A Remarkable Triai and Triumph.
Tbe triumph of wheeler \& willoon, at the Amertcan in
 was remarkable In many respects. Extraordinary and
repeated cxaminatlons were made, one lastlng from 10 were ordered from the manufactory, and a uachlne wa constructed of parts selected by the Judges, which wa then tested on all kinds of work, from pauze to heavy har
ness, by foot and steam powcr. The rencral tmallty o inatlon of machines in thelr warehousex, and the testsnation of machines in cheir warehousex, and he cest-
monyof many disinterested users of tir machinc, fur
and near, was procnrcd to ascertaln theirpracical working. and near, way procnred to ascertaln theirpracical working.
The firc judges, in conclusion, unanimously reported machinc which, by ture prouf submitted, we are satisuid must crentually supersede all others now known with which it comes in competition." And they "recommend
for it the highest avard which it is in the power of the institute to bestow
The Board of Ma
anagers unanlmously approved the re of the Instlinte.
The Bnard of Direction nnanimously t :pprored this recommendation, and a warded the Gold Medal to Wheeler
i Wilson, the only gold medal a warded fura sew! © Wiltsm, the only rold medal awariled fora sew!nk
chine by the American Institnte for many years.

Busimess and entsomat.

The Charoefor Insertion under thishicat is $\$ 1$ a Line.
Agricultural Implements, Farm Machincry, Seeds,
Fertulzers. R. H. Mllen \& Co., 189 \& 191 Water St..N. Y.
 Compans, Bailimoru, Md.

stating where last emplovect.
Diamonds and Carbon turned and shaped for
Scinatiqc purposes: also, Glazsers' Dlamonds manufac. Spinning Rings of a Superior Quality-Whitins-
ville splinng ling co., Whitinsille, Nags. Send for Pattern Letters. und Fiyures, to put on patterns of
metalliccastings,alis sizes. H. W. \mathbf{K} nikht,Scneca Fails,S.Y. Wanted-A man to take an intercst in a Foun
dry, and take charge of the Outside Bustress.

 screw and Mflllong Machlnes, 1)rlll
Relden Company, Danfury, Conn.
Mining, Wrecking, Pumping, Druinage, or Irrige
ting Maehluers, for sale or reat. Sce advertisemeot. An. Faught's Patent Round Braided Belting-The
Best ching out-Manufactured only hy C. W. Arny, 301 \& 303 Cberry St., Pilladelphla. Pa. Send for Clrcular.
Wanted-Good \#d hand Engine Lathos, at Low Magic Lanterns, and 100 Choice Views, far *
and upwards, for Churches and Public Exhbitions-a pro

 \& Co., Fisherville, \mathbf{N}.
 fucturing Co., 38 Broad St.-P.O. Box 1304, New York.
For Power Hammers or Bolt Headers, the best,
s. C. Forsalth \& Co., Manchester. N. H. John W. Hill, Mechanical EngIneer, Dayton, Ohio
Drawings, opinions, and advice. Price only three dollars--The Tom Thumb Elec-
tric Telegraph. A compact working Telegraph Apparatus, for sending messages, making magnets, the electric light, glving alarms, and varlous other purposes, Can be put
operatlon by any lad. Includes batcery, key, and wires.
Neacly packed and sent to all parts of the world on recelp. Neatly packised and sent to all parts of the world on recelp
of price. F. C. Beach \& Co., 263 Broadway, New York. Cast Iron Sinks, Wash Stands, Drain Pipe, and
Sewer traps, Send for Price List. Balley, Farrell \& Co., Pratt's Liquid Puint Dryer and White Japan sur-
passes the Engllah Patent Dryers and Brown Japan in cotor, quallty, and prlce. Send for descriptivectrc
A. W. Pratt $\&$ Co., 53 Fultou Street, New York.
For Solid Wroughtiron Beams, etc., see advers.
Isement. Address Unton Iron Mills, Pltt Bburgh, Pa., for
Many New England Manufactories have Gas
Works, which llght them at one fourth the cost of coal Ras. For partculars, addre
Pipe Co., Providence, R. I.
Plpe Co., Providence, R. I.
Hotchkiss Alr Spring Forgo Hammer, best in the
market. Prices low. D. Frisble \& Co., New Haren, Ct For Solid Emery Wheels und Machinery, send
the Unlon Stone $C 0$., Boston, Mass., for clrcuar.
Scale in Steam Boilets,- - I will remove and pre-
vent Scale th any steam Boiler, and make to charge until the work is found satisfactory George w. Lord, Phlla

Mechanical Expert in Patent Cases. T. D. Stetson 23 Murray St.. New York.

