NOVEL DEVICE FOR PREVETTING RUNAWAY HORBES The annexed engraving, for the description of which we are indebted to the Pesth Wochenblatt für Land und Forstwirthschaft, represents an ingeniously simple device for checking runaway horses. A A are stout rings, of suff ciently large diameter to slip over the fore legs of the animal and close up to the body. They are held in the las mentioned position by lines, B, which lead up through lead ers on the saddle, and are joined to a single ringwhichslips over a hook, C, on the dashboard. Thus arranged the de vice forms no impediment to the horses' motion, as the rings, though connected togethe bet ween the legs. are joined by a sufficiently long bond. In case of the animals' running away, howerer the driver has merely to lift the ring for the hook C and allow the large ings, A to descend ings, A, to descend lower down on the leg his of horse's stride. If it be necessary to bring hem to a sudden halt, to avoid immediat danger, the supporting lines are let go alto gether. The rings then fall to the horses' feet, restricting their further progress, and perhaps throwing the animals. This would probably result in idjury to the latter, but it would not be employed except to prevent instant accident to the occupants of the vehicle; and it is possible their lives would be more imperiled by the sudden stoppage than if the ppliance were not used. But the idea is novel ph amo one no doubt considers it practica ble, and perhaps it is.

The Tallest Chimney in the World.
The tallest chimney in the world is the Townsend chimney, Glasgow, Scotland. It was built by Robert Corbett, of Glasgow, for osaph Townsend, of Crawford Street Chemical Works. The total hight from foundation top of coping is 468 feet, and from ground line to summit, 454 feet; the outside diameter at foundation being 50 feet, at ground surface 32 feet, and at top of coping 12 feet 8 inches. The number of bricks used in the erection ere as follows: Common bricks in chimnes 142,532; composition and fre brick for in ide cone 157,468. common bricks for flue tc. 100,000 . total, $1,400,000$. tc., 100,00 ; total, $1,400,000$. The weight of bricks at 5 tuns per 1,000 is equal to 7,000 tuns. When within 5 feet of completion, the chimney was struck by a gale frcm the northeast, which
caused it to sway 7 feet 9 inches off the perpendicular, caused it to sway 7 feet 9 inches off the perpendicular, and it stood several feet less in hight than before it swayed. To
bring back the shaft to its true vertical position " back " had to be resorted to, which was perfonned by Mr Townsend's own men, ten working in relays, four at a Mr sawing, and two pouring water on the saws. The wark done from the Inside on the original scaffolding, which wa not been removed. Holes were first punched sides to admit the saws, which were wrought alterngh th each direction at the same joint on the side opposite the in clination, so that the chimney was brought opposite the in Is oscillating manner. This was brong back in a slight hights, and the men discove when at twelve differan the saws getting tightened by when they were gaining by

THE LITILE DODO OR DODLET.

A great many, very interesting additions have recently been made to the collection belonging to the Zöological So ciety of London, and are now to be seen in their renowned gardens in the Regent's Park. Among them is a bird various ly styled the didunculus, dod let, little dodo, and toothed billed pigeon, the scientific name for which is thed diduncu lus strigirostris, which was brought from the Samoan Is lands. The bird was not un lands. in Furope, apecin known in Europe, a specimen 1864; from it 1864 ; and from its size, dark plumage, and terrestrial hab its, it might be mistsken, at a little distance, for some species of moorhen, but a closer in. spection of its structure convinces one of its relationship to the pigeons.

The head and upper portion of the neck and breast, say the London Field, to which we are indebted for the annexed engraving, are of dark slaty green color, the primaries the same, but somewhat paler; the rest of the plumage chocolate brown; the face and throa bare, and of a dark flesh colo in the young bird, approach ing to orange in the adult. The bill, which is remarkably deep and with the upper mandible dentated, is orange yellow in the young bird, and red in the adult. The legs and foet are
also red. In the contnur of the bill, the form and position of the nostrils, and several other characters, the didunculu differs from any other living species at present known; and, although a smaller bird in size, it approximates nost nearly in all its characters, to the extinct dodo, and, like it, com bines the character of a rapacious bird with that of the harm less pigeon.
It will be seen that the mandibles of the didunculusar powerful in structure, yet, according to Dr. Bennett, the beal is never used as an offensive weapon; for when the hand is

DEVICE FOR CHECKING RUNAWAY HORSPS

Prevontable Diseases.

