a sheathing of plank covered with thick felt. Nothing which the most experienced arctic voyagers could suggest has been omitted in preparing the vessels for their arduous service, so that the failure, of the Polaris and of the other expeditions which were despatched in a condition far from that required
by the exigences of the undertaking, is not likely to be by the exi
The route to be followed is directly to Cape Farewell, the most southerly point of Greenland, thence to Cape Shackleton, in 74 degrees north latitude, and through the ice in Melville Bay to the open sea at Sinith Sound. The Alert will push northward as far as possible, and then go into winter quarters, preparatory to sending out parties polewards in the spring. The Discovery, on the other hand, will not proceed beyond Newman's Bay, in 83 degrees north. Her she will winter, carry on such scientific observations as are
possible, and be prepared to open up communications in the spring with the Alert, and also with a third ship, which will be sent out from England with fresh supplies and to bring back the news.
T'he total sum appropriated by Parliament for the expedi tion for the first year is $\$ 493,100$. The anticipated subse quent expenditure per annum is placed at $\$ 65,000$. From these figures it will be seen that the diffcuties are to be can suggest and ample appropriations procure. The person nel of the expedition is composed of officers and men who nel of the expedition is composed of offcers and men who life, and who, besides, will maintain that rigid military dis cipline, the absence of which contributed so greatly to the ill success of the unfortunate Hall.
This makes the thirty-third expedition sent in quest of the North Pole since 1848. The first ten were made by British sailing men of war; and the balance included merchant ves sels and steamers, specially chartered from both the United States and England.
A Swedish expedition is also now being fitted out by a well known merchant named Dickson, of Gottenburgh. Professor Nordenskjold will accompany it, and the start will be made the western coast of Nova Zembla, and thence (from the most northerly point) north easterly, to explore this unknown por tion of the polar basin.
patent litigation in england and the dnited sTATES.
Under the present law of Creat Britain, patents are granted to every applicant who choosesto pay the fees, without any official examination as to novelty. All the patents are printed, and the applicani, or his agent, makes his own examination or none as he prefers.
Some people hold the theory that this plan of granting patents, without official examinations, must be bad, necessa rily leading to many itigations, which would be avoided i the government were to examine, before granting the patent.
But this theory is in practice, fallacious. Mr. W. Lloyd Wise, of London, in a recent paper on the subject,shows that the total number of common law and chancery cases litigated per annum in Great Britain is, in round numbers, 30,000 ,out of which only eight are patent cases.
In this country, by reason of our system of official exami nations, we have a species of patent litigation totally un known in England. As nearly as we can estimate, there are between ten and fifteen thousand cases annually, that are litigated, to a greater or less extent, before our Patent Office authorities. To search upanswers to litigants, to cut down their claims, attend to hearings, write out and record de cisions, and maintain the legal paraphernalia, necessary fo ents yearly, gives employment to an army of five liundred officials, fed and supplied at a cost of aboat six hundred officials, fed and supplied at a cost of aboat six hundred
thousand dollars per annum. This represents only the gov thousand dollars per annum. This represents only the gov-
ernmentside of the litigations. On the opposite side the ap plicant must either appear in person, or employ a solicitor and the aggregate amount of time, labor, and money thu spent, is quite large.
Having passed the ordeal of Patent Office litigation, the American patentee is then in the same situation as the Eng lish patentee, who went through no such operation: namely, both patentees have the privilege of litigating in the courts, where alone the validity of their patents can be finally set tled.

DEADLY BALLOONING.