 Fort the best Portable Enginc in the world, addresBaxter Stean Englne Co., 13 Part Piace, New York. All Fruit-an Tools, Fcrracute, Bridgeton, N. J. Hydraulic Pressee and Jacks, new and second
hand. Laches and Machinery for Polishing and Buflng Metais. E. Lyon, Ho Grand Street, New York.
Iron Frame Band Saws, cheapest and best, $\$ 150$.
Address S. C. Forsalth \& Co., Manchester, N. H. Brown's Coalyurd Quarryand Contractor's Appa-
ratus for hotseting and conv eylag materials by Iron cable. For Surface Planers, small size, and for Box
Corner Grooving Machines, send to A. Davls, Lowell, Corner
Mass.
The "Scientific American" Offlce, New York, is
fitced with here Minature Electric Telegraph. By touching
Hitcle butcons on the deak itcle buttons on the desk sorthe managcrs, 8 gis nals are sent
to persons in the various departanents of the establishnent. coeap and exective. Splendid for ahops, offces,

Temples and Oilcuns. Draper, Hopeduie, Maws. For beat Preases Dles, and Fruit Can Tools, Bliss Peck's Patent Drop Press. For olrculars, address
sllo, Peck \& Co., New Haren, Conn. Small Tools and Gear Wheels for Models. List
 Portable Engines, new and rebullt dal band, a
peclafty. Engines, Bollers,Pumps, and Machinitet's Tools II. Shearman, 45 Cortlandt St., New Jork.
For First Class Steam Boiless, address LambertHite Iron Works, Lambertville. N. J.
Engines and Bollcrs a Specialty-1st class: new
atterns: tate patents; reduced prices. Platn and Cut out Hor'l and Vert'l Engines; Holsting Englnes; the cetebra. Ced Ames' Portable Engines; Bollere of all kinds; Cllmax
Turbine; and the beat Saw Mill in the market. Larg stock always on hand. Hampson, whitehtll © Co., Buy Boult's Paneling, Moulding, and Dove-taillng
Iachloe. Send for ctrcular and ample of work Machive. Send for ctrcular and sample of
Mach'y Co., Battle Creek, Mch., Box 237 .

Mavotes Wurn

W. I. ('.s id'a for driving a propeller b. spring in not likely to prove paracticalle.-W. E. H.
will tind (fections for making a storm gla.s ou p.
 planation of the uncon's variations on p. ?:3i, foll. t.-R. R. R. will find an elucidation of the weight -M . will find directions for temperiug springs on -M. Will ind directions for tenperiug springs on
p. 10, rol. 2ri.-.I. H. L. cau harden tillow for ma-
king cumdeo by the piowe described on king candles by the procese described on p. 2nl, vol.
24. -G. E. 0 . will find Warven's worke min mechanianl drawins and Davies \& Peck's "Algelira" to be good and practicat.-K. W. W. will fanile dencrip-
tion of the philomphers or hydrogen lamp on P . tion of the philompher's or hydrogen lamp on
242, vol. 31.-C. H. H. will thid fult parteulariuc t_{0} Colgnet stone on p. 124, vol. 22.-J. M. will find ra lpes for hard snap on p. :3n1, 399, vol. 31, und
or bootblacking on p. 243 , vol. :11.-J.J. D. will find directions for tanaling sliass with the fur on on
p. 2×3, vol. 26.-W. P. P. will flud a description of
 19, vol. 31.-J. F. shoukd rcfer to p . 2 lu , vol.:31, for

(1) J. M. anilis: 1. What horse power would
 A. An engine of, horse power would unswer
What is the cost of an englineer's certiticate"

