sonous organic gases from a kitchen yard, from a neglected cellar, or from some other source of bad air, which has en tered the lungs and planted there the germs of the disease or (2) either in the food or in the drink of the patient, these germs, originating in the same organic putrescence, hav found their way to the stomach. In either case the blood attucked; the subject may have been sufficiently robust and vigorous, or sufficiently unsusceptible to infection, to hav avoided a serious or fatal illness; but in every instance the danger has been incurred, and, when incurred, the risk mus be the same as intaking any other form of slow poison.
This is not theory, but simply a well established fact, demonstrated by long, careful, and frequently repeated inves tigation. The precise character of typhoid infection and the exact manner of operation when introduced into the blood, are not known; but that it always originates in the way described, and that it may invariably be prevented by the use of proper sanitary precautions, is absolutely kLown. This being the case, it lies perfectly within the province of every farmer (and if the farmer will not attend to such matters of his own accord, his wife has a way of urging him into it) to remove, while it is yet time, any source of infec tion to which his house may be liable. Vegetables in any considerable amount should not be kept in the house cellar, and at least once a week the floor of the cellar should be swept and every shred of waste vegetables removed. Even when this is done, the cellar should be ventilated by a win dow or other small opeuing toward the quarter least exposed to cold winds (and in summer on every side); the privy, if a prisy is used, should be well away from the house, and especially far from the well, unless its contents are received in a tight box and entirely absorbed by dry earth or ashes, and even then frequently removed; the chamber slops of the house should never, under any circumstances, be thrown into the privy vault, nor iuto a porous cesspool, from which they can leach into the ground and through the ground for a long distance into the well, or into and around the foundation of the house. The same disposal of the liquid wastes of the kitchen is desirable, but not so absolutely important. It is, however, important that this should be led by an impermeable drain to a point well away from the house and from the well; swill and all manner of nondescript refuse material, such as is sloughed off by evary household in the ordinary course of its living, should be removed at least daily from the near vicinity of the dwelling, and the vessels in which it accumulates should be frequently cleansed and aired; manure heaps should not be left to ferment and send off their exhalations at a point whence frequent winds waft them toward and into the dwelling, nor should the barnyard be al lowed to drain (either over the surface or through a porous taken, the well will be tolerably safe, and in most cases absolutely safe; but if there is any doubt on the point. then sot no well water be drunk except after boiling; or the drinklet no well water be drunk except after boiling; or the drink-
iag water of the house may be talken entirely from a filtering water of the house may be taken entirely from a filter-
ing cistern, of which the filtering bed is sufficient to hold back all organic matter

If all these points are well attended to, and if the ordinary rules of cleanliness be observed in the household, the members of the family may be considered as safe against attacks of typhoid fever.

THE MEIDINGER BATTERY.

The Meidinger element is a modification of the Daniell battery; but it has no porous cell, and possesses greater durability and constancy of current. It consists, as shown in A A, 8 inches high and 5 inche wide, in the bottom of which is placed a small glass vessel, $d d$, of half the dimensions of the larger glass, rosin. A zinc disk, Z Z, which
is supported upon a ledge of the outside vessel, surrounds the smaller glass. The inside wall of the smaller glass, $d d$, is covered by a sheet of copper, e, on the lower end of which an insulated copper wire, g, is riveted. The mouth of the in the center for the reception of a glass cylinder, $h, 1 \frac{1}{2}$ inches in diameter and 8 inches bigh, narrowing towards the lower end, which is rounded and in which a hole is made. This tube is sunk to the center of the small glass, $d d$. The entire vessel is filled up to the zinc disk, about $1 \frac{1}{2}$ inches below the upper brim, with a diluted solution of Epsom salts. The glass cylinder, k. in place of which a glass funnel can be used, is filled with crjstals of sulphate of copper, forming a concentrated solution, which, being a heavier fluid, sinks down through the small hole in the glass tube, and fills the small glass, $d d$, to the center.
There is very little diffusion of the copper solution up wards, or out of the little glass vessel, $d d$, to the zinc disk, Z, even when the battery is not in operation; so that. after of being affected by the copper. The battery is therefore much superior to theordinary Daniell battery, which, when the circuit is open, produces a great diffusiou of the sulphate of copper through the porous cup.
The zinc is usually amalgamated on its inner side, enabling its impurities to be easily removed, which would otherwise form a hard crust. If the copper wire, $g f$, which is riveted to the copper nheet, e, is connerted with a small strip of cop.
per, ck, moldered to the ziac disk, we obtain a galvanic cus cell, having an electromotive force equal to that of a Daniel copper in the glass tube, h; and the zinc, Z, is not dissolved. During the activity of the battery, in fact, the solution of sulphate of copper increases a little in quantity, in conse quence of a diffusion which is caused by the overflowing (in the smaller glass, $d d$) of the heavier sulphate of zinc solution formed by the dissolution of zinc. By the action of the current, the greater part of the copper is deposited on the upper half of the copper plate. A trace of copper,however, appear upon the zinc, but frequentiy this is after several weeks peration. The duration of the battery depends on the size of the glass vessel. A battery of the size described (according to Meidinger's statement) ought to be taken to pleces and the solution of Epsom salt and sulphate of zinc drawn off,and pure water put in it as soon as it has consumed 3 lbs . of sul phate of copper, which, however, may take a jear.
The resistance of this cell considerably exceeds that of the Daniellbattery with porous cells; but for a line battery where the resistance in the wire is very considerable, this is of no special importance. Meidinger recommends, for main lines, cells 5 inches high and 3 inches wide; while the bat tery of the size depicted in our engraving is intended for local use and for line batteries of small resistance. As a local battery for the Morse telegraph, it is best to ust six cells, two of which are connected with like poles, so that we have practicalls, three elements with enlarged surface and conductivity.
Generally, in charging the Meidinger element, a solution of 1 part Epsom salts to 4 or 5 parts of water may be used. In proportion to the activity of the battery and the consumption of the sulphate of copper, fresh crystals of this salt should be added to the contents of the glass funnel. But when the surface of the tuid has sunk by evaporation, soft water only need le added to the glass funnel. An improvement has been obtained in this element by having the funnel-shaped sulphate of copper vessel entirely cloged at the top. After the jar, h, has been charged with crystals of sulphate of copper, a solution of Epsom salts (sulphate of magnesia) is added ereto
The Meidinger battery is valuable wherever long dura ion and a current of moderate but constant atrength is re quired, and especially for operating the Morse telegraph, electrical clocks, hotel telegraphs, and electric bells. The chief condition for its successful use is that it shall not be shaken, as shaking causes a mixture of the fluids, and in this way destroys its action and the constancy of the current. Its faults consist in the liability that the tube, h, may be filled up with sulphate of copper(either from impurities of the salt or from precipitation of metallic copper) or crystals of sul phate of zinc, so that the action of the element ceases; and prom because the flow of the solution of sulphats of copper from the tube to the lower edge of the zinc cylinder rises, taci.s the zinc. When this happens, the sulphate of copper is decomposed by the zinc, a superfluous quantity of sulphate of zinc is formed in the fluid, and metallic copper is precipi ved in the form of a brown, spongy powder upon the zin linder. This battery is extensively used upon the Austria elegraph lines.

