THE NEW YORI RIVER FRONT IMPROVEMENTB.
We publish herewith a view of a series of the arch which are to form the extensive improvements now being carried out on the North River front of this city. Therecan be but one opinion as to the efficiency and solidity of the construction, the design for which is the work of Mr. J Newton, assistant engineer, and possesses several interest ing and original features. The work which our illustrations (selected from Engineering) depict is now in progress on the west side of the Battery, where the river bottom is a hard, quartzose rock. Before the dredging was done, the rock was covered with a deposit of river sediment, in seme places upwards of 12 feet in thickness, and varying in con sistence from a thin silt to a tough, plastic, black mud. This was cleared away by the dredging machinery already described in our pages. The surface of the rock is jagged and
and it was lined with a heavy canvas sack to protect the con were secured. The box was then filled with concrete, low ored in buckets which opened at the bottom. When the concrete reached the guides just mentioned, it was leveled off by a heavy iron I beam placed on one of its sides, and pushed along the guides from one end to the other; by this means, if the guides are properly placed, the entire found tion is perfectly level. The voussoirs were cut before the foundations were begun, and the top of the pier came at the exact hight required above datum
The first foundation, already alluded to, was put in by constructing a box or inclosure under water. A number of wrought iron standards (Fig. 2) were placed in line in the centers of the same number of molds on a level platform these molds were then rammed full of concrete. The blocks,
the size of the monolith has but little to do with the time equired for placing it.
The concrete of which the monoliths are made is composed of the best Portland cement. When the wooden molds are removed, which may be safely done in twenty-four hours after they are filled, they present a smooth and hard surface, and more accurate than it is possible, in practice, to cut the beds and builds of natural stone suitable for hydraulic work. A cube one foot square formed of this concrete, seven days old, did not yield until the pressure brought upon it by a hydraulic press was 80 tuns, and then the concrete in the middle of the block was found to be somewhat damp.

A New Dry Photo Process.

I propose, says M. Carey Lea, to make public a process hich, I think I may venture to say, possesses a very high

NEW YORK RIVER FRONT IMPROVEMENTS-THE ARCHES.
pier is from 25 to 45 feet. The dimensions of the pier are 500 feet in length; 80 feet in width; hight of roadwayabove mean high water, 5 feet, and from mean low water, $9 \cdot 58$ feet The mig rise and fall of the tide in New York harbor, The merm determined by ang series of pier is composed of twenty full center arches of 20 feet span the faces of these arches, exposed on the sides of the pier, down to 3 feet below low water, are of cut granite. The arches are supported by monolithic blocks of concrete, made to exact dimension by ramming the materials in strong wooden molds. These blocks are made with suitable grooves for chair slings: they are transported from the place where they were made, and placed in position in the pier, by the floating derrick previously described. These concrete monoliths are in two series: First, the base; these are 4 feet by 8 feet 6 inches by 13 feet; next, the piers which are placed on these. For the first three or four arches these are 14 feet in hight, 5 feet 6 inches thick, and 10 feetin length, eight being re quired to complete a pier.
When these tall monolith are in position the work is so near the water line that it is an easy matter to place the enters which rest on them and then set the granitevous soirs. The centers being set the facing of granite is laid in cement; between the gra nite springing stones of the arches, concrete blocks are laid. These are madein molds to the curve of the soffit, and are plainly shown in the en gravings; these blocks bring the work above low water The joints in the granite be ing watertight, and the sheath ing of the centers nearly so the space thus inclosed be tween the stone sides of th pier, if not altogether water tight, is protected from th wash of the tidal current this space is then filled with concrete, well rammed in, and the work by this means is rendered as solid as that formed in the molds.

If desired, however, there is no difficulty in making this space perfectly watertight by caulking the sheathing of the centers, so that the concrete could be rammed in at all stages of the tide.
The foundations at fornation level are 84 feet in hight by 12 feet in width, and vary in distance from datum according to the irregularity of the rock bottom. In all, ex cept in the first pier from the riverwall, they have been con structed by sirking a box the fullsize of the foundation This box was weighted and sunk, then, by means of vertical timbers, chains, and screws, adjusted to the required hight This box (see Fig. 2) was roughly fitted on the irregular roc bottom by means of planks sllding in appropriate guides,