See p. 28%, vol. 31 .
What is cumphor composed of, I. It is a crys-
tulline substance obtuined fiom a trec. It contains carhon, hydrogen, and oxyx (3) (i. G. L. says: I wish to makr a barge
clock dial formy windows, and drive the hands by clectifcity fiom a regulator in the shop. Please say how I can make it: . I. The electrical mut
consiste of an elcetro-magnet and armatureworked consiste of an elcetro-magnet and armatureworked
by a battery of two Daniell's cells. The armature by a battery of two Daniell's cells. The armature whenever the regulator closes the eircuit, thepawl causes the wheel. which caries the hands, to adto close the elrcuit everysecond orevery minute, as desired.
(3) J. R. says: 1. Alexauder Watt recommends to electroplaters, from personal experience,
the following battery: A stoneware jar holding bout four gallons recelves a cylinder of thin shee opper, dipping lnto water acidulated with 2 lbs . ulphuric acid and 1 oz. nitric acid. A sofid zinc ylinder is put into the porous cell, which is fllled whlch a few drops of hydrochioric acid have been added. What should bethe diameter of the copper cyltnder Inside the stone jar!' A. The diameter should be nearly as great as the jar. ? Should it
have a botton to it? A. It Is immaterial whether have a botton to it? A.
t has a bottom or not.
(4) C. A. W. asks: How art; Callaud's and
the Minottl vatteries constructed! A. The Calhud battery consists of a ylass veasel with in copper plate at the bottom, upon which are placed crystals of sulphate of copper. A zinc plate is suspended
near the top and the jar flle, with water. near the top and the jar fillell with water. The the Cailaud, and, inaddition, a thics layer of stwdust is interposed between the copper plate at the bottom and the alnc plate at the top.
(i) W. L. L. asks: Will electricity give orth a spark sufficiently strong to light a gas jct? cold, dry weather, a person may charge himselfsuffliently with electricity to light gds with his flinger, by walking briskly over a carpet or rug.
(6) R. C. W. and others--Liquids, complex or otherwise, can be analyzed with the same accli-
racyas sollds. Butit is possible so to mudde things
than that an experienced chemist cannot separate them
ugain; but only by artifcial means. Nature ncrer again; but only by artific
presents such diffleulties.
(7) W. C. IV. usks: In what proportions
shall I mix the acids and alc'ohols to make respecshall I mix the acids and alc'ohols to make respec-
tively sulphuric and nitric ethers? A. The method at present in general use for the preparation of orcalled sulphuric cther-is that known us the "conly called sulphuric cther-is that known us the "con-
tinuous proceso" of loullay. It consists in mixing together equal moasures of alcohol (specifc gravity ortsener equal measures of alcohol (speciffe gravity
is submitted to distillatiliph is submitted to distillatlon in a capacious retort,
which must be connected with an effient condenwhich must be connected with an eflient conden-
ser. Through the tubulure of the retort a tube is
introducen, which is in ennnection with a remeronir
of alcohol, designed to mainiain a supply of spirit
suffient to keep the amount of liquid at a uniform level in the retort during the conrse of the subse-
quent distillation. Thetempcratureis then rapidly quent distillation. Thetempcratureis then rapldly
rajsed so as to maintain the liquid in steady ebulliraised so as to maintain the liquid in steady ebulli-
tlon. The liquid which passes over consists almost ton. The liquid which passes over consists almos
wholly of ether and watar. mixed with a small prowholly of ether and watar. mixed with a small prochanged. The process may goon withoutinterruption until a quantity of alcohol, about 30 times a great as that originally taken, has become convert
ed into ether. Isethionic acid isgradually found in ed into ether. Isethionic acid isgradually found in
the residue. Nitric ether is obtained by gently heating one volume of nitric acid, of specific griv ity 1.40 (to which a fcw grains of mt ante of urea
have becn added in order to prevent the formation of mitrous acid), and \geqslant volumes of alcohol, of specitic gravity 0.842 ; the quantity of the mixture operated npon should not excecd a quarter of a pint; under
thesceircum atancestheoperation proceeds quietly. The first portion of the distillate contains little ex cept alcohol, bit ns som as the liquid which distils over beeomes turbid on the addition of water, the
reeciver must be chamgerl and the n 'tric ether colreeciver must be chmmgerl and the n'tric ether col-
lected separately : the distllation must be stopped when about three fourths of the l_{j} uid has passed mixell with secomlary y prociuct;, which canuot be
removed without dificults. The ether is puificd by agitation with a wcak : olution of alkali, and rece-
titicd from chloride of culeinu. It burns with a white luminous flame: and if heated to a little beyond its boiling point, it is decom
plowion on the apprach of light.
(8) J. C.PB. says: A. claims that 1 lb . feath whill be heavier than ind lhat as the surface of there be circumstances that will render 1 lb . feather's heavier than 1 lb . leud: A. The weight of a body in a vacuum is increased by the weight of an
equal volume of air. Hence, if the feathers dis equal volume of air. Hencc, if the feathers dis-
place more air than the lead, they would weigh more, in a vachum.
(9) A. F. asks: Is therw a nozale, in use by
firc dequrtments, thatcan be macle to throw thare or small strean at plcasure? i. Yes. It is quite a or small streain
common device.
(10) P. W.
charged with voltuic electricity: if so, how: I Yes. Comncet one pole of the battery with the ining. ?. Is a simplic quavenic Bunsen cell cuough to
 would chame it very slikhtly. :3. How many Mun
en cells dues it require to Durn metals: A. Mfty cells would burn a manall wirc. \&. Would it anamer
the purpoas, instad of coating internally, to drop the purpoac, instemd of coating internally, to drop
strips of tinfoil in the jar as high as the internal conting should come? -t. It would not, unless the ous. 5, Should the bottom be coated outside? I
No. bis it necesgry for the jar to have a bruss No. is. Is it necessary for the jar to have a brass
cap?. No. i. Would an iron wire passing through the cork counecting with metallic tilling atuswer
 (11) J.I. J. fuks: What makes ruter in
well look bue when sumlight is deflected on it? Tine lolucness is duc to a partinl alsorption of the ing the light with an cxcess of the solar ray, lear to It its peculiar tint.
(12) P. T. M. asks: What isthe easiest and best way to polish marble, agate, and granite? A
The polishing is differently carried on, according it the nature of the work. For small slabs or objects of an ornamental kind, the highest degrce of tinish
is requisite. Polishing is commenced with pumice stone and water, and with snake stone, after which various rollers or rubbers are employcd. If the ob ject be large and flat, the rubber may be a laige
wooden block faced with thick woolen cloth, or a wooden block faced with thick woolen cloth, or a na rectangulariron frame, andmovedabout with ist, ubout 3 inches indianeter are employed \cdot, mme of these are charged with four, emery, and a slight degree of moisture, which produces a kind of
greasy polish uniformly over the surface. A simi. lar cloth, charged with putty powder and water completes the process. In some of the more delithe emery and putty powder.
(13) W. (. B. asks: What is the difference
