Wusiness aud Zersoual. The Charve for Ineertion under the head wo $81 a$ Lime.

 Meriden, Conn.
For Silo-T. mor reent U. S . Patents for improve-
nents

 burbh, Pa

 A Valuable Patent on Saw Mills, Just 1suud; will A.tn, 18 Broadmas, New York.
A merican Metaline C 0, al

 Nogood mechanic can afrord to be without the

 stamp to eoo. Parr, Burato, N. T.
 Wooden Ware Patent for Sale. 2947 N. Y.P.O Grindstones 2,000 tuns stock. Mitchel, Phila,.Pa. Lathe GearCutters,Wm.P. Hopkins,Lawrence,Ms.
 struction, and management of American Locomotives,
Price, post-paid, $\$ 2.50$. Address The Rallroad Gazette, Price, post-pald, 8.50 . 5 .
For 13, 15, 16 and 18 inch Swing Engine Lathes,
addrese Star Tool Co., Providence, R. I.
Wanted-Machinery for splitting out or riving
Plpe staves 60 inches long, 3 to 8 inges wide, and 18
tnch thick, from Walte Oak Tlmber, for the New Orleans Inch thick, from White Oas Timber, for the New Orleans
market. Address Geo. G. Hughes, Jackson, Tenn Mills fro Flour \& Feed, White Lead, Colors, IVor
Black, Printing Ink, \&c. John Ross, Wil tamsburgh, N. Y.
Telegraph and Electrical Instruments and Bat-
eries, cheap. M. A. Buell, 86 Bank St.. Cleveland. O. Models for Inventors.-H. B. Morris, Ithaca,N. Three Second Hand Norrns Locomotives, 16 tuns
each; $4 \mathrm{ft} .8 \%$ Inches gauge, for sale by $\mathrm{N} . \mathrm{O}$. \& C. R. R. each; 4 ft. 8% Inches
Co.. New Orleans. La.
1, $2 \& 3$ H. P. Engines. Geo.F.Shedd,Waltham,Ms. Boult's Paneling, Moulding and Dovetalling Machne is a complete success. Send for pamphlet and san
ple of work. B. C. Mach'y Co., Battle Creek, Mich.
Saw Ye the Saw ?-81,000, Gold for Hand Sawmill
to do same work with no more power Expended. A. B.
For best and cheapest Surface Planers and Uni-
versal Wood Workers, asddress Bentel, Margedant \& Co. Hamit ton, Ohio
Diamond Carbon, of all sizes and shapes, for
drilling rock, sawing stone, and turning emery wheels, The Baxter Steam Engine, 2 to 15 Horse Power.
Simple,
Safe,
Durable,
Eid
 Address Wm. D. Rusell. 13 Park Place, New York.
Engines, 2 to 8 H. P. N. Twiss, New Haven, Ct. Engines, 2 to 8 H. P. N. Twiss, New Haven, Ct.
Agents, 100 men wanted; $\$ 10$ daily, or salary.
selling our new goods. Novelty Co., s00 Broadway, N.Y. Thomas's Fluid Tannate of Soda never fails to
remove scale from any steam boller; it removes the
 cost buth in Fuel and repairs of Boller; Increases steamIng capactty of Boller; has been tested in hundreds of
Boflers; has removed Bushels of Scales in single cases.
 Price 10 cents per lb, less than \% p price of other prepara-
tions, and superior to all others. Address orders to For Tri-nitroglycern, Mica Blasting Powder,
Electric Batterles, Electric $\begin{aligned} & \text { Husea, Exploders. Gutta Per- }\end{aligned}$ cha Lnsulated Leeading Wires, etc., etc., etc., resalt of
seven years' experience at Hoosac Tunnel, address Geo. seven yearr' expertence at Hoosac
M. Mowbray, North Adams, Mass.
Faught's Parent Round Braided Belting-The
Beat thing out-Manufactured onls by C. W. Arny, 301 \& Genuine Concord Axles-Brown, Fisherville,N.H. Price only $83.50 .-$ The Tom Thumb Electric
Telegraph. A compact working Telegraph Apparatue, Telegraph. A compact working Telegraph Apparatue,
for sending mesages, making magnets, the electric ligdt, giving alarms, and various other purposes. Can be put in
operation by any lad. Includes battery, zey, and wires. Neatly packed and sent to all parts of the world on recelpt
of price. F. C. Beach \& Co., 236 Canal St., New York.
 The Lester Oil Co, 183 Water St., N. Y., Exalualve
Msnufacturers of the renowned Synovia: Lubricating Oil. The mose porseoct and economioal lubricant in axdiconco.
Send for CIrcular.
Templee and Ollcana. Draper, Hopedale, Mas.