It being conceded by every sensible person that good health is paramount to all other human blessings, we take frequent occasion to transfer to our columns (from reliable sonrces) ractical information tending to promote and preserve th blessing so essential to all. To The Herald of Health, for April, we are indebted for the following.
"The range of what are called preventable diseases is ow known to be very wide, and all such diseases it should be the first duty of man to prevent. Much of this-that fo which I especially wish to ask attention-isno only preventable disease, but is disease that is called into existence only by the act or by the neglect of man; and it is not too much to sa (after the thorough investigations of the sub ject that have been made by sanitary author ties) that there has never been a case of t phoid fever that was not almost directly caused by the ignorance or by the criminal neglect of some person whose duty it should have bee to prevent it. Such disease never comes with out cause; and its cause is never anything elfe than organic poisoning, arising from organi decaying matter or from the spread of the in fection directly from a patient suffering from the disease.

Typhoid fever has many names, all of which are suggestive of its origin. It is called "d drain fever," 'sewer fever," " cesspool fever," ' fou well fever," "nightsoil fever," etc.; and it i never caused except by the introduction int the system of the germ of the disease-whic can originate only through the operation of neglected organic wastes, or by communica tion through the lungs or stomach by means o foul air or foul water, or from germs arisid from the persons or from the excreta of ty phoid patients. So far as its contagion is con cerned, ample ventilation of the sick room and the immediate removal or disinfection of the feces are ample preventi ves. It is not con tagious, as smallpox is, but is spread by the action of germs which infect the locality of the patient, and extend more or less widely ac cording to the precautions used to confine it There is not necessarily the least danger that the disease will attack even the conctant tendant of the patient if propercare is taken. With the householder himself rests the responsibility of the origin of every first case placed in the cage, or the bird is seized for removal from one breaking out in his household. This is a certain and tho $^{\text {a }}$ cage to another, it never attempts to bite its captor, but, on roughly well established fact, and there attaches tohim the the contrary, is so timid that, after luttering about or running into a dark corner of the cage in its efforts to escape, it soon becomes subdued, and is easily taken. This statement however requires some modification; for, according to the Rev. S. J. Whitmee, a resident at Samoa, who has kept th ird in cofinement there, it is sometimes "exceedingly sa vage. When any one approaches the cage" he says, "i vage. When any one approaches the cage,促 to bite. If it gets hold of one's finger,
from experience that it gives a severe gripe.
In size, the bird may be compared to a large pigeon, which resembles in some of its habits, and in the nature of it food. Like some of the Australian pigeons, it flies with a loud noise, which is especially noticeable as the bird rise on the wing. Like the ground pigeon, it nests or roosts on bushes or stumps of trees, and feeds on the ground. Its food consists of plantains and the fruit of the soi, a kind of yam, not unlikea small potato