between a high and a low pressure engine, und what effect has the difference on the draft? A. The high pressure engine has no condcnser, and fre quently discharycs the exhaust steam
smoke pipe, thereby increasing the draft.
(14) J. P. says: 1 am burning slack under
my boiler, and mytubes wantclcaningtwo or thrce my boiler, and mytubes wantclcaningt wo or thrce
times a week. I am thinking of blowing them out with steam. Will the stenm injure them by corro-
sion? A. No. This is ordinarily a very good plan.
(15) C. S. A. asks: I am using a wirc rope with a windlass and pulleys, subjected to very heavy strain. The rope scems to get stiffer from use. If I heatit red hot and let it cool slowly, it
will be more flexible: but will it infure the ronct A. Not appreciably.
(16) B. F. G. says: We are burning (tross ordinury blacksmith's coal, but is ofa highergmente Wefind that in wet weather we burn more in weight than when dry. Λ few days ugo I weighed
very carefully 500 lbs ., dry, and afterwarls udded is gallon of water. I then reweighed it, and found that it had guined 20 lbs. I spoke of this experi-
ment to a friend, and be said that it was impossible or it to gain 2 lbs., us the only weight that the coul could gain would be the weight of the water din I or is my friend right? A. Even in the face ugree with your friend, and question the facts. What is the weight of 1 gallon of water? Λ. A
United States gallon nf water welpts atont 8.3
(17) A. F. C. asks: 1. What would De a saf 0 inches, having 52 one inch tubes made of three sixteenths iron" A. A safe pressure would be 10才) ibs. per square Inch. 2. What would be the burst-
ing pressure\% A. About G00 or 700 tbs. (18) M. K. asks: 1. What, in your opinion, is the best and chcupcst method of preventing in-
chstation in steam boilers\% A. In some special ernstation In steam boilers\% A. In some special
ascs the tannate of soda seems to act beneficially. cascs the tannate of sola seems to act beneflcially.
2. What do you think of steam heatcrs und filtersWhatdo you think of steam heatcry und we re-
to prevent scales in boilers' A. In general we commend the use of a kood heater and frcuucnt howing. 3. What is mostly used in the East to States gencrally imbregnated with lime: A. Thr water usch in boilers at the East ordinarily gives as (10) J o ncrensing the capacity of a stcma boiler thori-
ontal, 42 ineles in diameter umal 12 fert lona zontal, 42 inehes in diameter uninl 18 fcit lonix,
with 32 tubes), introduced :ome t inch tubes undes. with 32 tubes), 1 introduced :ome $\&$ inch tubes mindes
the boilcr, commencing just behiud the bridge wail the boilcr, commencing just behiud the bringe The pipes had east iron connectiow the bottom of the boiler, connceted them at the back end of boiler ncar the bottom, and attinched the fecl pump near the front, and fed with hot water. The frist
day they worked well and improved the boiler greatly in steaming capacity; but on the third day, just ifter starting. up, with the first stroke of the many, the cast iron and on the pipe where the liced pipe was connected hurst with a loud selorrt, and
for a few scconds nothing; but blue steam cscaped, and finully water and steam. Thinking the trouble was in pumpingin water so near the fire and bric ge wall, I changed the comnection, putting the tced
vipe into the much drum, and then letting the buck bipe into the muld drum, and then letting the buck connection stay as it was, making a series of circu-
Iating tubes. On firing upthis timc, I was alarmed by a succession of concussions or jars in the boiler that shook the walls; but by fring slowly, we kot
ulf steam without any a cirlent. In an hour or two we notic'ed thatthetubes ncarest the fire and bride wall were red hot, and blue steam was escaping wrom the joints of tice connections on the ends of the tubes. We drew the Hre and remused the
tibes. Wc found a great improvement by the use of these tubes. mind did not like to abandon the use of them. We ire at 1 loss to account for the phenonemon of blue stem being where we expected
nothing but wuter. What is our remedy't A. The tronble sceme th have licen that the pipes got so hot that they madc stcam faster than it could bc
cavried of, the circulution bcing imperfect. It will mobaily be necessary to use larger pipes, or to discard the return bends, to makc the present ar-
inugement successful. The samc trouble hus ocnaugement successful. The samc trouble has oc-
curred with some forms of sectional boilers, whose curred with some forms of sectionul boilers, whose
use las: been abandonc'd on Hecount of the poorrevalation.
(20) S. J. P. anks: 1 have a telcgriph it Will it work without a relayt A. Not on the maln nire. A reluy will cost about \$10.
(21) M.13. II. asks: How can 1 prevent beech wood lasts, subject to a temperaturc of $2 y^{\circ}{ }^{\circ}$ Fah..
from bein,r affected by the heat: A. There docs from bein; affected why way to do this, better than
not appear to be auy whe ell scasoning and drying the wood licfore using (2.2) H. R. R, :asks: A rectingular wooden tank lined with zinc is used in the second story as a
reservolr for tain water. Since its erection, we are told that the sinc will soon corrode und the vessel bccome uselcss. Is there uny way to preserve it, ed with a whitc oxide which washes off with the water, rnd by repetition of this process the metal is reduced in thickness and strength. There is a slatc paint for application to iron tanks
serviceable when applied to zinc.
(2:) A. B. C. says: "We have just started a new steam pump in a mlne, at 700 feet level. To prevent the steam from exhausting in the shaft, a
pipe was \&xed to convey it into what we call the suction pipe, and the connection at the suction puipe was a globe valve or chamber, us the valve was taken out, and the exhaust pipe insertcl i_{1} ite place. This was the engineer's plan. I said that I
did not think it would answer, did not think it would answer, us the chambcr or
pipe where the exheust steam meets the water was pipe where the exheust steam meets the water was
ton small, and the steam would ent off the water. ton small, and the steam would cut off the water.
or at least some of it; und it so happenerl that, when they started the pump, it would not pump y, truc. He took it away from there, and put it to exlaust in a wooden pipe which binges air down th the bottom of the mine, and it would be just as wcll if he let it exhaust right in the shaft us in that a matter of course fills the shaft with smokc. Now I think I can put the exhaust stcum ints) the suction pipe so that it shall work all right. My plan is
to have a lavger and at more suitable connection with the suction pile. Do you not think this will the pump. The reservoir stands about level with ter." A. You gre just entering on a tield inwhich is great dcal of money bas ulrendy bcen spent for experiments, namely, condensers for steam pumps. lye matter has ulready been worked out practical
ly, and we think your chenpest and most $\leqslant a t i s f a c$ ory plan would be to ohtain a condenser.
(24) J. MCD. asks: Your article headed suction in your issuc of December 5 leads me to make the following inquary: Suppose a vessel said vessel a tube extending upwards for fifteen feet, and there be attached to said tube two stopcocks, one at elther end. If the lower cock be closed, and the asr bc exhausted from the tube, after which the upper cock be closed and the lower opened (allowing free access to the tube for the wa-
ter), will the water riae into the ter), will the water rise into the tube from the ves.
sol? A. Yea.