The names of Croce-Spinelli and Sivel, two of the most daring and successful of French aeronauts, are now to be added to the long list of those who have laid down their lives in the cause of Science. In company with M. Gaston
Tissandier, they attempted to ascend to a higher altitude than had ever beforebeen reached. At 29,000 feet elevation, than had everbeforebeen reached. At 29,000 feet elevation,
all three men became unconscious. The balloon soared higher and higher and then descended. Tissandier regained his senses on reaching respirable air, to find his companions his senses on reaching.
dead from suffocation.
This voyage which has resulted so disastrously was the second of two recently projected by the French Society of Aerial Navigation. During the first, which was safely accomplished, the balloon was kept afloat for twenty-three hours, and a number of interesting observations of natural phenomena of the atmosphere were obtained. The aeronauts, during the second ascension, were to test the atmospher at the highest possible altitude, makervations, and in general
bonic acid,conduct spectroscopic observer to obtain acientific data relative to the upper aerial regions with greater accuracy than heretofore attained. Thus it was
believed possible, through the respiration of oxygen,to enable the investigators to exist in a highly attenuated atmosphere, previous ascension of Croce-Spinelli and Sivel to a hight of 25,000 feet, described in these columns a year ago.
The balloon Zenith started on its voyage from Paris at 1 P. M., on April 15. It shot directly upward, reaching the hight of 21,000 feet in a very few minutes. At this elevation Tissandier says: "My companions were pale; I felt weak, but inhaled a little of the gas, which somewhat revived me. We still ascended." In response to Sivel's request, he acquiesces in throwing out ballast, and three of the nine eightypound bags of sand were emptied. "All at once," he con tinues, "I found myself so feeble that I could not even tur my head. I wanted to exclaim ' we are at 8,000 yards,' bu my tongue seemed paralyzed." Tissandier then faints-but
revives and finds the balloon falling rapidly. Treatly alarmed, he arouses Sivel, who has fallen into a stupor, and the latter, seizing the respirator, inhales large quantities of oxygen Shall we go up ?" exclaims Tissandier; " yes," replies Sive gaily, "and happy the one of us that returns." Sivel be comes intoxicated with repeated doses of oxygen, and in his exhilaration throws over the respirator,besides the baliast and a number of the instruments. Again the Zenith soars a!oft and Tissandier, as he lapses once more into stupor, reads from the barometer an ailtitude of 20,000 feet. Spinelli and Sivel, he states, were still conscious, though apparently incapable of any exertion. How high the air ship ascended will be know when the test barometers are examined by the French Society When Tissandier awoke, two hours later, the balloon was fall ing at a fearful rate. He hurriedly cut away the grapnel ing at a fearful rate. He hurriedly cut away the grapned and other articles which had escaped Sivel,checking the speed and then, on attempting to rouse his companions, he found
both stone dead, their blackened faces and blood-suffused mouths denoting their struggles against the suffocating at mosphere.
There is no definite period stated by the survivor at which he surmises the death of his comrades took place. Tissan dier was the weakest, physically, of the three,and his loss o Glaisher and Coxwell, at Wolverhampton, Eng., in 1862, as cended, according to the calculations of the former, to an alti. tude of 37,000 feet; butthis record cannot be regaided as accurate, inasmuch as it was only by superhuman exertion that Coxwell was enabled to open the valve by pulling the line in his teeth, and both aeronauts had so far succumbed to the cold aud rarefied air as to make their observations under such cold aud rarefied air as to ma
conditions not vtry reliable.
Itis sad to chronicle that two such men as the deceased ost their lives fruitlessly, but we see no other conclusion. Their death does not fix the limit of human existence in the hights of the atmosphere, and the most that can be gained will be the indications of the test barometers, and the knowledge that the aeronauts died before the marking slown was made. The fact of a semi delirious state being produced by the oxygen materially reduces the practical value of tha requires his wits about him. It certainly was of little use in the present instance, as its effects caused Sivel to throw over board the apparatus-probably while deprived of self-control -and thus to abandon the only means of safety in the higher regions which, by lightening the balloon, it was his object to reach.
Les Mcndes, in commenting on this unfortunate casualty points out that the way of avoiding similar disasters in fu ture is to render the means of respiration completely automatic. Either the aeronauts should have been provided with dresses similar to those of divers, or, as suggested by M. Toselli, the car of the balloon should be a metallic cylin der, perfectly airtight, into which, or into the dresses, mall pump, easily worked by hand, should force air un til a constant pressure is obtained, sufficient to maintain life

THE LAWS OF STORM8.