TEE LITTLE DODO (dsdunculus astigirand
oughly well established fact, and there attaches tohim th
ull measure of guilt for every such case. This is a respon sibility for which the community should hold him strictl accountable. It would really be as correct to ascribe a red handed murder to Providence as to attempt in this way to console ourselves for a fatal attack of typhoid fever. We are taught that we shall not cleave our child's skull with a ax, and that if we do, death will surely result; but we are no less absolutely taught that we shall not poison our child's blood with the foul emanations of our house drains and with the contamination of our drinking water wells, lest th ame fatal result follow. We may ignorantly load the we er with which our families are supplied with lead poison and so be without the guilt of intention; or we may ignor antly poison our wells by the infiltration of infected organic matter, and in this case, as in the other, be acquitted of the charge of criminal intent. But in these days, when so much has been published concerning the origin of diseases of this class, however free we may be of all criminal intent the serious charge of crimina eglect must surely lie at ou door.
It may be assumed, without hesitation, tbat, whenever a pronounced case of typhoid reaks out in an isolated cou ry house, or when any form of low fever occurs, though it may ail to assume a distinct ts phoid character, there is in that house, or about it, or in eonnection with its supply of rinking water, some accumulation of neglected filth, some pile of rotten vegetables in the cellar, some overflow from a barnyard, some spot of earth saturated with the slops of the kitchen or some other form of mpurity, to which the origin of the disease may be distinct. ly traced. The spread of typhoid is very generally occa. sioned by germs contained in the bowel discharge of fever patients; but the disease is constantly originating itself whereno such cause exists, and every first attack is a plain indication that either at home or in sowe house at which the patient has visited, one or two things has occarred. (1) there bes bean an exhalation of poi.
sonous organic gases from a kitchen yard, from a neglected cellar, or from some other source of bad air, which has en tered the lungs and planted there the germs of the disease or (2) either in the food or in the drink of the patient, these germs, originating in the same organic putrescence, have found their way to the stomach. In either case the blood attycked; the subject may have been sufticiently robust and vigorous, or sufticiently unsusceptible to infection, to have
avoided a serious or fatal illness; but in every instance the avoided a serious or fatal illness; but in every instance the
danger has been incurred, and, when incurred, the risk must be the same as intaking any other form of slow poison This is not theors, but simply a well established fact, demonstrated by long, careful, and frequently repeated inves tigation. The precise character of typhoid infection and the exact manner of operation when introduced into the blood, are not known; but that it always originates in the way described, and that it may invariably be prevented by the use of proper sanitary precautions, is absolutely klown. This being the case, it lies perfectly within the province of every farmer (and if the farmer will not attend to such matters of his own accord, his wife has a way of urging him into it) to remove, while it is yet time, any source of infec tion to which his house may be liable. Vegetables in any considerable amount should not be kept in the house cellar, and at least once a week the floor of the cellar should be swept and every shred of waste vegetables removed. Even
when this is done, the cellar should be ventilated by a winwhen this is done, the cellar should be ventilated by a win-
dow or other small opeuing toward the quarter least esposed to cold winds (and in summer on every side); the privy, if a prisy is used, should be well away from the house, and especially far from the well, unless its contents are received in a tight box and entirely absorbed by dry earth or ashes, and even then frequently removed; the chamber slops of the house should never, under any circumstances, from which they can leach into the ground and through the ground for a long distance into the well, or into and around the foundation of the house. The same disposal of the liquid wastes of the kitchen is desirable, but not so absolutely important. It is, however, important that this should be led by an impermeable drain to a point well away from the house and from the well; swill and all manner of nondescript refuse material, such as is sloughed off by evary household in the ordinary course of its living, should be removed at least daily from the near vicinity of the dwelling, and the vessels in which it accumulates should be frequently cleansed and aired ; manure heaps should not be left to ferment and send off their exhalations at a point whence frequent winds waft them toward and into the dwelling, nor should the barnyard be allowed to drain (either over the surface or through a porous so l) to ward the house or well. If all these precautions are taken, the well will be tolerably safe, and in most cases absolutely safe; but if there is any doubt on the point. then
let no well water be drunk except after boiling; or the drink let no well water be drunk except after boiling; or the drink.
ing water of the house may be talken entirely from a filtering water of the house may be taken entirely from a filter-
ing cistern, of which the filtering bed is sufficient to hold back all organic matter
If all these points are well attended to, and if the ordinary rules of cleanliness be observed in the household, the members of the family may be considered as safe against attacks of typhoid fever.

THE MEIDINGER BATTERY.