Fig. 2.-CONSTRUCTING THE FOUNDATIONS.
dams and ordinary masonry. The preparation of the bed for the monolith, as is evident from the above description, is in fact the only portion of the work which is at all difficult. Under favorable circumstances, with respect to weather after the foundation is ready, the arch piers, 80 feet in length, were set in 30 feet of water, ready for the super structure, in $2 \frac{1}{2}$ days. It required scarcely ten minutes for ederrick to lift and place a monolith of some 30 cubic may be observed that, within the capacity of the derrick,
been engaged has appeared to me comparable with it.
Themethod gives, by simply pouring an emulsion over glass, not only a high but, I may say, an intense sensitive. ness. Moreover, by virtue of the silver iodide which they contain, these plates need no backing. They develope with great rapidity and need no intensifying, so that the whole operation, fromfirst to last, is reduced to the most absolute simplicity. The advantages in the way of facility of management and the high degree of sensitiveness are such that I should not be surprised to see these dry plates largely supersede the wet process; in fact a beginner will more easily work this dry method than the wet when the emulsion is to be obtained commercially, which it soon will be, as I do not propose to placeany restriction upon its manufaeture by any one who may choose to prepare it.
collodion.
To each ounce of solvent, consisting of alcohol and pther in equal parts, take ordinary crystallized cadmium bromide, $6 \frac{1}{2}$ grains; ammonium bromide, 2 grains ; ammonium iodide, $1 \frac{1}{2}$ grains ; cupric chloide, $1 \frac{1}{\frac{1}{2}}$ grains. About eight rains of intense pyroxylin the ounce, with two drops of aqua regia. Sensitize with silver nitrate, using from wenty to twenty-five grains o the ounce. The first-men tioned quantity is excellen or ordinary work; when a ery high degree of sensitive ness is desired, the larger quantity may be used.
For the reason that the mulaion is to be dried, the aconomy may be practised by making a more concentrated mulsion, as follows: ordina y cadmium bromide, 9 grains ammonium bromide, 2 grains; ammonium iodide, grains; cupric chloride, 2有都.
Use about ten grains of in ense pyroxplin. The silver nitrate must be increased in the same proportion as the salts, so that twents-five to hirty grains to each ounce of concentrated collodion will b reper. Three lodion wil oll ment, give four ounces of finisbed emulsion.
The best results are obtained by keeping this emulsion with occasional shaking, for from twenty-four to thirty-sis hours. It is then to be poured out into a flat dish and allowe. set. Particular care is needed in this part of the opera tion; the preservative must be applied just at the right time -neither too soon nor too long after the pouring out. The mulsion must be occasionally examined and moved abou in the dish to promote equal drying. Assoon as a skin form on it, boles must be made through it, and the collodion un derneath be made to flow out and over it. If this be ne
lected, the surface will become hard and leathery before the emulsion is set underneath. The object is to keep the whole mass as nearly uniform as possible, and, as soon as it whole mass as nearly uniform as possible, and, as soon as it
is gelatinous, to apply the next treatment. The proper conis gelatinous, to apply the next treatment. The proper con-
dition can be judged of by touching with the tip of the finger: dition can be judged of by touching with thetip of the finger:
as soon as nothing comes off upon the finger the emulsion is as soon as nothing comes off
ready for the preservative.
Any preservative may be used. As to the effects of different preservatives, I will speak presently. If the lesser quantity of silver be used, the preservative may generally be applied in its ordinary condition: but if the larger, then it will be well to add to the preservative one tenth of its bulk of ordinary acetic acid (No. 8 or Beaufoy's).
The preservative is to be poured into the dish. and then immediately the film is to be plowed up with a porcelain, horn, or glass spatula (not a metallic one), and reduced into small pieces; and the whole, preservative and film, is to be transferred into a convenient glass jar-not too small. The flakes of emulsion are to be occasionally stirred and left in
contact with the preservative for fifteen minutes from the contact with the preservative for fifteen minutes from the
time when it was first poured over the mase. (In operating time when it was first poured over the mase. (In operating
upon a large scale, commercially, it will probably be found better to leave a litlle longer in contact with the preservative, and alnomys to acidify. For working with a few ounces, the foregoing is the right way.) The preservative is then poured off and water poured on, the Hakes well stirred up, and th water chauged several times. The flakes are then left to stand under clean water for about an hour; thenseveralmore changes; then stand another hour ; then several more changes. By this time everything soluble is extracted from the flakes; indeed, after the first hour no silver can be found in th at ordinary temperatures, or the reasel may be set over a at ordinary temperatures, or the reassel may be set over a
stove, provided its bottom be not allowed to become hotter stove, provided its bottom we not allowed to become hotter
than the hand can bear. The drying must be thorough; the than the hand can bear. The drying must be thorough; the
Hakes ahrink wondorfully, and curl up like tea leaves. They Hakes shrink wondorfully, and curl up like tea leaves. They
are not white, but of a medium grey color, notwithstanding which they make a pure cream-colored emulsion.
To re-emulsify, the dried flakes are put into a bottle and are covered with one third ether, one third alcohol, and one third plain collodion. They must be well shaken at intervals. The new emulaion is not in good order till after, at least, forty eight houra, and is better at the end of a week. When it has once heen thoroughly mixed with the liquids, and has been shaken at intervals for some days, it seems to lose al disposition to settle, and makee a most ercellent emulsion. There is no reason why it should not keep indefinitely. Or it may be preserved in the dry state and emulsified at any time, using from twenty to twenty-five grains of the dry emulsion to each ounce of solvents. Three and a quarter
ounces of collodion, formula No. 2, will yield about one ounces of collodion, formula
hundred grains of dry flakes.
prearrvativeb.
The character of the image will depend very much upon the preservative used.