When the United States Signal Service was organized and first began to attract attention, it was claimed that any law respecting the motion and direction of wind and storms was clearly beyond the grasp of the human mind. But now, in ll large cities and in many country towns, the "probabili ies" and weather maps are eagerly scanned every morning, greatly to the advantage of all classes; and seamen closely watch the cautionary flags displayed-as occasion requiresfrom the frequent signal stations along our whole coast They have learned the lesson of giving careful heed to these monitions. Though the whole work of the Signal Serrice is interesting as a fairy tale, we propose at present to call at tention only to scme of the deductions of Professor Loomis respecting storm laws. This savant commenced his investi ations in 1872, and has reported his results at three severa meetings of the National Academy of Sciences. The las was at the session of this learned body at Washington ngs will be found on another and
It is now fully accepted that all storms are circular, and nost of those reported by "Old Probabilities" extend over a space hundreds of miles in extent, and often a thousand or
more. The storms are not only circular but rotary, and ad more. The storms are not only circular but rotary, and ad ance across the country at a rate varying from two or thre hundred to much more than a thousand miles per day. Thei verage direction is a little north of east, and they seem to not in the Pacific Ocean, or in the vicinity of Texas and the Gulf of Mexico. Storms are not necessarily accompa nied with rain; they may be only of wind, like the small whirlwinds we often see carrying around sand and leaves,
they are usually accompanied with rain, and the rain extends hundreds of miles (500 is the average) to the east of the storm center, but a much shorter distance to the west. Th barometer, whose normal hight is about 30 inches, is usually low at the center of these vast, advancing whirlwinds. We now proceed to notice the means by which these facts, and others to be mentioned, were deduced, and some of their suggested causes.
On the weather map, which the signal service of the I'ni ted States army daily distributes, Professor Lommis divided the fifld covered by a storm into four quadrants, and noted the observed directions of the wind in each. He did the the observed directions of the wind in each. He did the storm center suitable for his purpose. By taking a mean of storm center suitable for his purpose. By taking a mean of
all these observations, he found that winds blow in a circu lar direction; not, however, in the line of the tangent to : lar direction; not, however, in the line of the tangent to a
circle having its center at the eye of the storin, but directed circle having its center at the eye of the storin, but directed
inwards more than 45° from the tangent. Hence the wind: inwards more than 45° from the tangent. Hence the wind:
direction is more nearly central than tangential. Of couls: the currents, blowing in from all directions towards un central point, can escape only when moving upwards at the center. This makes a kind of suction at this point, which diminishes the weight of atmosphere and consequently low ers the barometer. When swift, rotating, upward currents of this kind occur on the ocean, they sometimes produce the waterspouts of which we read. The causes which producf this inward motion of the air currents must be looked for in those distant quarters where the storm originated. They may be due to the collision of moist air with some cold moun may be due to the collision of moist air with some cold moun-
tain peak. This would condense the moisture; the condens. ation would produce heat, which would expand and lighten ation would produce heat, which would expand and lighten
the air; and then the heavier air on all sides would move to the air; and then the heavier air on all sides would move to
wards this central point of diminished pressure. The air wards this central point of diminished pressure. The air,
heated by contact with the warm earth, takes up a large quantity of moisture; and then, on being carried up into coller regions, becomes condensed, and precipitates the moisture, thus showing us the cause of rain. The real cen ter of a storm is probably one or two miles high at least; and from the average of a month's observations on the velocity of wind at the top of Mount Washington, compared with ifs velocity in neighboring places near the level of thesea, the Professor calculates that the velocity of wind at 6,000 fer high is five and a half times greater than at the sea level The high currents, moving so much more rapidly than the base of the storm resting on the earth, would of course carry the ascending water-charged air forward. This gives a reason for the fact that the rain area is in advance of the storm Pr
Professor Loomis also learned, by deductions from his tab ulated data, that the more rapid the storm, the greater was
the extent of rain area to the east of i_{i}; that the velocity of the extent of rain area to the east of $i c$; that the velocity of the storm increased more rapidly than the extension of the rain area; and that the direction of the storm for 24 hours was in general the same as the direction of the major axis of the rain oval for the preceding eight hours. The second of these facts seems to be a little anomalous, but the first and last are as we should expect them to be, because the velocity and direction of the most freely moving part of the storm should harmonize with the velocity and direction of the east ward upper air current, to which all parts of the storm, in the main, owe their motion. If the comparison had been made with the direction of the storm paths for the succeed ing eight hours instead of twenty-four, the conclusions on the last point would probably have been still more satisfac tory.
But the upper current is not the only cause of the east ward motion of the storm. The condensation which causes rain expands, by its heat, the air which rises and comes down outside of the rain area. Hence we have low barometer in front of the storm center, and the descending air behind makes it high there. So the center is not only drifted for ward by the upper air currents from the west, but is pressed forward by the fact of a high barometer behind it and a low pressure before it. He also determined that the state of the barometer at the center, or its rate of fall in front, had little or nothing to do with the velocity of the storm's progress but that the rate of rise behind it was di rectly proportioned to the velocity of the storm
Again, he finds, by taking the mean of the velocities of wind in the fourquadrants and comparing it with the storm' velocity, that, when the wind in the east quadrant has reater average velocity than in the west, the storm moves aster than its mean rate, but slower when the wind's velocity in the west quadrant is the greatest. He explains this by supposing the upward movement would be grea est in the quadraut which had the greatest velocity of wind: then here would be the lowest barometer, and diminished pressur would tend to make the center move in this direction. Now if the excess of the wind's velocity in the west quadrant wer sufficient, it might cause a westward instead of an eastward movement to the storm center. This movement hasoccurred several times, and caused the storm's path to make a loop up. on itself. In one case the storm was made to change its di rection more than 360° in a little over 24 hours. This expla ation seems a little defective, for it apparently assumes separate upward movement in each quadrant, whereas it i presumable that the rotary centripetal motion of the wind onall sides contributes to one grand upward movement in the center. Again it would seem that the greater velocity of a west wind would tend, by its superior momentum, to veer the central cylinder of ascending air to the east rather than to the west.

For making architectural ornaments in relief, a moldin mosition is formed of chalk, glue, and paper paste. Even statues have been made of this gat,