The Meidinger element is a modification of the Daniell battery; but it has no porous cell, and possesses greater durability and constancy of current. It consists, as shown in A A, 8 inches high and 5 inches wide, in the bottom of which is placed a small glass vessel, $d d$, of half the dimensions of the larger glass, cemented in with osin. A zinc disk, Z Z, which is supported upon a ledge of the outside vessel, surrounds
the smaller glass. The inside the smaller glass. The inside
wall of the smaller glass, $d d$, is covered by a sheet of copper e, on the lower end of which an insulated copper wire, g, is riveted. The mouth of the in the center for the reception of a glass cylinder, $h, 1 \frac{1}{2}$ inches in diameter and 8 inches bigh, narrowing towards the lower end, which is rounded and in which a hole is made. This tube is sunk to the center of the small glass, $d d$. The entire vessel is filled up to the zinc disk, about $1 \frac{1}{2}$ inches below the upper brim, with a diluted solution of Epsom salts. The glass cylinder, k. in place of which a glass funnel can
be used, is filled with cr, stals of sulphate of copper, form. ing a concentrated solution, which, being a heavier fluid, sinks down through the small hole in the glass tube, and fills the small glass, $d d$, to the center.
There is very little diffusion of the copper solution up wards, or out of the little glass vessel, $d d$, to the zinc disk, Z, even when the battery is not in operation; so that. after of being affected by the copper. The battery is therefore much superior to theordinary Daniell battery, which, when the circuit is open, produces a great diffusiou of the sulphate of copper through the porous cup.
The zinc is usually amalgamated on its inner side, enabling its impurities to be easily removed, which would otherwise form a hard crust. If the copper wire, $g f$, which is riveted to the copper nheet, e, is connerted with a small strip of cop.
per, $c k$, soldered to the zinc disk, we obtain a galvanic cus cell, and it remains constant as long as there is sulphate of copper in the glass tube, h; and the zinc, Z , is not dissolved. During the activity of the battery, in fact, the solution of sulphate of copper increases a little in quantity, in conse quence of a diffusion which is caused by the overflowing (in the smaller glass, $d d$) of the heavier sulphate of zinc solution formed by the dissolution of zinc. By the action of the cur ent, the greater part of the copper is deposited on the upper half of the copper plate. A trace of copper,however,appears pon the zinc, but frequentiy this is after several weeks operation. The duration of the battery depends on the size of the glass vessel. A battery of the size described (according to Meidinger's statement) ought to be taken to pleces and the solution of Epsom salt and sulphate of zinc drawn off, and pure water put in it as soon as it has consumed 3 lbs . of sul phate of copper, which, however, may take a year.
The resistance of this cell considerably exceeds that of the Daniellbattery with porous cells; but for a line battery where the resistance in the wire is very considerable, this is of no special importance. Meidinger recommends, for main lines, cells 5 inches high and 3 inches wide; while the bat tery of the size depicted in our engraving is intended for local use and for line batteries of small resistance. As a loca battery for the Morse telegraph, it is best to use six cells, two of which are connected with like poles, so that we have
practicalls, three elements with enlarged surface and conpracticalls
Generally, in charging the Meidinger element, a solution of 1 part Epsom salts to 4 or 5 parts of water may be used. In proportion to the activity of the battery and the consumption of the sulphate of copper, fresh crystals of this salt should be added to the contents of the glass funnel. But when the surface of the tuid has sunk by evaporation, soft water only need le added to the glass funnel. An improvement has been obtained in this element by having the funnel-shaped sulphate of copper vessel entirely cloged at the top. After the jar, h, has been charged with crystals of sulphate of copper, a solution of Epsom salts (sulphate of magnesia) is added thereto.

The Meidinger battery is valuable wherever long duraion and a current of moderate but constant atrength is required, and especially for operating the Morse telegraph, electrical clocks, hotel telegraphs, and electric bells. The chief condition for its successful use is that it shall not be shaken, as shaking causes a mixture of the fluids. and in this way destroys its action and the constancy of the current. Its faults consist in the liability that the tube, h, may be filled up with sulphate of copper(either from impurities of the salt or from precipitation of metallic copper) or crystals of sul. phate of zinc, so that the action of the element ceases; and prom because the flow of the solution of sulphate of copper from the tube to the lower edge of the zinc cylinder rises tacis.s the zinc. When this happens, the sulphate of copper is decomposed by the zinc,a superfluous quantity of sulphate of zinc is formed in the fluid, and metallic copper is precipi uf zinc is formed in the fluid, and metallic copper is precipi-
taved in the form of a brown, spongy powder upon the zinc cylinder. This battery is extensively used upon the Austrian cylinder. This
telegraph lines.