Albumen Presercative. -This givee an exceedingly sensitir and delicate plate, with much less density than most of the other treatments. For this reason I prefer it to the rest, as tending to give detail in both lights and shadows, with great varieties of half tone. My formula is: Water, 12 ounces ; thick gum and sugar solution, 1 ounce; prepared albumen 1 ounce; sixty-grain alcoholic solution gallic acid, 1 ounce sixty-grain tannin solution (in water), ty ounce. To be added in the order named. If rather more density be required, double the tannin. I use it as above. This preservative Torks very cleanly and satisfactorily: I use it exclusively.
Gallic Acid and Coffee.- - A mixture of gallic acid and coffee, using about two ounces of sixty.grain solution to twelve ounces of infusion of roasted coffee, gives very good results; it should, however, be acidified with acetic acid, using about half an ounce of Beaufoy's (No. 8) to the above quantity. It gives a blacker image than No. 1, and moreintensity. It wil probably be useful when the pyroxylin is deficient in intensity. It gives excellent transparencies by exposure
under a negative, but too intense for lantern work, for which under a negative, but too intense for lantern wo
No. 1 is much better, as well as for negatives.

DEVELOPMENT.

For a $6 \frac{1}{2} \times 8 \frac{1}{t}$ plate pour four ounces of water into a 7×8 dish, add half a drachm of sixty-grain solution of pyrogallic acid in alcohol, and put in the plate. Mix in a bottle equal quantities of a fifteen-grain solution of potassium bromide and an eighty-grain ammonium carbonate. Of this misture pour one fluid drachm into the dish. When the detail appears add another drachm, and later, if necessary, a third; or add half a drachm of the ammonium carbonate solution without bromide. The two first additions must have bromide; the third is best without for a negative-best with for a tran-
sparency Fix in hyposulphite solution of the same strength as used for wet plates.
I should have mentioned that I always keep the collodion for a month-for several if possible. The plates should be edged with a solution of india rubber in benzole
The principle of applying a preservative to a mass of material at once and then washing it out again could be patented. This is common to the new processes. The plan
of applying a silver bath to a mass of partially dried collodion is also now and patentable. Convinced as I am of the very great usefulness of these processes, I believe that such patents would be very valuable. I prefer, however, to give them freely to anyone caring to use them, asking only, in return, tohave them ascribed to their author and not apprapriated by hose who may make trivial modifcations on them.

A glue which will resist the action of water is made a glue which wing posist of glue in 2 quarts of skimmed milk.

Correspouteute.

Adjusting Locomotive Valven.