Peck's Patent Drop Prees. still the best in use
Addrese Mllo Peck, New Haven. conn.
 Itted with the exinature Electric Teleerraph. By touchn co persone tn the rarlous departments of the eatabliab-
ment. Cheasp and effective. Splenadd for shops, oflces
 8mall Toois and Gear Wheels for Models. Lisg
reee. Goodnow W Wighman. 23 Cornhll, Boston, Masb. Hotchkiss Air Spring Forge Hammer, Dest in the
market. Prices Iow. D. Frible © Co., New Aaven. \mathbf{C} t

Spinning Rings of a Superior Quality-Whiting-
alle splining Ring co., whitneville, Mase.
 Wash Stands, New Styles, M Marbe Tops, can be
weed in and otuation. Prices very low. Send tor a cata
 - Willams, cor. of Plymouth and Jay, Brooxiyn, N. Y. Mechanical Expert in
For Solid Emerry, Wheels and Machinery, sen
to Union Stone Co., Boston, Mase., tor circular.

Whats (turniss

J. G. B. ought not to remove the canceling ink from postage stamps, as it may lead to fraud using the dip described on p. 107, vol. 31.-J. P.
McC. can clean shells by following the McC. can cleanshells by following the directions on p. 122, vol. 27.-J. M. C. will tind directions for
crsehardening on p. 202, vol. 3l.-F. E. can deodorize butter by following the directions on p. 119 vol. 30.-F. W. K. can use rubber varash for ma-
king waterproof cloth. See p. 11 , vol. $32 .-\mathrm{D}$. H . can separate silver from lead by the method de-
scribed on p. 138 , vol. 32 -G. M. will finda formula for thickness of a boiler on p. 155, vol. 32. Read Camus on the "Teeth of Wheels."-R. R. B. ought to know that no instrument can possibly point out
where gold, silver, lead, etc., lie buried in the earth.-J. T. C. can dissolve pure rubber in benzine, naphtha, or carbon bisulphide.-D. can re-
move stains of iron rust from fabrica by the methmove stains of iron rust from fabrics by the meth-
od given on p.170, vol. 27. H. B. can fasten leath od given on p. 170, vol. 27.-H. B. can fasten leath-
er to wood with marine glue. See p. 232 , vol. 31 . J. A. W. can fasten chromos on thin canvas by will find directions for separating aluminum on pp.
. 91,116 , vol. 32.-R. MoA. can exterminate cockroaches by using the recipe on p. 43, vol. 31.-A.
K . should consult Kustel on the "Nerada and Cal fornfa Processes for Gold and Silver Extraction. -W. A. P. can galvanize his iron articles by the method described on p. 346, vol. 31.-I. G. will find
a recipe for a hair stimulant on p. 3月3, vol. $31 .-$ E. K. Jr. will find directions for making a black wainut stain on p. 90, vol. 32-G. C. H. can make p. 264, vol. 30.-T. H. L. can utilize old rubber by the process described on p. 34y,vol. 26.-J. S. F.can fill and polish his black walnut furniture by the
method described on p. 315, vol. 30 , and 347 , vol. 31 . method described on p. 315, vol. 30, and 347, vol. 31 , -W. C. can render wood
detailed on p. 280, vol. 28.
(1) P. C. askos: What is the chemical reacer bicarbonate of po adding of tartaric acid af Carbonate of potash, being an alkali, neutralize the lactic and butyric and other acids in the ran cid butter, but the excess of alkald used has buraing taste. The tartario acid added decom
poses the potash salt, liberating carbonic acid,and the resulting tartrate of potash does not offend the sense of taste.
(2) S R. asks: 1. For what particular pursoda glass? A. The addition of lime to glass diminishes its fusibility, while it increases its luster, but the addition of an excess of lime is apt to make the glass milky when cold, although it may be perfectly clear while hot. 2. What is the process that has been patented by a French gentle-
man foradding strengthand elasticity to the glass? d. The agent of M. Bastie, the inventor, lately exd. The agent of M. Bastie, the inventor, lately ex-
hibited specimens of the glass at the office of the SCIENTIFIC Aarraican, New York, and subjected
the same successfully to the most remarkable tests. The process for treating the glass has not yet been made public.