Uweful Lectpes ror the Shop, the Household,

 and the Farm.Beef bones, boiled in water for some hours with rock sal and a little alum, yield a size which can be used in the pre paration of cotton and silk goods.

The clatter and risk of glass in carringe windows can be prevented by placing, at the bottom of the casing, an arched piece of india rubber
Unless the mouth is frequently and carefully cleansed, it ecomes infested with vegetable and animal parasites. These ause decay of the teeth. Soap is the best material for pre enting the development of the fungi and for neutralizing the acid. Precipitated chalk mized with the soap assists the cleansing action.
The following practical hints on ballooning are published by Donaldson the aeronant, in a little paper edited by him and named the Aerial. The lifting strain of a balloon is principally on the net. If a balloon will stand inflation, it is safe in mid-air. In winter, the atmosphere is warmer one mile above the clouds than it is at the earth's surface. The weight of a balloon to carry one man, including net and basket, should not exceed 80 lbs. A cotton balloon will last for about sixty ascensions. A balloon thirty feet in diameter undergoes a strain of $1 \ddagger$ lbs. to the square foot of surface. ras, which at the earth fills the bag only half full, will, at an levation of $3 \frac{1}{2}$ miles, expand so as to fill it completely. One thousand feet of coal gas will raise 38 lbs . Gas which gives a
poor light is the best for aerostatics. Kites can be used to steer balloons by sending them up or lowering them into currents of air traveling in different directions from that in which the balloon is sailing.
To make green gold, melt together nineteen grains pure gold and five grains pure silver. The metal thus prepared hay a beautiful green shade.
The following recipes for metals resembling gold are said to produce a metal which will so nearly approximate the genuine as almost to defy detection without a resort to thorough tests: Fuse, together with saltpeter, sal ammoniac and powdered charcoal, 4 parts platinum, $2 \frac{1}{y}$ parts pure copper 1 part pure zinc, 2 parts block tin, and $1 \frac{1}{2}$ parts pure lead Another good recipe calls for two parts platinum, 1 part sil, and 3 parts copper
Cement for sealing frult cans is made of resin one pound, lllow one ounce.

DEOBSOMS OF THE courts.

United staten Oircuit Coartombintrict of New

fiz
\mathfrak{c}
\mathfrak{c}

?

 ant

and

citic

\qquad

NEW BOOKS AND PUBLICATIONs.

The Phmadelphia ledger Alminac. G. W. Childe, Fbiladel-
phia, Pa. phia, Pa.
At the commencement or the year 18io, Mr. Chllds, poblisher of the calendar and a great deal of statistical Information of a local Interest, but
chat alsoseveral pages of practical household rectpes, and other Information of general value. One hundred thousand coples were printed and presented to the subscribers of the Ledger In that year. The irstissue proving ao accept.
able as a book of reference, Mr. Childs was induced to contline the publl cation and gratultous distroution among ind Ledger's patrons, and each successive year has the work lmproved. By the favor of the publisher, we make a handsome volume of six pares of very valuable information, on both local and general subjecta, not attainable In so complete a form in any other work.
Lepfel's Mruinga and Mechanical News. Fifty cente per annum. Jamee Leffel \& Co., springfield, Ohio.
Tu pertons Interested in uilling machinery or water power, this paper
Istued each month, Iswued each month, possenses eapeclal Interest. The editor is an admirer o
the Scientifie Ambrican, aud in his April number promulgatey the fact as follows: "It is a matter of Just congratulation to Americans that, whatever may be the assumed superlortty of European standards in art and lite. rature, this country has at least one sclentific Journal which so slgnally eclipses any forelgn pubilcation of the kInd that a comparison can scarcely
be made. We refer, of course, tothe ScIENTIFIC AMRRICAN, published by

 maln of practical sclence, it is faulteess in It a appearance, and ite illustratlons are works of art. Its subscription price io $\$ 3.20$ per annum, postage prepald, 'and the Immense circulation it has reached is a proof of the advan
cing Intelifence of the Amertcan people.".