To the Editor of the Scientific American:

I will give you a method for setting slide valves of locomotives, which is practical and easy. Make a steel tram, about $5 \frac{1}{2}$ inches long, with two points at right angles with the straight bar, one point to be 28 inches in length and the other $1 \frac{1}{2}$ inches. Both points are to be sharp. Take a cenpacking, and make a center mark on top of the steam chest packing box; then take a strip of tin and putit in the steam port. Draw the valve slowly back untll you can just move the tin between the edge of the valve and the edge of the steam port (which is now closed, except as to thickness of
the strip of tin). Take the tram, place the short point in the center mark on the packing box; then make a scratch o the valve stem, and go through with the same process with the opposite ste am port. Now you have marks on the valve stem just where the valve begins to open. The valve stem must next be gotinto radius (as we term it), which is to show the proper length for the valvestem. It in done thus: Cover the steam portz equally with the valve, put the center of ock shaft and the rocker pin at a right angle with the bore of the cglinder; and when the valve stem is adjusted to this it is of the proper length and ahould not be altered.
To adjust the valves in forward motion, hook the reverse lever in the forwand notch, take the dead points for centers, and alter the eccentric rods until the spaces are equal on the valve stem, which is determined by the use of the tram. Take
the forward centers and give $\frac{1}{1}$ inch lead to the valvc, for aither passenger or freight engines. By adopting thls plan the engine will reverse her action promptly. Hook the reverselever in back motion, and repeat as above.
If the job is to be done quickly, and the eccentrics are in the proper position, it can be done by the travel, in this way: Move the engine slowly forward with steam, take the tram, and trace the movement of the valve on the valve stem until the stem stops; then trace the return movement until that stops. Take a pair of dividers and measure each dia ravelline (or where the valve stopped). Alter eccentric rods antil the spaces are equal. By these means, you do not re quire to take the ateam chest covers off.
East Saginaw, Mirh.
Thomar M. Hafer.

An Invention Wanted

To the Editor of the Beientlfie Americar:
I would invite the attention of inventive minds to the sub ject of reepirators for miners, to protect them from the foul gases which trouble so many men, especially in coal mines An invention that would protect them when laboring to sub due a fire in a coal mine would certainly prove a very valua ble one, and be the means of saving many lives,and millions of property.
Hazleton, Pa .
C. F. H.

The New British Patent Bill

The Lord Chancellor's new Patent Bill, brietly described by us a few weeks ago, meets with vigorous opposition in some of the English papers. Among the ablest remarks upon the subject are those given in Engineering. In a recent number the editor says: "Contrary to our anticipations, the Patent Bill has passed through committee with all its powers of mischief intact. In spite of the almost unanimous opposition which it has met with out of doors, the only modifications which have been introduced merely relate to matters of
detail. Instead of four examiners we are to have six, the referees are to be appointed by the Commissioners of Patents alone, without the concurrence of the Board of Irade, as was at first suggested, and their services are only to be called in when necessary, and not as a matter of course.
The radical vice of the measure still remains; and although it is pretended that the examination clauses have been framed to meet a universally expressed wish, we are quite sure that nothing of this kind was ever asked for by the general body of inventors. It is perfectly notorious that the placehunters, who will not be satisfied with any system placehunters, who will not be satisied with any system which leaves them unprovided for. By dint of aypearing
now as members of this society, now of that, and by reading now as members of this society, now of that, and by reading
papers here and delivering lectures there, a delusive impres sion has been created that inventors are really desirous of seeing the system of preliminary examination introduced. We do not for obvious reasons mention these persons, but a
careful examination of the various propositions for patent careful examination of the various propositions for patent law reform put forward during the last ten or fifteen years will reveal their names. There are of course som9 advocates having only joined in the cry on purely theoretical grounds. These goodnatured individuals have in all probability never made a search in their livee, and are totally unaware of the enormous difficulty of deciding whether an invention has really been anticipated or not.
The Lord ('hancellor has been at great pains to explain that he does not propose any examination as to "utility;" but what is the meaning of "frivolons" if it does not include projects
whrch are " aseless," in other words, void of "utility"? It which are " aseless," in other words, void of "utility"? It
is the same thing in another form-an old friend with a new face. Lord Cardwell sneers at an invention (of American origin) which consisted in placing a piece of india rubber at the end of a pencil, so that the person using it could rab out with one end what he had written with the other. This may be "frivolous" or not, but it was a sufficiently valuable patent to be worth a very costly lawsuit, which is well known as the "india rabber tip case." Those who have followed the
question need acarcely be reminded of the case of Smith o Buller, which occupied the Court of Chancery for many days, the coats amounting to about 920,000 , and in which the matter in dispute was a very minute improvement in swivels. So small was the improvement that ordinars observers would not have detected the difference between the old swivel and the new. Large fortunes have been made out of "solid headed" pins, and buttons have raised many to affluence. Only the other day a large technical college was founded and endowed by a philanthropic manufacturer who stated that a very large portion of his princely fortune had been amassed bs making steel pens and split rings. The question of frivolity is in some respects more delicate than that of novelty ; and when the examiners have once tasted blood, we shall probably find them rejecting as "frivolous" contrivances which, though seemingly insignificant, may have cost a man years to invent, and which the whole of a trade has been in ain endeavoring to produce.
For years past we have done all in our power to wain inveutors as to the almost certain results of an arbitrary system of preliminary examination like that embodied in the present bill. We showed some time back, in a series of articles on "Anticipated Inventions," how some of the greatest inventions of the day would most certainly have been refused by any moderately well informed examiner. If inventors permit this bill to pass in its integrity, they will find them. selves in the position of the man who made a monster, and was in due time destroged by it. For a few years we shall have ghags, soon to le fullowed bis the entire abolition of those laws which have done ao much to foster inventive alent, and have borne no inconsidarable share in bringins the manufacturing industry of this country to the high position which it now occupies.'