 indcr is atout 10 inches diameter. A. If not more
 an inch in thickness; but better sthi, do not makt
the boller of cast ron. 2. What should bc the dithe boiler of castiron. 2. What should be the di

ameter of the safety vulver A. Three fourths of | ameter |
| :---: |
| an inch. |

(26) W. W. and others: © Or opininion is that
 one fitteeth part of the cost of bet
tric motors, sing acid and $\mathbf{z i u c s}$.
 The pipe runs 1 feet hortzontally and 8 feet per
pendicularly. Would there be any difierence in penicularly. Would there be any iditerence in
the pressure if the eame pipe be all perpencicu
lar? A. yes,
(38) E. asks: How much more steann does it require at 1001 lbs. per inch to produce the same
result with a plain osclllatingeyyinder, taking steam through the side to full stroke (as it must do), than it docs with a stationary cylinder, using a slide ralve and cuttine off the steam at the most econo-
mical point: I think that a better resuit would be nittained with oscillating eylinders than could beattained with the slide valve, provided that the slide valwe had no lap orlead, takingsteam to full stroke,
from the fact that the ports of the oscillating cylinders open almost instantancously and at a point where the piston is traveling at it s slowest: whereus, with the eccentric morcment, no such rapid
change can be attained. A. There are oscllating engines with ordinary slide valves in use.
(29) J. A. C. says: A saw was burnt, and, as the new one came to the mill, the men remarked:
"We'll need a blower to make steam enough to "Irive that hig fellow." I sald: "I don't think you will need any moresteam for the same work than
for the little old one." The men were all against for the little old one." The men were all asainst
me. All things clee being equal, does a large saw me. All thinfs clse being equal, does a large saw
require morc power than a small one? If so, why? A. All other things beingequal, the large saw would cone at the end of a longer lever arm,the leverarm to which the driving force is applied remaining the
sume.
(30)
(30) J. E. (t. asks: What is a safe workingr
 per square inch.
(. (1) W. \& B. ask: Is there a treatise published, explaining how to set a steam flue boiler amount of fuel? A. We do not know of any book that gives precisely the information you want. You
will tind some valuable hints in Wilson's "Treatise will tind some valuable hints in Wilson's "Treatis, by Professor 'irowbridgc. Scc ou
umns for booksellers' addres ces.
(32) H. C. McE. asks: Enclosed fiud a piece of scale taken from a boiler. What will loosen it
fiom the boller? A. The hest. plan is to prevent the formation of scale by the use of a good reed the formation of scale by the use of a good reed
water heater and frequent blowing. You cun
sof ten the scale somewhat, by hauling the fire at wof ten the scale somewhat, by hauling the fire at
right, and leaving the watcrin the boller untilnext morning.
(3i3) Mc. 13ros. ask: Is there a work on the and boilers? A. We do not know of any such work A great deal of information is scattered through
treatises on steam machinery, and appears, from treatises on steam muchinery, and appears, from
time to time, in scientific periodicals. The most valuable information is, however, unwritten, and an only be acquired by experience
(i34) C. M. B. asks: Can the tone of organ
orilutina reeds be ehanged? If so, how? A. Itcun orllutina reeds be ehanged? Ifso, how? A. Itcan
bedone by changing the length of the vibrating are arranged so that this adjustmentcan readily be arearr.
(3.) M. E. J. asks: What is the rule fo There is considerable diference of practice; and beyond setting them so that the wheels will clear, we do not think there is any deflnite rule. Some of
our readers will please correct us if we arc in erivr.
(:36) J. O. S. says: 1. I wish to build a flat bottomed steam pleasure boat, 16 feet long by if feet wide, with side wheels. How will a portable engine
work in it, to run by a belt, and how many horse
power should there be in proportion to that size power should there be in proportion to that size
boat ? A. It will be better to discard the bcit. Use un enzine of from 2 to 3 horse power. 2. Is any llcense required to rum such a boat on a rivcr? -
Ycs. Yos.
(i3) E. S. S. AMys: I have some boxwod thrt wish to make into croquet balls. It requires soned without checking for next spaing'suse at tirst, and finally in or near a chinney corner.
(38) Wr. E. II. asks: What is the process o mannilleturing the small round glass beads which
urc sold by the pound: They seem to have no fractured edges. A. Theyare made from tubes cut
into the proper lcngths, the sharp edges being into the proper lengths, the sharp edges being
rounded by fusing, being heated in sand to prevent their fusing together.
(39) D. H. L. asks: Are the trade dollar coins lssued by the United States government
staupped or moldcd, to give the impressions: I wish to make similar medals. A. They are struck;
but for your purpose it would doubtless bs hetbut for your pur
ter to cast them
(40) (. M. R. says: Suppose a locomotive
ngine is running at the rate of 30 miles per hour, engine is running at the rate of 30 miles per hour,
in full fore gear, and is suddenly reversed to full back gear. Is there much danger of the cylinder be of breaking some of the moving parts.
(41) J. OC. says: In Your answer in re
Ind cowards that part of the pulley where the radus the greatcst." I discovered this higbside theory to be a fallacy in 185 . Let a main line of thafting be
lined up by any of the usual methods; then the neuntershafts can be made right by moving them counterghats can be made right by moving them
until the belts run even on the pulleys. In most cases, this can be done when the machinery is running. It is an expedittous and accurate method.
