Goulet
Lathe, metal turning, $\mathbf{T}$. Wilbraham Lathe, metal turning, T. Wrllbraham..
Leather work, seam for, s. W. Shorey. Light and heat, collecting rays of, P. Balestrieri
Locomotive running gear, F. S. W. Nowotny Lock, combtnation, w. Gillillan Loom harness motion, o. W. Kenis
Loom heddle frame, F. S Pratt.... Loom pattern chain, L. J. Know Loom warp beam, E. Oldtield...............
Lubricator for steam engines, J. Farnan. Marlle, etc., grinding, Robinso Metal bars, enlarging ends of, G. H. Sellers.
Mrlistone balance, s. Bernhelsel ...... .... Mincing machine, J. A. Miller ... Nall extractor, M. D. Blatsde Necktle holder, M. A. Head... Needles, punching eyes of, s. C. Kingman Nut lock, S. Brunson..
Nut lock, c. L. Hollag
O:I cloth, polishng, , , Webber, J......
Oils, lubricating, Gordon and Bumpua Ore crusher, G. E. Noyes
Organ, pneumattc action, T. Winans.
Oven, baker's,
Paper barrel, N. Keely.
Paper box feed mechanism, E. B. Beecher
Paper, calendering, N. H. Whitten
Paper ctgar box, G. A. Betder
Paper clgar box, G. A. Beldler
Paper fastener, G. W.
Paper fastener, metalic, G. W. McGIll.
Paper feeding machine, D. Colbock.
Paper tube machtne, J. F. Jones..
Pavement wood, Carr and Phillips
Pavement wood, Carr and Phillips
Pa-ements, layingcement, $J$.
Pavior's rammer, G. Hitchcock.
Pen holder, J. Larru.
Photor
Photograph burnisher, E. R. Weston...
Plano keys, derice for shaping, M. Prat
Plano keys, derice for shaping,
Planoforte pedal, L. C. Whiting


|  <br> CANADIAN PATENTS. <br> List of Patents útranited in Canada, APRIL 16 to 21, 1875. <br> f,63G.-Wm. T. Root et al., Ingersoll, Ont. Radiator and steam heating apparatus. $\Lambda$ pril $16,18 \hat{1} 5$. <br> 4,637.-J. L. Arams, Montreal, P. Q. Tobacco cutter $\Lambda$ pril 16, $18{ }^{5} 5$. <br> 4,638.-J. D. Stark, Brooklyn, N. Y., U. S. Elastic wheel lubricator. $\Lambda$ pril 16, 1875. <br> 4,639.-A. H. Swain, Winchester, Ind., U. S. Adjustable table and froning board. April 16, 1875. <br> 4, 6 UU.-R. F. Cooke, New York city, U. S. Elastic horse shoc. April 16, 1575. <br> 4,6i1.-J. E. Wisner, Friendship, N. Y., U. S. Horse hay rake. $\Lambda$ pril 16. $18 \pi 5$. <br> 4,642.-M. D. Murray el al., Johnstown, N. Y., U. S. Breast collars for harness. April 16, 1515. <br> 4,6+3.-A. L. Carey $\epsilon t$ al., Ypsilantl. Mich., II. S. Chain pump bucket. April17, 1975. <br> 4,644.-Wm. ח. Gibbs, Oshawa. Ont. M:ddilngs purifer. 4,615.-R. W. Jeffery, Wuedibridge, Ont. Bolt lock for pttman box. April 17 18;5. <br> 4,646.-J.Currie, Toronto, Ont. Boiler foam preventer and fuel saver. Aprill 17, 1875. <br> 4,647.-J. F. Wcbster, Hamiltoil, Ont. Screw machine. April 17, 1875. <br> 4,6+8.-L. W. Russell, Gananogue, Ont. Fence corver April 17, 1375. <br> 4,649.--B. Sloper, Moutreal, P. Q. Hydrogen generator and carbureter combined. April 17, 1875. <br> 1,650.-S. R. Balley, Boston, Mass., U. S. Wood-bending machine. $\Lambda$ pril 17, 1875. <br> 1,651. - IV. G. Rawhonc, Toronto, Ont. Cartridge creaser April 17, 1875. <br> 4,652.-S. II. Hall, Belle flaine, Iowa, U. S. Tau vat April 20, 1875. <br> 4,653.-J. B. Porter, Yarmonth, N. S. Irning machine. $\mathrm{A}_{\mathrm{f}} \mathrm{II}$ il $20,1875$. <br> ,654.-E. Tiffany, Bennington, $\bar{V} t ., \mathrm{U} . \mathrm{S}$. Circular knit ting machine. April 20, $18 \% \mathrm{in}$. <br> 4,655.-A. G. Gray, St. John, N. B. Mowing machiue. April 20, 1873. <br> 4,656.-S. livdbeck, Red Wing, Minn., U. S. Mortising machine. April 20, 1875. <br> 4,657.-I. Levy, Ellaville, Fla., U. S. Fence picket machine. $\Lambda$ prll 20, $18 \% 5$. <br> 4,658.-Wm. Pcaker et al., li rampton, Ont. Hot atr dumb stove. April $20,117 \mathrm{Fi}$. <br> 1,659.-J. S. Kcmp, Magog, P. Q. Manure-spreading machine. April 21, 1375. <br> 4,6G0.-13. Curtis, Jr., Boston, Mass., U. S. Buckle attachment. $\Lambda$ pril 21. 1875. <br> 4.661.-Wm. She:, Trenton, Ont. Milk and liquid cooler April 21, 18 Ts. <br> 4,662.-Wh. J. Mansell, Toronto, Ont. Self-acting car coupling. April 21, 1875. <br> 4,663.-W. H. Landon. Princetul, Ont. Parlor cooking stove. April 21, 1875. <br> 4,664.-W. .I. Wauchope, Nidilite, Scotland et al. Gas manufacture. April 21,1875 . |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## Sdrertisements.

##  <br> Engravings may heacl advertisements at the same rate per line, by measurement, as the letter press. Adverper line, by measurement, as the letter press. Adver- tisements must be received at pusicatim office as early as Friday morning to appear in next $2 s$ sice. <br> FOR SALE,  <br>   FOOT LATMEES-Eureka Foot Tathe, , \$15 

## Model Engines. <br> Cor masting ms 