The Hellograph.

T'hrough the general introduction of electite telegraphy; nd the all but universal adoption of the Morse alphabet, it ccurred to Mr. Manca to produce an instrument whichis very compact, very fertable, easily set up, and easily worked. Although he was first in favor of larger instruments (which are still preferable for permanent stations), he is now con vinced that an instrument of the size here described is all that is requisite. The chief objection to the adoption of the sun telegraph is that we cannot command the sun to shine in the same manner that we can control a galvanic battery; and it must be understood that Mr. Mance advocates his system only as an auxiliary to other systems of field telegraphy.
The instrument consists of a light, but firm, tripod stand similar to those used for prismatic compasses. On the top a plate is moved by a tangent screw which admits of quick and slow motion, and the plate carries on a pin a semicircular ring, which again carries on pirots the round mirror, the silvering of which is removed in the center for the space of circle about $3-16$ inch diameter. To the plate is also at tached a simple key, which is pressed down and springs back like an ordinary Morse key. This key is connected with the top rim of the mirror by a steel rod, which can be length oned and shortened-as occasion may require-by turning the handle and screwing the rod through the small brass ball which secures it to the edge of the mirror.
By means of the last named adjastment and the tangent crew, the glass can be altered, as the ever-changing position of the sun may require.
From 12 to 15 yards in front of the instrument is placed a sighting rod. This rod is to mark a spot exactly in a line sighting rod. This rod is to mark a spot exactly in a line
with the center of the heliograph and the distantstation. A with the center of the heliograph and the distantstation. A
metal stud marks the spot, and a wooden cross piece marks metal stud marks the spot, and a wooden cross piece marks
where the flash rests when not directed on the opposite sta thon,
The
The instrument can be set up ready for working in a few minutes. When the exact position of the distant station is not known, a flash of sunlight must be thrown in the direc tion of the most likely points, and this must be continued till it is answered by a flash, which indicates that a distan signaling party is on the lookout. Then, after releasing the tangent screw, the glass must be turned to a convenien angle, and the sighting stick must be directed in a line with the distant station by looking through the small aperture in the center of the mirror. When this is effected, the stud must be raised or lowered till it is in the line of vision on a levei with the center of the glass and the distant flash, and the short cross piece must be placed at right angles to the upright, a bout a frot below the stud. After being thus ad justed, the instrument must not be moved.
The spot will be observed gradually to rise or fall, according to the direction in which the sun is apparently moring. The handle of the key, or the tangent screw, or both, as the case may be, must be turned slightly after every two or three words, to ensure, as far as possible, that the center of the spot shall be on the stud when the key is pressed down. When the sun is rather low in the heavens, and behind the signaler, it becomes more difficult to direct the flash with accuracy. In consequence of the obtuseness of the with accuracy. In consequence of the obtuseness of the
angle, the spot loses its circular form, and becomes rather angle, the spot loses its circular form, and becomes rather
dim when reflected on the stick. If it is required to work dim when reflected on the stick. If it is required to work
frequently with the sun in this position, the employment of frequently with the sun in this position, the employment
second glass on a light tripod stand is recommended.
But it would be useless here to enter more into the minutix of working the instrument : suffice it to say that, in experienced hands, twelve words and more per minute have been obtained. while others state that men-after a fortnight's practice-could attain only from four to five words perminute. As to the distance, 10 and 20 miles-and in very close weather 40 miles-bave been obtained, Tel, graphie Journal.

