SOOTT'S PATENT BEEET IRON ROOFING.

 So many conflagrations have been caused by sparks fram chimneys, or from adjacent burning buildings, falling upon roofs, that the safety offered by a covering entirely of iron, and consequently firepronf, is by no means unimportant. The device herewith illustrated, while securing that advantage, presents a variety of others which, in brief, render it a most efficient protection. It is portable, and is supplied in plates of eight foet in length ly two in width, which are trimmed to fit with accuracy, so as not to get out of line, no matter how great the distance over which they may be run These plates are provided with side and ond connections complete, so that the work of laying them is greatly facilitated. The joints are strong and windproof, and rust or wear by weather is prevented by coat-ings of pure iron oxide and linseed oil. ings of pure iron oxide and linseed oil.
Finally, it will be noted that nails through the roofing plates are absent, and a fre quent cause of leakage thus avoided, and that the peculiar arrangement of platesand seams provides fully for the contraction and expansion of the ruetal.
A sheet, as supplied by the makers, is represented in Fig. 1. The evids. α and 4 . are folded over in opposita directions, the former being uppermost when the piate is in position. The mode of locking together those ends is shown in Fig. 5, from which it will be seen that a continuous water shed is made. The device for attaching the plates to the roof is represented at e, in Fig. 5, and also in Fig. 2. This, at the sides of the plates, is an upright iron strip, split part wayat the top to hook over the side of the sheet. 'To adqnit of this engagement the sheet is bent upward, as represented in Fig. 1, and the curve is such that the edges of adjacent sheets may be in contact and parallel for a short distance. The end cleat is albo nailed to the sheathing. To finish the work, the siden are

Fig. 2

rought together square at the eaves, and the comb formed, the same as in a standing seamed tin roof, by turning upa two inch standing seam with roofing tongs. In the engraving, Fig. 2, the cap, f, which surmounts the adjacent sheet edges, is drawn to the top, so that the fastenings, c, can be seen where the sides of the plates meet. The method of securing the parts by countersinking is represented in vertical section in Fig. 3, and Fig. 4 is a horizontal section of the same.

Fig. 3.
Fig 4

(1)

After the roofing plates are all in position, the joints across the ends are closed and compacted by beating the folds to gether The invention is applicable to any class of build-

Fig. 5

ngs, but particularly to large manufacturing establishments, on account of the slight pitch at which it can be laid, the cost of building being thus materially decreased.
Further particulars may be obtained by addressing the manufacturers, Messrs. Scott \& Co., 75 East Front street Cincinnati, Ohio.

Struck by Lightning.
Mr. D. Pigeon gives, in Nature, the following interenting account of the eftect of lightning upon himself and members of his family, during a recent thunderstorm: "The house in which with my family I have spent the winter, stands in the center of Torbay and close to the sea. In the garden which gives access to the shore, is a fiagstaff, 50 feet high, with a metal vane at the top, the mast being steadied at about 25 feet from the ground in the usual way with iron wire guys. About a foot above ground, each wire rope ter minates in a $\frac{\downarrow}{2}$ inch rhain, which is anchored a few feet in the soll.
February 25th, 1875, was a rainy day during the forenoon, with heavy wind from the sontheast; but in the aftemoon

- SCOTT'S SHEET IRON ROOFING.-Fig. 1
minutes later, after which there was no more lightning. The discharge startled the whole village of Paignton; the coast guard officer compares the explosion to that of a $300-$ pound gun ; and at Torquay, $3 \stackrel{2}{2}$ miles distant, a scientific friend speaks of beth flash and crash as most terrific.
1 must now attempt to describe the effects on ourselves and the impressioms on our senses. Of the three, my wife only was "struck," and fell to the ground, my son and my. self remaining erect, and all three retaining consciousness For more than half an huur my wife lost the use of her lower limbs and left hands, both of which became rigid. From the feet to the knees; she was splashed with rose colored tree-like marks, branching upwards, while a large tree-like mark, with six principal branches diverging from a commun center, thirteen inches in its largest diameter, and bright rose red, covered the body. None of us are certain of having seen the flask, and my wife is sure she saw nothing. As to the noise, my wife heard a "bellowing" sound and a " squish," recalling fireworks; my son also heard a "bellow," while I seemed conscious of a sharp explosiod. My wife describer her feeling as that of "dying anay gently into darknees," and being roused by a trumen dous blow on the body, where the chief mark was afterwards found. My son and myselíwerty conscious of a sudden and terrific general disturbance, and he affirms that $\mathrm{h} \theta$ received a severe and distinctly electrical
the sky cleared. There had been no sign of thunder all day At 5 P.M. my wife. my son, and myself were standing under the flagstaff and within 10 feet of a mooring chain, watching the bay, when the vane was suddenly struck by lightning, which broke the mast short off in two places, tearing and splitting the wood between the vane and the iron guy ropes.
Through these the discharge then passed to the ground, but Through these the discharge then passed to the
The broken mast and vane fell to the ground close to us. Heavy hail followed the flash, the wind falling instantly to dead calio; a second but distant Hash was seen twenty