n. You confound two distinct cases. Our remark. A. You confound two distinct cases. Our remark had reference to two pulleys whose axes were par-
alle, one of the pulleys havting a swell or convexity. Your illustration applies to the case in which the axes of the two pulleys are not parallel. and
different principles are applicable. You will find this case ably treated in Professor Rankine's "Man ual of Machinery and Millwork.'
(42) R. T. asks: Would the compressing of able of cotton at a power of 1, (kx) tuns in jure th
taple; Would the oily nature of the fiber of the cotton be impaired when compressed so compactly Would the density of such packing render it mor expensive to the manufacturer in giving it the tilex
bility required? A. We see no objection to any bility required? A. We see no objection to any
degree of compression, and the ordinary practice degree of compression, and the ordinary practice
in conmercial circles confirins this vie w.
(433) S. S. B. says: 1. It is stated in Auchin. closs "On the Sllde Valve and Link 3otion" that
an engine of the Allen type, under Mr. Porter, atained the rapid piston speed of 1, tow feet per mintel. Isthis correct? A. Mr. Auchincloss is a very cllable enkiner, and sulh a statement coming
from him is worthy of full confidence. ?. How far is it from the Battery to Central Park, through
Brodwa gand Fifth avenuc? A A bouts mules
(44) (. . H. S. tavs: I am building a steam yacht, enenth 18 feet, beam ; feet, cylinder of sions of screw to get the highest rate of speed,and how fast couvd such a boatbe driven, provided that
shc be very sharp and with good lines? A. Screw, hc be very sharp and with good lines? A. Screw, from 16 to 18 inches diameter, with 34 to 36 inches
picch. Six orseven miles an hour would bea very gitch. Six orseven
(40̃) C. M. B. ask s: Would it be safe to
make the firebox of an upright boiler of cast iron make the firebox of an upright boiler of cast fron,
cast in one piecc and made very heavy? A . No.
(46) W. (d. asks: How many square inches
has a inch pistony A. About $3 \% \cdot 45$., To tind the
 it by nizis.
(47) W. W. G. asks: 1. What proportion should the suction pipe of a direct-acting steam
pump have to the size of the water cylinder? Makelt sothat the veloclty of the water shall not be over six feet a minutc. 2. What is the velocity of water liowing into a vacuum under atmosp heric
pressure? A. It will depend uno the orifce be ng about the same as water would have in flowing into the air under a heado of 34 feet, plus the head equired to overcome the friction in the pipes.
(48) IT. M. sura: Let there be four steam entheir cylinders. The mean pressure per square inch, the lengtth of stroke, and the number of
strokes in a $\begin{aligned} & \text { viven time are all equal, but the diam- }\end{aligned}$ inch, the ingtin of stroke, and the number of eters of the cylinders are $8,10,12$, and 14, respective-
Would the hoise power of the four engines be Would the holse power of the four engines be
in the proportion $8,1 \mathrm{l}, 12$, and $1 \ddagger ? A$ Neglecting n the proportion $8,11,12$, ,nd
friction and other prejudicia ruckistances, the pow friction and other presucures would vary as the squares of the diameters of ers woula par
becylinders.
Are therc
Are therc any steamers provided with two steam ysines, and do these engines work simultaneo
A. Such an arrangement is quite common.
(49) J. F. says: I wish to make mr greendinary putty comes oft after a year or two. Can you sug xesta mixture, to be applicd with a putty knife, tuat will adhere permanently and can be re-
moved, when necessary, for repairs? A. Use soft moved, when necessary, for repairs? A. Use sort
putty, composed of 101 liss whiting, 1 ib. white lead ta gill olve oil, and suffcient linseed oil to give the ture the proper eonsistenee.
(j 0) D. D. P. asks: 1. Which kind of wood is best for railroad ties, oak, ehestnut, or other
kind A. Oak is the best material. 2. Which is best to presenved used in Europe, aud to somc sligh extent in this country. 3. How long will one last if prepared with coal tar? A. A proper treatment is
uid to double the duration of service of a tie, ma king it last from 14 to 20 years.
(51) M. G. asks: 1. How is brass spun, and ing mandrel on which the pattern is fixed, pressed up against this with a blunt tool. 2. How
many pounds pressurc will a eopper boiler, 3 feet ong, 11 inches in diameter, a a $\frac{1}{2}$ ineh thick, stand? A bout 60 lbs . per square inch.
(52) Q asks: How is lead giv en to the valve of a hoisting engine, running both ways with only
one eccentric? The cam or eccentric rod workson one eccentric? The cam or eccentric rod workson
an upper and lower hook of a rock shaft. How much should the valve overlap the bort? A. The ment, and you can probably ad fust it best by a few trials.
(53) J. M. R. asks : 1. What is the composi tion of the chealest brass? A. Apply to a cheap wass founder. We have seen soccalled brass of have iudged it to be lead. .2. Can bronze be cast in other than clay molds, renewed for each cast? A.
Metallicmoldsare frequentlv used.
3. Is there any Metallicmoldsarc frequently used. 3. Is there any
composition of mctal which, while cheaperthan composition of motal which, while cheaperthan
brass, will be as hard and as tough: A. No. t. What will prevent common gray iron from rust inf A. It can be covered
preparation to keep off the air
(54) IV. J. P. asks: What is the best means
bohlers, 3 feet lonyby feet diameter, with return flues 2 feet in dianeter, and 5 feet furnace. We
use soft coal which throws or a very thick smoke How can we bura it? A. No general rule can be given. There are a number of patent furnaces for mpleting the combustion.
(55) C. W. asks: Wly is it that, when the water in a boiler gets low, the steam becomes blue? A. It b.