(3) H. B. W. asks: How is rubber melted
so that it can be run into molds? is simply rendered soft by passing betwe rubber is simply rendered soft by passing between roll-
ers heated bs steam, in which state it is pressed into the molds.
(1) M. H. K. asks: What are the cheapest and best chemicals known, to be mixed together
for use as a freezing mixture? To what degree Fah. will they descend, and what are the proper proportions to mix and use? A. One of the best,
and one of the most economical, is the solution of sulphate of soda in commercial hydrochloric acid. Peduced to powder; the temperature may thus be red.ıced from 50° to 0°.
(5) G. E. K. Jr. asks: How can I remove
il stains from marble? oil stains from marble? A. First rub with ben-
zine or turpentine, and then cover with powdered ohalk or pipe olay and keep in a warm place for some time.
(6) E. M. D. asks : What kind of clay should I use to make crucibles? A. You do not state for what purpose you intend to use your crucibles.
We cannot give defnite directions unless we know. In order to render crucibles capable of withstand. ing great variation of temperature, several sub-
stances Are used: sand, filnt, fragments of old crucibles, blaok lead, and coke are used for this pur-
pese. The most refraotory crucibles are those
made with pure clay, or such as contains little or oo ozide of iron and is free from calcareous mat-
ter. The best clays contain the most sillica, ze orucibles of pure clay are not absolutely infusible and in the high temperature of a blast furnace,
they sometimes soften so much as actually to fall hey sometimes soften so much as actually to fal into a shapeless mass. This defect can be some
what remedied by mixing the clay with graphite olid skeleton, which retains the softened clay an prevents its faling out of shape.
(7) S. F. H. \& Co. say: We have some leather lined with blue oloth,such as is used for car-
lage curtains. The color of the cloth is blue, and it rubs off. Can the color be made so as not to come off by applying a solution to it? A. Try dippin
tha.
(8) A. C. J. asks: Are the numerals and unctuation marks commonly used in telegraphy A. The numerals are, but punctuation mark
not very generally used, except the full stop.
(9) S. S. W. asks: How long should locust mes be boiled before planting? A. Take thre Boil the water, and pour it boiling hot over the eeeds and let them soak till the next dav: then plant them. The plants are as tender as melons,
and the least frost will kill them, so do not plant and the least frost will kill them, so do not plant
too early. Some of the plants will have thorne, shade trees; the rest you can use for hedres or throw away, for they are too disagreeable to keep in a
and civilized community. Both the thoray and thornless plants are perfectly hardy, require to shelter to transplant (at any age) that grows in this lati ude ; while their foliage and peculiar growth ren-irable.-H. H.
(10) W. Y. asks: What tools does a man
eed to run a small engine with? n assortment of fles, a flat chisel, a cape chise scrapers (\$) round and flat), a straight edge, an as--
ortment of wrenches, a screw driver, and a belt ortment of wrenohes, a screw driver, and a bel
(11) F. W. asks: In manufacturing our common red brick, is there any way of coloring hem, either byglazing or mixing, to produce some pense A . This can be done by facing them with of encaustic floor thes, but not without consider ably enhancing the price.
(12) W. R. H. asks: How much greater is the resistance of the ordinary railroad rail, made of wrought iron, than that of a rail of the same cast iron, respectively, in respect to resisting the hocks or strains of locomotive or car wheels
when in motion? A. The steel rail is about 1.5 times as strong as the wrought fron one, within thelimit of elasticity. Malleable cast fron is not well suited to resist shocks.