and with it the several artistic advantages thence accruing On the other hand, defects in dra wing are ruthlessly exposed by the same means. Trifling errors in perspective, which might have passed unnoticed uuder ordinary circumstances stand revealed in their full deformity.
With juster perceptions of the magnitude and relative di mensions of objects, monocular vision, combined with the stereoscopic use of the hand, gives us, also,a correcter appre ciation of the effects of reflected light. And this applies ne only to the confused appearance occasioned by the interposition of highly reflective media between the object and the observer, but also to artificial reproductions of the same effect.
A point ignored in every treatise to which Dr. Thomas has had access is the effect of the hand, when thus used, in modifying o correcting our perceptions of color. The rays of the setting sun are flooding the land scape with golden light. Prominent in the distance stands forth a church tower lighted up with a rich orange glow. By regarding it attentively through the hollow of the hand, and opening and closing the latter suitably, the tower can be made to acsume any inter mediate tint between the white it really is and the orange it has assumed in the ras of the western sun. The woods, too, dark somber, and night-like to the unaided vision in like manner can be made to resume the hues they wort in the broad light of noonday. A brigh patch on the far distance shows a soft subdued white, and we notice then for the first time that to the unassisted eye it presents a bright golden color
Indeed, our conceptions of coior are mainly dependent on comparison-contrast. But these are quite inadequate to enable us, under all circumstances, to detect and discriminate between minor differences of shade by ordinary unaided binocular vision. For that purpose, we must have recourse to the hollow of the hand, looking through it at the object with one eye, and comparing the effect observed with that produced on the other and unshaded eye. Both eyes may be open. In such cases, the chief point is not monocular vision, but the shading of the eye by the hand thus applied. As with a Nicol's prism, we thus restore the equilibrium of the blue light diffused through the atmospheric regions-which in the landscape above referred to was overpowered by its complementary color, the orange emanating from the sinking sun -and are so enabled to see objects under the hues they would present when viewed by the white light of a noontide sun.

Phosphureted 8teel.

A year or two ago, it was generally admitted that a pure ore or pig iron, and especially one containing less than 0.0 s to 0.05 of phusphorus, was absolutely essential to the production of a good Bessemer steel ; the consequence has been hat many of our richest iron ores, most cheaply mined and supplied, have been ruled out as unfit for Bessemer work such are mest, if not all, of the limonite and fossiliferous ores of Pennsylvania, Virginia, Tennessee, Georgia, and Ala bama, in which the percentage of phosphoric acid runs usually from 0.05 to 0.15 per cent, corresponding to aboat double these amounts in the pig iron. This small percent double these amounts in the pig iron. This small percent
age of phosphorus has been a perfect bugbear to iron manu age of phosphorus has been a periect bugbear to iron manu
facturers, and no important was it considered that oneof our large steel works imported 10,000 tuns of ore from Algiers a a cost of about $\$ 16$ per tun, because it was, at that time, im possible to procure ores here sufficiently free from phos phorus for use in the manufacture of steel rails. Innumer able efforts have been made to get rid of the phosphorus in the several processes through which the iron passes in it manufacture, but these efforts have leen but partially sue cessful, and then only in the puddling process, and, conse quently, of no use in the inanufacture of Bessemer steel.
Investigations which have been made during the past two or three years have developed the fact that, by a kind of or three yeare have developed the fact that, by a kind of
homeopathic treatment (similia similibus curantur), certain homeopathic treatment (similia similious culantur), certain
substances which themselves give hardness and brittleness substances which themselves give hardness and brittleness
to steel may be in part substituted for other ingredient to steel may be in part substituted for other ingredients
having a similar tendency, to the great improvement of the having a similar tendency, to the great improvement of the
resulting metal. It has thus been found that, by securing proper relative proportions of carbon, phosphorus, silicon and manganese, a steel of great softness and strength can be obtained, while the same percentage of phosphorus in ordi nary steel would have indicated very different properties.
There is no longer much doubt of the fact that manganese exerts upon steel a body.giving and toughening influence, as well as a neutralizing effect, on the hardening or cold-shorten ing due to phosphorus. Though these properties of manga nese have been blindly suspected for some time, the mutual dependence and, to a certain extent, interchangeability of dependence and, to a certain extent, interchangeabinity of success of M. Tessié Du Motay, in producing, with ferro succers of M. Tessie Du Motay, in producing, with ferro
manganese, a good rail steel containing about $0 \cdot 12$ carbon manganese, a good rail steel containing about 0.12 carbon
0.25 phosphorus, and 0.75 manganese, was fully established 0.25 phosphorus, and 0.75 manganese, was fully established
The secret of success appears to be in putting into the The secret of success appears to be in putting into the
metal from three quarters to 1 per cent of manganese with metal from three quarters to 1 per cent of manganese with out bringing the percentage of carbon above $0 \cdot 16$, while the
metal contains the ordinary amounts of phosphorus and sili con, or, say, 0.25 to 0.29 of the former and 0.03 of thelatter When the percentage of phosphorus is diminished, that of carbon should be increased, and vice vers \hat{A}, within certain limits. Steel is undoubtedly destined to supplant iron for almost every use where the latter is now adopted. Our iron masters should apply those improvements that will place us in a position to compete successfully in other markets than our own.-E'npineering and Mining Journal.