A friend of mine says that the water is not forcci into a pump by the air, for if so, how does the water come upt the drive wells\% He says that there is no air at the bottom of the well. I think that there isair in theground that forces the water up
in the pump. Which is correct? A. The water rises in such ha case from the pressure due to a highar source of supply.
(ij6) B. \& H. say: We have put a mortice bercl whee on our line shafting. The hangers are
bolted to joists in the usual form, but it is very bolted to joists in the usual form, but it is very
noisy. Is there any way to deaden the sound? A. Usc cut gears, and some arrangement to make the shaft run steadily.
(57) B. U. savs: Blucksmiths often have broken carriage springs to mend; and a fter getting nem welded, it is mial to get tien tempered again. Please give me a good recipe for tempering and draw the temper by heating to a temperature at which oll or tallow will just take fire.
(;i8) D. B. S. asks: What is the best compo sition to cast in brass molds, to be hard and strong etc.? A. White metul is ordinarily used for such purposes.
(59) S. G. asks: What will be the fow of ug conditions: The pipe is 3 miles long 20 inches in diameter, two thirds full, on a descending grade of 23 feet in the whole distance. The head pressure is no more than enough for the supply. Can you give
a rule for such a calculation? A. By the aid of the a rule for such a calculation? A. By the aid of the
following rules you can readily solve the example: following rules you can readly solve the example:
Measure the length in feet of that part of the girth Measure the length in feet on that part of re girth
of the pipe which is in contact with the running water, and the sectional area in square feet of that part of the pipe which is occupied by the water, measure the length of the pipe, $\}$, and the diameter d, taking both dimensions in feet. You can then
$f=0.005 \times\left(1+\frac{l}{12 i l}\right)$, andthe total friction, r, will bc $F=f \times l \times b$. Then, calling the head under which the water is lowing, or the total grade, h,
and the velocity in feet per second, $v: v=8=(0,2)$
in. Theseformulas willgive a close approximation
V_{F}
having beeneonstructed from careful experimcnts, There are, howevcr, so many things that are apt to solute result cannot be obtained cxcept by a test. (60) R. M. asks: 1. At what heat will fow's
 will find a fulldescription on p. 42ヶ, Science Record for 1873. 3. Are chickens so latched as strong and healthy as those hatched by a hen? A. If proljer
care is bestowed upon the egts while hatcling, the care inchess will be strong and lieathy.
chen the egs whie
(61) H. A. S. ask s: 1 . What elements may sodium, lithium, rubidum, oeselum, barium, stron tium, and calcium arc the elements sought for in
the usual course of spectrum analysts. 2 . What is the usual course of spectruin analysis. 2. What is
the usual charge for spectral analysii, when further examination is not required? A. From \$1 to
810, according to the dificulty of the examination 310, according to the dificuity of the examination
(62) G. P. asks: What is the best purt of
States to go to, to shoot pintie chickens and the States to go to, to shoot pulirie chickens and
other game? A. Iowa is consideredthe beat State for prairie chicken shooting; but it is rather late
You would probably get the best sportdurink this month in the State of Georgia, making headquur ters at Savannah. Thegame would be snipe, wood-
cock, quail, and duck. In some parts of thisState, cock, quail, and duck. In some parts of thisState,
good wild turkey and deer shooting is to be had.
(63) II. J. E. asks: Ilas skilled lator ad vanced or receded in price in the United State since the introduction of f
ete.? A . It has advanced.
How does the gold doliar of the United States compare with the coin of other eountries lin finc-
ness? A. The law of the [United States, passed in relation to this subbect,isasfollows: "Be it furthe coms of the Omited States shall hereafter be such that, of one thousand parts by welght, nine hundred shall bc of pure metal, and one hundreal of alioy; and the ulloy of the silver coins shall be of copper, and the alloy of the gold coins shall bc of copper and eilver, provided hel allver do not ex-
ceed one half of the whole alloy. The English pound has 916 gruins pure gold in a thousand, the
wenty franc piece of France has k99, the Aus trian ducat has gse.
What wood is best for lightiess, elasticity, and durability? A. Try lancewood. Your other lues
tions are not suited to our columns (64) F. E. R. alk s: At what speed would an drive a boat 18 fectlong si feet wide inches strok drive a boat 18 fectl Iong, is feet wide, and drawing
f Inches of water? The engine will have 100 revolutions per minute aud 50 lbs . steam. A. The enginewould be entirely too small to to give a satisfac-
tory result, unleqg amuch higher pressure of steam
(65) A. R. \& Q. K. ask: 1 . What numbri of revolutions is perfectly safe for a 24 inch grist
millstone of sectional French burr, imbedded in cast iron band with plaster of Paris? A. Each miker generally gives a table of safe speeds for his to drive a 24 inch millstone if driven by a 20 feet countershaft than if driven direct from the driver wheel, all things being properly arranged? A. Probably about 5 per cent.
Our water contains iron. Is it safe to use in a boiler that cannot be scoured out or cleaned ex-
cept by blowing of through the ordinary style or cept by blowing off through the ordinary style or
mud valve? A . From your experience, we fudge that it is quite cafe.
(66) G. IV. K. says: I have if foot lathe with only one speed. The driver is 23 inches in diamedie, is 3 Inches in , ineter. I ont to Ax it die, is 3 Inches in diameter. I want to dx it 80 as
to run a small emery $\mathbf{w h e e l}$ and circular saw, and I purpose to belt from the face plate on to the arborHow large should the pulley on the face plate be A. You may have to use a countershaft to get up
the speed. A 6 inch emery wheel should make the speed. A 6 inch emery wheel should make
about 2,400 evolutions a minute; an 8 inch, 1.800 ; a 12 inch, 1,200 .
(67) V. M.J. says, in reply to E. M. C., who
Deaks of difficulty of running his enginc on ace count of heating of bearings: The construction of the engine and the comparative steam pressure has
much to do in the case. If the crank is overbugg and high steamg pressure is used, 80 or 1001 bs ther will probealy pe coside used, wpris to the shaft when the engine is working full, with the size of shaft aggiven,314 inches. Agam, thc shaft may not belined properly, in which case it will be impossible to run without heating or knocking; and al-
though the crank may be in line with the cylinder, though the crank may be in line with the cylinder,
it may not be in line with the slides, or the wrist it may not be in line with the slides, or the wrist
may not put in square with the face of crank may not put in square with the face of crank.
Any one or all of these errors may be the eause of
the trouble.
(68) E. B. W. says, in reply to F. J. H. who asked how to calculate the distance between
two points on the surface of a globe, ankle and rawhas being given: Multiply the radius by 6 aisia 340° : the given angle:: circumference: distance between proposed points meusured on the surface.
The distance measured on a straight line may bed The distance measured on a straight line may
found by a simple operation in triangulation.
(69) 13. K. W. says, in reply to R. C., who asks if therc is any way to test the sourness of
vinegar: I tind that the pickle manufacturers use the soda test, as follows: Put in a proof glass1 oz. of vinegar, weigh out a certain number of grains of English bicarbonate of soda, and slowly drop it stand 3 gig grains, it is fit for their ase: hut much lea. trength would do for table use.
(r0) A. L. W. says, in answer to R. O. B. who and its chord are given: The logarithmic sine arc is to $1 / 2$ the chord as the logarithmi That is: logsin. ${ }_{2}^{\text {arc }}:-\frac{\text { chord }}{2}:$ log.cos. ${ }_{2}^{\text {arc }}:$ cos. ${ }_{\text {arc }}$