(13) H. R. T. asks: Which is correct, "buhr tone" or "burr stone?" A. Both are correct, bu
bubr stone" is the more usual way of writing it
(14) R. C. M. says: I am putting in two 8 0 engines, to run together, and I wish to use cis tern water. If I exhaust into a fourinch pipe, ex ending from the cistern upward, and keep a smal stream of cold water running through it from th second s.ory, 10 feet above the engines, winl it con
dense the most of the steam? A. This plan will not answer. Your best plan would be to use out of two $8 \mathbf{x} 10$ cylinders, coupled rigidly togethe or run iodependently and connected with one line shaft with belts? Part of the time I shall use only
one oylinder for light work. A. It would no doubt one oylinder for iight work. A. It wo
be better to run them independently.
How can I ascertain the number and claims of records, or engaging some one to do it for you. (15) A. A. asks: I have a stesm heater o the following capacity, and desire to know what pressure it will stand without bursting. It is 18
nches long, 14 inches wide, $21 / 2$ in hes deep and nch thickness of the iron. The boiler pressure is 45 lbs. The pipe that connects with the heater is 8 of an inch in diameter, and is about 60 feet in
length. The exhaust pipe is $y / 2$ inch in diameter, and is not quite free. A. Under the conditions
tated, the heater will have sufficient strength.
(16) D. asks: Can the area of an octagon xactitude, if the diameter of the circle be known? A. Yes. It is composed of eight equal isosceles triangles, of which two sides and the included
angle are known. The two equalsides are each equel to the radius of the circumscribing circle, and the included angle is $1 / 8$ of 360°, or 45°.
(17) C. C. asks: In your issue of April 17,
1875, in answer to the following question: "At 1875, in answer to the following question: "At
what power would you rate an engine that is 8 inches bore and 15 inches stroke, running at a say : At about 12 horse power. By what formula do you calculate this? Do you mean that thereal effective power of an engine under these cond:-
tions is 12 horse power? According to Roper's formula, as well as Haswell's, 1 shoujd figure it at 36 horse power, with (say) 10 per cent ơt for friction,
making about 32 horse power. A. We do not consider that either of these rules gives very correct results. Our answer was based on a personal nes. The answer referred to effective hons power. It is quite true that the rules sou menion will give you true results, if they represent the conditions of actual practice; but in general
ats
(18) J. W. asks: How many inohes from
the fulcrum must a ball of $121 / 8$ lbs. weight hang to
alve $1 \frac{8}{\text { B }}$ inches in diameter, the valve being be
ween the fulcrum and the ball, with its center 188 inches from the fulcrum? A. You can work it out for sourself by the aid ot the following rule Multiply together: (1) The pressure of steam, the
rea of valve, and the distance of center of val rea of valve, and the distance of center of valve
from fulcrum. (2) The weight of the valve, and rom fulcrum. (2) The weight of the valve, and The weight of the lever, and the distance of it center of gravity from the fulcrum. (4) Add to-
gether the products obtained by (2) and (3), and gether the products obtained by (2) and (3), and
subtract the sum from the product obtained by subtract the sum from the product obtained by
(1). (5) Divide the difference by tho weight of the all.
(19) C. H. D. asks: I enclose you a photo graph of a windmill which is erected on an emi
nence near York, Pa. It was built in 1870 by nence near York, Pa. It was built in 1870 by a
ngenious German, and has been regarded as a cu riosity, being the only windmill for many miles around. The sails are not constructed on the principle put forth in your recentarticle on wind rills, but have a unform incination to the plan of revolution. They seem, however, to be very ef cient, and I am informed that the power varie