Useful Hectpes for the Shop, the Household,
 and the Farm.

Beef bones, boiled in water for some hours with rock sal and a little alum, yield a size which can be used in the pre paration of cotton and silk goods.
The clatter and risk of glass in carringe windows can be prevented by placing, at the bottom of the casing, an arched piece of india rubber
Unless the mouth is frequently and carefully cleansed, it ecomes infested with vegetable and animal parasites. These cause decay of the teeth. Soap is the best material for pre enting the development of the fungi and for neutralizing the acid. Precipitated chalk mized with the soap assist The cleansing action.
The following practical hints on ballooning are published by Donaldson the aeronant, in a little paper edited by him and named the Aerial. The lifting strain of a balloon is principally on the net. If a balloon will stand inflation, it is safe in mid-air. In winter, the atmosphere is warmer one mile above the clouds than it is at the earth's surface. The
 about sixty not exceed 80 lbs. A cotton balloon win last for undergoes a strain of 14 lbs to the square foot of surface Gas, which at the arth fils the bag one full, will at an i, win 31 ian elevation of 3 y miles, expand so as to fill it completely. One chousand feet of coal gas will raise 38 lbs. Uas which gives a balloons by sending them up or lowering them into currents of air traveling in different directions from that in which the Talloon is sailing.
To make green gold, melt together nineteen grains pure gold and five grains pure silver. The metal thus prepared hay a beautiful green shade.
The following recipes for metals resembling gold are said to produce a metal which will so nearly approximate the genuine as almost to defy detection without a resort to thorough tests: Fuse, together with saltpeter, sal ammoniac and powdered charcoal, 4 parts platinum, $2 \downarrow$ parts pure copper 1 part pure zinc, 2 parts block tin, and $1 \frac{1}{2}$ parts pure lead. Another good recipe calls for two parts platinum, 1 part silr, and 3 parts copper
Cement for sealing frult cans is made of resin one poand, lllow one ounce

DEOIBIONS OF THE COURTS.

United staten Olreuit coartombiatrict of New

\qquad

 Nation

NEW BOOKS AND PUBLICATIONs.

The Phinadelphia ledger Alminac. G. W. Childe, Fbiladelphis, Pa.

At the commencement or the year 1800, Mr. Chllds, pobllaher of the calendar and a great deal of statistical Information of a local Interest, but alsoseveral pages of practical household rectipes, and other information of general value. One hundred thousand coples were printed and presented to the subscribers of the Ledger in that year. The irstissue proving ao accept ane as a book of reference, Mr. Chllds was induced to contlnue the publl uccessive year hous distribution among by e eager of the publisher we have before us, neatly bound, six yeara' numbers of ble almanac, whicl nake a handsome volume of 350 pakes of very valuable information, on othe' work.
Leffel's Mruinng and Muchanical News. Fifty cente per annum. Jamee Leffel \& Co., springfield, Ohio.

 as follows: "It is a matter of Just congratulation to Americans that, whatever may be the assumed superlority of European standards in art and literature, this country has at least one sclentific Journal which so slgnally eclipses any forelgn publication of the kind that a comparison can scarcely
be made. We refer, of course, tothe Scirntiric Aymican, published by
 Mees's. Munn \& Co. 37 Part Row, New York city. Besles
nized authority and Inex baustble medtum of inforniatlon in the whole domaln of practical sclence, it ts faultiess in It a appearance, and ite illustra tlons are works of art. Its subscription price is ${ }^{\text {®3 }} .20$ per annum, postage
prepald, 'and the immense circulation it has reached is a proof of the advan prepald, 'and the Immense circulation it has reached is a proof of the advan
cing Intelifence of the Amertcan people.".