(71) A. W. S. says, in reply to several cor Fill a burts, who asked how to keep cider sweet and through the cork put a lead pipe. Bend the pilic over and put the other end in a pail of water. This will allow the gas from the cider to pass of
through the pipe, and the water will keep the airthrough the pipe, and the wa
from getting Into the bairel.
W. S. M. asks. What chemicals wilt keep tallowin solution with crude petroleum at al
low tempcrature?-J. E. W. asks: How can I tial
small lead castings:

COMMUNICATIONS KECEIVED

The Editor of the Scientific Anerican apiginal papers and contribntions upon the followisubjects:
On Mind Reading. By. W. E. H
On Coinage Free of Charge. By A. s.S
On the Spiler's Ingenuity. By I. T. T.
On Patents aud Patent Laws. By G. W.
On Patents aud Patent Laws.
On Powdered Fuel. By J.J. S
Iso enquiries and answers from the following

HINTS TO CORHESPONDENTS.
Correspondents whose inquiries fail to appear hould repeat them. If not then published, they clines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not le published here. All such questions, when initials only are given, are thrown into the waste basket, af
it would fll half of our paper to print them all but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of enqniries analo ous tothe following are sent: "Who makes theodontograph,for laying
out teeth of gear wheels? Who sells diamond out teeth of gear wheels? Who sells diamond
drills't Whin sells lithographs of marine eng ines drills' Wha sells lithographs of marine eng incs
Who makes the best evaporator, heated by steam Who makes the best evaporator, heated by steam
Who sells nail making machinery? Who makes Wrive well apparatus?" All such personal enquirles arepanted. as will be observech in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned fornation can in this way le expeditiously obfornation
tained.