from 5 to 10 horse power, according to the velocit of the wind, the sails being 3 feet wide, and the dimeter of the wheel 25 feet. The shaft is incline to the plane of the horizon at an angle of about 6° and is arranged to swing around a vertical sbaft when the wheel is shifted to face the wind. The now is utilized for brunching parnes nd is utilized for crunching bones. This windmil which is certainly cheap. A. We have no doub ur readers will be interested in this account; fo while it is probable that a wheel constructed with the proportions noted in ourrecent article would be somewhat more efficient, this is a little simple
(20) P. F. asks: In a cylinder 6 feet high containing 6 cubic feet of air, how many lbs. ressure on the piston will be required to compres A, If the temperature is constant, the pressure aries inversely as the volume.
(21) L. H. R. asks: 1. Can you explain the principle of the gyroscope? A: It may be ex-
pained generally on the principle that, though the orce of gravity is constantly acting downwards, here are other forces with which the force of ravity is resolved. See p. 91, vol. 31. 2. Wa that principle? A. There have been several. If a locomotive engineer be called upon to stoph engineas soon as possible, would it be advisable to shift the eccentric, thereby causing great resist ance at everystroke, until the engine has stopped?
A. Itwould be better to shut off the steam, and A. Itwould be
(22) J. W. H. asks: What is the difference in strength between an iron and a steel shaft, 43/ nches in diameter? How far will it spring with A. The steel axle will be about twice as strong. It ould not be advisable to strain the shaft so as to pring it sensibly ; and, though it might not break
(23) M. P. S. says power horizontal return tubular boiler,set in brick the usual way. Length is 15 feet, diameter 54 of boiler is a combustion chamber, $3 \mathbf{x 5} 5$ fect, and the chimney is on one side, at front of boiler. The eat passes under the boiler, returns throug abes, and passes through a square flue, 12×12 inch nd 30 the round iron stack, 48 inches in diamete bout eet high. This stack is lined with brick fo nches. The draft is sluggish, and the cast iro covering of the rear combustion chamber ha given way with the excessive heat. A. We think matters by contracting it at the bottom.
(24) P. A. asks: What is the correct rule or getting an engine into line and squaring the axis of the cylinder or through the cylinder, possible, and the other perpendicular to the first, in the same plane. These are reference lines to
measure from, to bring the shaft and guide into ne.
(25) B. \& C. say : 1. We are building a boat tom and a light top,to be used as a trading boat on a small river. What engine power will be neceswill probably require ar engioe of from 15 to 20 horse power. 2. Can the motion of a vertical en ine be reversed (A. A vertical engine can be re centrics and hooks. 3. Can a propeller be used on flat-bottomed boat to advantage? A. If you build such a boat it woild be betterto propel it wheel.
(26) R. B. W. asks: Would a 12 horse gin and a 30 inch grist mill? A. Not if they were driven up to their full capacity.
(27) D. S. S. says: I bave a steel spring, was long, $11 / 2$ inches wide, and $3 / 8$ inch thick, which the rate of its utmost for a period of 1 week, at tains a bend which weakens it. Is it impossible to make one that will always retain its natura
straight position when left alone? A. All springs, se a set in time
(28) J. B. K. says : I claim that a balance to the teady motion. My opponent claims that the balance wheel gives the engine additional power Who wins A. You do. Your opponent appears the assert that the fly wheel bas more power than t would be a very desirable ind of werp the case,

